动量守恒定律典型例题报告.doc
动量守恒定律例题

1、两个磁性很强的磁铁,分别固定在A 、B 两辆小车上,A 车的总质量为4.0kg ,B 车的总质量为2.0kg 。
A 、B 两辆小车放在光滑的水平面上,它们相向运动,A 车的速度是5.0m/s ,方向水平向右;B 车的速度是3.0m/s,方向水平向左。
由于两车上同性磁极的相互排斥,某时刻B 车向右以8.0m/s 的水平速度运动,求 (1)此时A 车的速度;(2)这一过程中,B 车的动量增量。
6、如图所示,A 、B 、C 三木块的质量分别为mA=0.5kg ,mB=0.3kg 、mC=0.2kg ,A 和B 紧靠着放在光滑的水平面上,C 以v0=25m/s 的水平初速度沿A 的上表面滑行到B 的上表面,由于摩擦最终与B 木块的共同速度为8m/s ,求C 刚脱离A 时,A 的速度和C 的速度。
2、如图1所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,求船和人对地面的位移各为多少?3、质量为M 的汽球上有一个质量为m 的人气球静止于距地面为h 高度处。
从气球上放下一根不计质量的绳。
为使此人沿绳滑至地面,绳的长度至少多长?4、 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v0向右运动,与车厢壁来 回碰撞n 次后,静止在车厢中,这时车厢的速度为_______,方向与v0的方向_______.6、如图所示,甲车的质量是2 kg ,静止在光滑水平面上,上表面光滑,右端放一个质量为1 kg 的小物体.乙车质量为4 kg ,以5 m/s 的速度向左运动,与甲车碰撞以后甲车获得8 m/s 的速度,物体滑到乙车上.若乙车足够长,上表面与物体的动摩擦因数为0.2,则物体在乙车上表面滑行多长时间相对乙车静止?(g 取10 m/s2) 5、如图所示,质量为M=1kg 的长木板,静止放置在光滑水平桌面上,有一个质量为m=0.2kg 大小不计的物体以6m/s 的水平速度从木板左端冲上木板,在木板上滑行了2s 后跟木板相对静止(g 取10m/s2)。
验证动量守恒定律实验报告

验证动量守恒定律实验报告动量守恒定律是物理学中的重要定律之一,它指出在一个封闭系统中,如果系统内部没有外力作用,系统的总动量将保持不变。
为了验证动量守恒定律,我们进行了以下实验。
首先,我们准备了一台光滑的水平轨道,轨道上有两个小车,分别标记为A和B。
我们使用了两个弹簧秤,一个用来测量小车A的初速度,另一个用来测量小车B的初速度。
在实验开始之前,我们先测量了两个小车的质量,并记录下来。
接下来,我们让小车A静止在轨道的一端,小车B静止在轨道的另一端。
然后我们用手推小车A,让它向小车B运动。
当小车A碰撞到小车B时,我们立即按下计时器,并记录下碰撞后两个小车的运动情况。
通过实验数据的分析,我们发现碰撞后小车A的速度减小,而小车B的速度增大。
根据动量守恒定律,我们知道在碰撞过程中,系统的总动量应该保持不变。
因此,我们计算了碰撞前后系统的总动量,发现它们的值几乎相等,这验证了动量守恒定律在这个实验中的有效性。
在实验过程中,我们还发现了一些误差。
首先,由于轨道的摩擦力和空气阻力的存在,小车在碰撞过程中会有能量损失,导致动量并不完全守恒。
其次,测量仪器的精度也会对实验结果产生一定的影响。
为了减小误差,我们可以采取一些措施,比如减少轨道的摩擦力,提高测量仪器的精度等。
总的来说,通过这个实验,我们成功验证了动量守恒定律。
动量守恒定律在物理学中有着广泛的应用,它不仅可以解释碰撞、爆炸等现象,还可以帮助我们理解宇宙中许多复杂的运动规律。
希望通过这个实验,大家对动量守恒定律有了更深入的理解,同时也能够认识到实验中误差的存在及其对结果的影响,从而更加科学地进行实验研究。
物理动量守恒定律练习题及答案.docx

物理动量守恒定律练习题及答案一、高考物理精讲专题动量守恒定律1. 如图,足够大的光滑水平面上固定着一竖直挡板,挡板前L 处静止着质量 m 1=1kg 的小球 A ,质量 m 2=2kg 的小球 B 以速度 v 0 运动,与小球 A 正碰.两小球可看作质点,小球与小球及小球与挡板的碰撞时间忽略不计,且碰撞中均没有机械能损失.求(1)第 1 次碰撞后两小球的速度;(2)两小球第 2 次碰撞与第 1 次碰撞之间的时间; (3)两小球发生第 3 次碰撞时的位置与挡板的距离.【答案】 (1) 4 v 1v 方向均与 v 0 相同 (2)6L 9L(3) 35v 03【解析】 【分析】(1)第一次发生碰撞,动量守恒,机械能守恒; (2)小球 A 与挡板碰后反弹,发生第2 次碰撞,分析好位移关系即可求解;( 3)第 2 次碰撞过程中,动量守恒,机械能守恒,从而找出第三次碰撞前的初始条件,分析第 2 次碰后的速度关系,位移关系即可求解. 【详解】( 1)设第 1 次碰撞后小球 A 的速度为 v 1 ,小球 B 的速度为 v 2 ,根据动量守恒定律和机械 能守恒定律 : m 2 v 0 m 1v 1 m 2v 21m 2 v 021m 1v 121m 2v 222 22整理得: v 12m 2 v 0 , v 2m 2m 1v 0m 1 m 2m 1 m 2解得 v 14v 0 , v 21v 0 ,方向均与 v 0 相同.33(2)设经过时间 t 两小球发生第 2 次碰撞,小球 A 、 B 的路程分别为 x 1 、 x 2 ,则有x 1 v 1t , x 2 v 2t由几何关系知:x 1 x 2 2L6L整理得: t5v 0(3)两小球第2 次碰撞时的位置与挡板的距离:x L x 23 L5以向左为正方向,第 2 次碰前 A 的速度v A4v 0 ,B 的速度为 v B1v 0 ,如图所示.3 3碰后A 的速度 v A ,B 的速度 v B .根据 量守恒定律和机械能守恒定律,有m 1v A m 2v B m 1v Am 2v B ;1m 1v A 2 1m 2 v B 21m 1v A21m 2v B 222 2 2整理得: v A(m 1 m 2 ) v A2m 2vB, v B(m 2 m 1 )v B 2m 1v Am 1 m 2 m 1 m 2解得: v A8v 0 , v B7v 099第 2 次碰后t 生第 3 次碰撞,碰撞 的位置与 板相距x ,x x v B t ,x x v At整理得: x9L2. 冰球运 甲的 量80.0kg 。
高中物理-动量守恒定律经典例题详解

高中物理-动量守恒定律经典例题详解一 动量 冲量 动量定理1.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量答案B [解析] 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球的动量变化率,减小了球对手的冲击力,选项B 正确.二 动量守恒定律2. 一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是A BC D答案B [解析] 弹丸在爆炸过程中,水平方向的动量守恒,有m 弹丸v 0=34m v 甲+14m v 乙,解得4v 0=3v 甲+v 乙,爆炸后两块弹片均做平抛运动,竖直方向有h =12gt 2,水平方向对甲、乙两弹片分别有x 甲=v 甲t ,x 乙=v 乙t ,代入各图中数据,可知B 正确.3.如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A 和B 分别静止在圆弧轨道的最高点和最低点.现将A 无初速释放,A 与B 碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R =0.2 m ;A 和B 的质量相等;A 和B 整体与桌面之间的动摩擦因数μ=0.2.重力加速度g 取10 m/s 2.求:(1) 碰撞前瞬间A 的速率v ;(2) 碰撞后瞬间A 和B 整体的速率v ′; (3) A 和B 整体在桌面上滑动的距离l .[答案] (1)2 m/s (2)1 m/s (3)0.25 m [解析] 设滑块的质量为m . (1)根据机械能守恒定律有mgR =12m v 2解得碰撞前瞬间A 的速率有v =2gR =2 m/s.(2)根据动量守恒定律有m v =2m v ′解得碰撞后瞬间A 和B 整体的速率v ′=12v =1 m/s.(3)根据动能定理有12(2m )v ′2=μ(2m )gl 解得A 和B 整体沿水平桌面滑动的距离l =v ′22μg=0.25 m . 4.质量为2 kg 的小车以2 m/s 的速度沿光滑的水平面向右运动,若将质量为0 .5 kg 的砂袋以3 m/s 的水平速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( )A .1.0 m/s ,向右B .1.0 m/s ,向左C .2.2 m/s ,向右D .2.2 m/s ,向左答案D [解析] 忽略空气阻力和分离前后系统质量的变化,卫星和箭体整体分离前后动量守恒,则有(m 1+m 2)v 0=m 1v 1+m 2v 2,整理可得v 1=v 0+m 2m 1(v 0-v 2),故D 项正确. 5.冰壶运动深受观众喜爱,图X291甲为2014年2月第22届索契冬奥会上中国队员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图乙.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图丙中的哪幅图( )图X291答案B [解析] 两个质量相等的冰壶发生正碰,碰撞前后都在同一直线上,选项A 错误;碰后冰壶A 在冰壶B 的左边,选项C 错误;碰撞过程中系统的动能可能减小,也可能不变,但不能增大,所以选项B 正确,选项D 错误.6.下图X292是“牛顿摆”装置,5个完全相同的小钢球用轻绳悬挂在水平支架上,5根轻绳互相平行,5个钢球彼此紧密排列,球心等高.用1、2、3、4、5分别标记5个小钢球.当把小球1向左拉起一定高度,如图甲所示,然后由静止释放,在极短时间内经过小球间的相互碰撞,可观察到球5向右摆起,且达到的最大高度与球1的释放高度相同,如图乙所示.关于此实验,下列说法中正确的是()图X292A.上述实验过程中,5个小球组成的系统机械能守恒,动量守恒B.上述实验过程中,5个小球组成的系统机械能不守恒,动量不守恒C.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球4、5一起向右摆起,且上升的最大高度高于小球1、2、3的释放高度D.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同答案D[解析] 5个小球组成的系统发生的是弹性正碰,系统的机械能守恒,系统在水平方向的动量守恒,总动量并不守恒,选项A、B错误;同时向左拉起小球1、2、3到相同的高度,同时由静止释放并与4、5碰撞后,由机械能守恒和水平方向的动量守恒知,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同,选项C错误,选项D正确.三动量综合问题7. 如图所示,水平地面上静止放置一辆小车A,质量m A=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B置于A的最右端,B的质量m B =2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到v t=2 m/s.求:(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l.答案(1)2.5 m/s2(2)1 m/s(3)0.45 m[解析] (1)以A为研究对象,由牛顿第二定律有F=m A a①代入数据解得a=2.5 m/s2②(2)对A、B碰撞后共同运动t=0.6 s的过程,由动量定理得Ft=(m A+m B)v t-(m A+m B)v③代入数据解得v =1 m/s ④(3)设A 、B 发生碰撞前,A 的速度为v A ,对A 、B 发生碰撞的过程,由动量守恒定律有m A v A =(m A +m B )v ⑤A 从开始运动到与B 发生碰撞前,由动能定理有Fl =12m A v 2A ⑥ 由④⑤⑥式,代入数据解得l =0.45 m ⑦8.如图所示,质量分别为m A 、m B 的两个弹性小球A 、B 静止在地面上,B 球距地面的高度h =0.8 m ,A 球在B 球的正上方,先将B 球释放,经过一段时间后再将A 球释放,当A 球下落t =0.3 s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零,已知m B =3m A ,重力加速度大小g 取10 m/s 2,忽略空气阻力及碰撞中的动能损失.求:(1)B 球第一次到过地面时的速度; (2)P 点距离地面的高度.答案解:(ⅰ)设B 球第一次到达地面时的速度大小为v B ,由运动学公式有v B =2gh ①将h =0.8 m 代入上式,得v 1=4 m/s.②(ⅱ)设两球相碰前后,A 球的速度大小分别为v 1和v ′1(v ′1=0),B 球的速度分别为v 2和v ′2,由运动学规律可得v 1=gt ③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变,规定向下的方向为正,有m A v 1+m B v 2=m B v ′2④12m A v 21+12m B v 22=12m v ′22⑤ 设B 球与地面相碰后速度大小为v ′B ,由运动学及碰撞的规律可得v ′B =v B ⑥设P 点距地面的高度为h ′,由运动学规律可得h ′=v ′2B -v 222g⑦联立②③④⑤⑥⑦式,并代入已知条件可得h ′=0.75 m .⑧9. 一中子与一质量数为A (A >1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )A.A +1A -1B.A -1A +1C.4A(A +1)2 D.(A +1)2(A -1)2答案A [解析] 本题考查完全弹性碰撞中的动量守恒、动能守恒.设碰撞前后中子的速率分别为v 1,v ′1,碰撞后原子核的速率为v 2,中子的质量为m 1,原子核的质量为m 2,则m 2=Am 1.根据完全弹性碰撞规律可得m 1v 1=m 2v 2+m 1v ′1,12m 1v 21=12m 2v 22+12m 1v ′21,解得碰后中子的速率v ′1=⎪⎪⎪⎪⎪⎪m 1-m 2m 1+m 2v 1=A -1A +1v 1,因此碰撞前后中子速率之比v 1v ′1=A +1A -1,A 正确.10.如图X296所示,竖直平面内的光滑水平轨道的左边与墙壁对接,右边与一个足够高的14光滑圆弧轨道平滑相连,木块A 、 B 静置于光滑水平轨道上,A 、B 的质量分别为1.5kg 和0.5 kg.现让A 以6 m/s 的速度水平向左运动,之后与墙壁碰撞,碰撞的时间为0.3 s ,碰后的速度大小变为4 m/s.当A 与B 碰撞后会立即粘在一起运动,g 取10 m/s 2,求:(1)在A 与墙壁碰撞的过程中,墙壁对A 的平均作用力的大小; (2)A 、B 滑上圆弧轨道的最大高度.图X296答案(1)50 N (2)0.45 m[解析] (1)设水平向右为正方向,当A 与墙壁碰撞时根据动量定理有 Ft =m A v ′1-m A ·(-v 1) 解得F =50 N.(2)设碰撞后A 、B 的共同速度为v ,根据动量守恒定律有 m A v ′1=(m A +m B )vA 、B 在光滑圆形轨道上滑动时,机械能守恒,由机械能守恒定律得 12(m A +m B )v 2=(m A +m B )gh 解得h =0.45 m.四 力学观点的综合应用11.如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案(1)3 m/s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J [解析] (1)P 1、P 2碰撞过程动量守恒,有m v 1=2m v解得v =v 12=3 m/s碰撞过程中损失的动能为ΔE =12m v 21-12(2m )v 2解得ΔE =9 J.(2)由于P 与挡板的碰撞为弹性碰撞.故P 在AC 间等效为匀减速运动,设P 在AC 段加速度大小为a ,碰后经过B 点的速度为v 2 ,由牛顿第二定律和运动学规律,得μ(2m )g =2ma3L =v t -12at 2v 2=v -at解得v 1=2v =6L +μgt 2t v 2=6L -μgt 22t由于2 s ≤t ≤4 s 所以解得v 1的取值范围10 m/s ≤v 1≤14 m/sv 2的取值范围1 m/s ≤v 2≤5 m/s所以当v 2=5 m/s 时,P 向左经过A 点时有最大速度 v 3=v 22-2μgL则P 向左经过A 点时有最大动能E =12(2m )v 23=17 J. 12. 冰球运动员甲的质量为80.0 kg.当他以5.0 m/s 的速度向前运动时,与另一质量为100 kg 、速度为3.0 m/s 的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1 )碰后乙的速度的大小; (2)碰撞中总机械能的损失. [答案] (1)1.0 m/s (2)1400 J[解析] (1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V ′.由动量守恒定律有m v -MV =MV ′①代入数据得V ′=1.0 m/s ②(2)设碰撞过程中总机械能的损失为ΔE ,应有12m v 2+12MV 2=12MV ′2+ΔE ③ 联立②③式,代入数据得ΔE =1400 J ④。
(完整word)动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型)例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为4kg,地面光滑,则车后来的速度为多少?例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0。
2,则此过程经历的时间为多少?例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地点的距离。
(g取10m/s2)例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1。
6kg,木块与小车之间的摩擦系数为0。
2(g取10m/s2).设小车足够长,求:(1)木块和小车相对静止时小车的速度。
(2)从木块滑上小车到它们处于相对静止所经历的时间。
(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。
例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。
游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。
为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。
若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞?答案:1。
分析:以物体和车做为研究对象,受力情况如图所示。
在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。
因此地面给车的支持力远大于车与重物的重力之和。
系统所受合外力不为零,系统总动量不守恒。
但在水平方向系统不受外力作用,所以系统水平方向动量守恒。
以车的运动方向为正方向,由动量守恒定律可得:车 重物初:v 0=5m/s 0末:v v Mv 0=(M+m)vs m v m N M v /454140=⨯+=+=即为所求。
动量守恒定律经典例题

甲(含船)和球、乙(含船)和球、甲乙(含船 )和球
(2)若最终甲的速度为0,乙的速度为多少?
甲
乙
如图所示,光滑水平面上两小车中间夹一压缩了的轻弹
簧,两手分别按住小车,使它们静止,对两车及弹簧组
成的系统,下列说法中正确的是(
)
A.两手同时放开后,系统总动量始终为零
B.先放开左手,后放开右手,动量不守恒
(B)若A、B与平板车上表面间的动摩擦因数相 同,A、B、C组成的系统的动量守恒
(C)若A、B所受的摩擦力大小相等,A、B组成 的系统的动量守恒
(D)若A、B所受的摩擦力大小相等,A、B、C组 成的系统的动量守恒
BCD
如图所示,A、B两物体的质量比mA∶mB=3∶2, 它们原来静止在平板车C上,A、B间有一根被压 缩了的弹簧,A、B与长平板车的上表面间动摩擦 因数相同,地面光滑.当弹簧突然释放后,则有 A.A、B
A.当小球到达最低点时,木块有最大速率 B.当小球的速率最大时,木块有最大速率 C.当小球再次上升到最高点时,木块的速率为最大 D.当小球再次上升到最高点时,木块的速率为零
ABD
质量为M的小车中挂有一个单摆,摆球的质量为M0,小车和单摆 以恒定的速度V0沿水平地面运动,与位于正对面的质量为M1的 静止木块发生碰撞,碰撞时间极短,在此过程中,下列哪些说 法是可能发生的( ) A.小车、木块、摆球的速度都发生变化,分别为V1、V2和V3, 且满足:(M+M0)V0=MV1+M1V2+M0V3; B.摆球的速度不变,小车和木块的速度为V1、V2,且满足:
B.A、B、C系统动量守恒 C. D.小车向右运动
BC
热气球下面吊着一个篮子,向上做匀速直线 运动,剪断绳子后在篮子落地前,系统的动 量是否守恒?若篮子落地后呢?
动量守恒定律练习题含答案及解析.doc

动量守恒定律练习题含答案及解析一、高考物理精讲专题动量守恒定律1. 水平放置长为 L=4.5m 的传送带顺时针转动,速度为v=3m/s ,质量为 m 2=3kg 的小球被长为 l 1m 的轻质细线悬挂在 O 点,球的左边缘恰于传送带右端 B 对齐;质量为 m 1=1kg的物块自传送带上的左端A 点以初速度 v 0=5m/s 的速度水平向右运动,运动至B 点与球 m 2发生碰撞,在极短的时间内以碰撞前速率的1反弹,小球向右摆动一个小角度即被取走。
2已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度 g 10m/s 2。
求:( 1)碰撞后瞬间,小球受到的拉力是多大?( 2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少?【答案】( 1) 42N ( 2) 13.5J【解析】【详解】解:设滑块 m1与小球碰撞前一直做匀减速运动,根据动能定理:m gL = 1mv 2 1 m v 2121 121 0解之可得: v 1 =4m/s因为 v 1 v ,说明假设合理m 1v 1 = 1 2滑块与小球碰撞,由动量守恒定律: 2m 1v 1+m 2v 2解之得: v 2 =2m/s碰后,对小球,根据牛顿第二定律:F m 2 gm 2 v 22l小球受到的拉力:F 42N(2)设滑块与小球碰撞前的运动时间为t 1 ,则 L1v 0 v 1 t 12解之得: t 1 1s在这过程中,传送带运行距离为: S 1 vt 1 3m 滑块与传送带的相对路程为:X 1L X 1 1.5m设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为 t 2则根据动量定理:m 1 gt 2m 11v 12解之得: t2 2s滑块向左运动最大位移: x m 1 1v1 t 2=2m2 2因为 x m L ,说明假设成立,即滑块最终从传送带的右端离开传送带1再考虑到滑块与小球碰后的速度2 v1< v ,说明滑块与小球碰后在传送带上的总时间为2t2在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程X 22vt212m因此,整个过程中,因摩擦而产生的内能是Q m1 g x1 x2=13.5J2.如图:竖直面内固定的绝缘轨道abc R=3 m的光滑圆弧段bc与长l=1.5 m的粗,由半径糙水平段 ab 在 b 点相切而构成, O 点是圆弧段的圆心,Oc 与 Ob 的夹角θ=37°;过 f 点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C 的匀强电场, Ocb 的外侧有一长度足够长、宽度 d =1.6 m 的矩形区域 efgh, ef 与 Oc 交于 c 点, ecf 与水平向右的方向所成的夹角为β(53 °≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3× 10-3 kg、电荷量 q=3× l0-3 C 的带正电小物体Q 静止在圆弧轨道上 b 点,质量 m1=1.5× 10-3 kg 的不带电小物体 P 从轨道右端 a 以 v0=8 m/s 的水平速度向左运动,P、 Q 碰撞时间极短,碰后 P 以 1 m/s 的速度水平向右弹回.已知P 与 ab 间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37° =0.6, cos37° =0.8,重力加速度大小g=10m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小 B1;(3)当区域 efgh 内所加磁场的磁感应强度为B2 =2T 时,要让物体Q 从 gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】 (1) F N 4.6 10 2 N (2) B1 1.25T(3) t 127s ,1900和21430 360【解析】【详解】解: (1)设 P 碰撞前后的速度分别为 v 1 和 v 1 , Q 碰后的速度为 v 2 从 a 到 b ,对,由动能定理得: 1212P- m 1gl2 m 1v 12m 1v解得: v 1 7m/s碰撞过程中,对 P , Q 系统:由动量守恒定律: m 1v 1 m 1v 1 m 2v 2取向左为正方向,由题意 v 11m/s,解得: v 24m/sb 点:对 Q ,由牛顿第二定律得: F Nm 2 g m 2 v 2 2R解得 : F N 4.6 10 2 N(2)设 Q 在 c 点的速度为 v c ,在 b 到 c 点,由机械能守恒定律:m 2 gR(1 cos )1m 2v c21m 2v 2 22 2解得: v c 2m/s进入磁场后: Q 所受电场力 F qE 3 10 2Nm 2 g ,Q在磁场做匀速率圆周运动由牛顿第二定律得:qv c B 1m 2v c2r 1Q 刚好不从 gh 边穿出磁场,由几何关系: r 1 d 1.6m解得: B 11.25T(3)当所加磁场 B 22T ,r2m 2v c1mqB 2要让 Q 从 gh 边穿出磁场且在磁场中运动的时间最长,则 Q 在磁场中运动轨迹对应的圆心角最大,则当 gh 边或 ef 边与圆轨迹相切,轨迹如图所示:d r2 设最大圆心角为,由几何关系得:cos(180)r2 解得:1272 m2运动周期: TqB2则 Q 在磁场中运动的最长时间:t T 127?2 m2 127 s360 360 qB2 360此时对应的角: 1 90 和2 1433.如图甲所示,物块A、 B 的质量分别是m A B=4.0kg 和 m =3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触.另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4s 时与物块 A 相碰,并立即与 A 粘在一起不再分开,物块 C 的 v-t 图象如图乙所示.求:①物块 C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P?【答案】(1) 2kg( 2) 9J【解析】试题分析:①由图知, C 与 A 碰前速度为 v1= 9 m/s,碰后速度为v2= 3 m/s , C 与 A 碰撞过程动量守恒. m c 1 AC2v =( m + m ) v即 m c= 2 kg② 12 s 时 B 离开墙壁,之后A、 B、C 及弹簧组成的系统动量和机械能守恒,且当A、 C 与B的速度相等时,弹簧弹性势能最大(m A+ m C) v3=( m A+ m B+ m C) v4得E p= 9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.4.如图所示,质量分别为m1和m2的两个小球在光滑水平面上分别以速度v1、 v2同向运动,并发生对心碰撞,碰后 m2被右侧墙壁原速弹回,又与 m1碰撞,再一次碰撞后两球都静止.求第一次碰后 m1球速度的大小 .【答案】 【解析】设两个小球第一次碰后 m 1 和 m 2 速度的大小分别为和 ,由动量守恒定律得:( 4 分)两个小球再一次碰撞, (4 分)得:( 4 分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得5. 如图所示,一辆质量M=3 kg 的小车 A 静止在光滑的水平面上,小车上有一质量 m=l kg的光滑小球 B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为 L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
高中物理动量守恒定律技巧(很有用)及练习题及解析.docx

高中物理动量守恒定律技巧( 很有用 ) 及练习题及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、 m,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度v0向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能(2)第一次碰撞过程中甲对乙的冲量【答案】(1) 1 mv02; (2)4mv0【解析】【详解】解: (1)设第一次碰撞刚结束时甲、乙的速度分别为v1、 v2,之后甲做匀速直线运动,乙以v2初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速v2度相等,有: v12而第一次碰撞中系统动量守恒有:2mv02mv1 mv2由以上两式可得: v1v0, v2v0 2所以第一次碰撞中的机械能损失为:E 1g2mgv021g2mgv121mv221mv02 2224(2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:I mv20 mv02.如图:竖直面内固定的绝缘轨道abc R=3 m的光滑圆弧段bc与长l=1.5 m的粗,由半径糙水平段 ab 在 b 点相切而构成, O 点是圆弧段的圆心,Oc 与 Ob 的夹角θ=37°;过 f 点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C 的匀强电场, Ocb 的外侧有一长度足够长、宽度 d =1.6 m 的矩形区域efgh, ef 与 Oc 交于 c 点, ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3× 10-3 kg、电荷量 q=3× l0-3 C 的带正电小物体Q 静止在圆弧轨道上 b 点,质量 m1=1.5× 10-3 kg 的不带电小物体 P 从轨道右端 a 以 v0=8 m/s 的水平速度向左运动,P、 Q 碰撞时间极短,碰后 P 以 1 m/s 的速度水平向右弹回.已知P 与 ab 间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37° =0.6, cos37° =0.8,重力加速度大小 g=10m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小 F N;(2)当β=53°时,物体 Q 刚好不从 gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小 B1;(3)当区域 efgh 内所加磁场的磁感应强度为 B =2T 时,要让物体 Q 从 gh 边穿出磁场且在磁2场中运动的时间最长,求此最长时间t 及对应的 β 值.【答案】 (1) F N4.6 10 2 N (2) B 11.25T (3) t127 s , 1 900 和 2 1430360【解析】【详解】解: (1)设P 碰撞前后的速度分别为v和v 1 , Q 碰后的速度为 v21从 a 到 b ,对 P ,由动能定理得:1 2 12 - m 1gl2 m 1v 12m 1v解得: v 17m/s碰撞过程中,对P , Q 系统:由动量守恒定律:m vm v m v21 11 12 取向左为正方向,由题意 v 11m/s,解得: v 24m/sb 点:对 Q ,由牛顿第二定律得:F Nm 2 g m 2 v 2 2R解得 : F N4.6 10 2 N(2)设 Q 在 c 点的速度为 v c ,在 b 到 c 点,由机械能守恒定律:m 2 gR(1 cos) 1 m 2v c 21m 2v 2 22 2解得: v c 2m/s进入磁场后: Q 所受电场力 FqE 3 10 2 Nm 2 g , Q 在磁场做匀速率圆周运动m v 2由牛顿第二定律得:qv c B 12 cr1Q 刚好不从 gh 边穿出磁场,由几何关系: r 1 d1.6m解得: B 1 1.25T(3)当所加磁场 B 22T m 2v c1m, r 2 qB 2要让 Q 从 gh 边穿出磁场且在磁场中运动的时间最长,则 Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或 ef 边与圆轨迹相切,轨迹如图所示:d r2设最大圆心角为,由几何关系得:cos(180)r2解得:1272 m2运动周期: TqB2则 Q 在磁场中运动的最长时间:t T127 ?2 m2127 s360360 qB2360此时对应的角:190 和2 1433.如图所示,质量分别为m1和 m2的两个小球在光滑水平面上分别以速度v1、 v2同向运动,并发生对心碰撞,碰后 m2被右侧墙壁原速弹回,又与 m1碰撞,再一次碰撞后两球都静止.求第一次碰后 m1球速度的大小 .【答案】【解析】设两个小球第一次碰后m1和 m2速度的大小分别为和,由动量守恒定律得:( 4 分)两个小球再一次碰撞,(4 分)得:( 4 分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得4.如图,质量分别为m1=1.0kg 和 m2=2.0kg 的弹性小球a、 b,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v0=0.10m/s 沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t=5.0s 后,测得两球相距s=4.5m ,则刚分离时, a 球、 b 球的速度大小分别为_____________、 ______________;两球分开过程中释放的弹性势能为_____________ .【答案】①0.7m/s, -0.2m/s②0.27J【解析】试题分析:① 根据已知,由动量守恒定律得联立得② 由能量守恒得代入数据得考点:考查了动量守恒,能量守恒定律的应用【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒定律与能量守恒定律分析解题5.如图,质量分别为、的两个小球A、B 静止在地面上方, B 球距地面的高度h=0.8m , A 球在 B 球的正上方.先将B球释放,经过一段时间后再将 A 球释放.当 A 球下落 t=0.3s 时,刚好与 B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间 A 球的速度恰为零.已知,重力加速度大小为,忽略空气阻力及碰撞中的动能损失.(i) B 球第一次到达地面时的速度;(i i )P 点距离地面的高度.【答案】 v B4m / s h p0.75m【解析】试题分析:( i) B 球总地面上方静止释放后只有重力做功,根据动能定理有m B gh1m B v B22可得 B 球第一次到达地面时的速度v B2gh4m / s(ii )A 球下落过程,根据自由落体运动可得 A 球的速度v A gt3m / s设 B 球的速度为v',则有碰撞过程动量守恒Bm A v A m B v B ' m B v B ''碰撞过程没有动能损失则有1212122m A v A2m B v B '2 m B v B ''解得 v B '1m / s , v B '' 2m / s小球 B 与地面碰撞后根据没有动能损失所以 B 离开地面上抛时速度v0 v B 4m / s所以 P 点的高度h p v02v B'22g0.75 m考点:动量守恒定律能量守恒6.光滑水平轨道上有三个木块A B C3m C m ,开始时、、,质量分别为 m A m 、m BB、 C 均静止, A 以初速度v0向右运动, A 与 B 相撞后分开, B 又与 C 发生碰撞并粘在一起,此后 A 与 B 间的距离保持不变.求 B 与 C 碰撞前 B 的速度大小.【答案】 v B 6 v0 5【解析】【分析】【详解】设 A 与 B 碰撞后, A 的速度为v A, B 与 C 碰撞前 B 的速度为V B, B 与 C 碰撞后粘在一起的速度为 v ,由动量守恒定律得:对 A、 B 木块:m A v0m A v A m B v B对 B、 C木块:m B v B m B m C v由 A 与 B 间的距离保持不变可知v A v联立代入数据得:v B 6v0.57.用放射源钋的α射线轰击铍时,能发射出一种穿透力极强的中性射线,这就是所谓铍“辐射”. 1932 年,查德威克用铍“辐射”分别照射(轰击)氢和氨(它们可视为处于静止状态).测得照射后沿铍“辐射”方向高速运动的氨核和氦核的质量之比为7: 0.查德威克假设铍“辐射”是由一种质量不为零的中性粒子构成的,从而通过上述实验在历史上首次发现了中子.假设铍“辐射”中的中性粒子与氢或氦发生弹性正碰,试在不考虑相对论效应的条件下计算构成铍“辐射”的中性粒子的质量.(质量用原子质量单位u 表示, 1u 等于 1 个12C 原子质量的十二分之一.取氢核和氦核的质量分别为 1.0u 和 14u.)【答案】 m= 1.2u【解析】设构成铍“副射”的中性粒子的质量和速度分别为m 和 v,氢核的质量为 m H.构成铍“辐射”的中性粒子与氢核发生弹性正碰,碰后两粒子的速度分别为v′和 v H′.由动量守恒与能量守恒定律得mv= mv′+ m H v H′①1mv2=1mv′2+12222 m H v H′②解得2mvv H′=m m H③同理,对于质量为m N的氮核,其碰后速度为2mvV′=m m N④N由③④ 式可得m=m N v N 'm H v H '⑤v H 'v N '根据题意可知v H′=7.0v N′ ⑥将上式与题给数据代入⑤ 式得m= 1.2u⑦8.一轻质弹簧一端连着静止的物体B,放在光滑的水平面上,静止的物体 A 被水平速度为v0的子弹射中并且嵌入其中,随后一起向右运动压缩弹簧,已知物体 A 的质量是物体 B 的质量的3,子弹的质量是物体 B 的质量的1,求:44(1)物体 A 被击中后的速度大小;(2)弹簧压缩到最短时 B 的速度大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级:
学号:
姓名:
动量守恒定律习题课
一、动量守恒定律知识点
1.动量守恒定律的条件⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计;
⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
2.动量守恒定律的表达形式
(1)
,即p 1 +p 2=p 1+p 2,
(2)Δp 1 +Δp 2=0,Δp 1= -Δp 2 。
3.应用动量守恒定律解决问题的基本思路和一般方法
(1)分析题意,明确研究对象。
(2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。
(3)确定过程的始、末状态,写出初动量和末动量表达式。
注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。
(4)建立动量守恒方程求解。
二、碰撞
1.弹性碰撞
特点:系统动量守恒,机械能守恒。
设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则
由动量守恒定律可得:221101v m v m v m +=①
碰撞前后能量守恒、动能不变:2
22
212111210
121
v m v m
v m +=② 联立①②得:01
2
12
1v v m m m m +-=
0222
11v v m m m +=
(注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒) [讨论]
①当m l =m 2时,v 1=0,v 2=v 0(速度互换) ②当m l <<m 2时,v 1≈-v 0,v 2≈0(速度反向) ③当m l >m 2时,v 1>0,v 2>0(同向运动) ④当m l <m 2时,v 1<0,v 2>0(反向运动)
⑤当m l >>m 2时,v 1≈v,v 2≈2v 0 (同向运动)
2.非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能,两物体仍能分离。
特点:动量守恒,能量不守恒。
用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′
机械能/动能的损失:2
2
22
1111
12112211222222()()k k k E E E m
v m v m v m v ''∆=-=+-+ 3.完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大。
特点:动量守恒,能量不守恒。
用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v
动能损失:22
2
2
111
1112212222()()k k k E E E m
v m v m m v ∆=-=+-+ 解决碰撞问题须同时遵守的三个原则: ①系统动量守恒原则
②能量不增加的原则
③物理情景可行性原则:(例如:追赶碰撞: 碰撞前:
碰撞后:在前面运动的物体的速度一定不小于在后面运动的物体的速度)
【例题】甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p 甲=5 kg ·m/s,p 乙= 7 kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙′=10 kg ·m/s ,则两球质量m 甲与m 乙的关系可能是( )
A .m 甲=m 乙 B.m 乙=2m 甲 C.m 乙=4m 甲 D.m 乙=6m 甲 解析:由碰撞中动量守恒可求得pA ′=2 kg ·m/s 要使A 追上
B , 则必有:vA >vB ,
即 mB >1.4mA ①
碰后pA ′、pB ′均大于零,表示同向运动,则应有:vB ′≥vA ′
被追追赶V 〉V
班级:
学号:
姓名:
即: mB ≤5mA ② 碰撞过程中,动能不增加,则
答案:C
三、反冲运动、爆炸模型
【例题1】 总质量为M 的火箭模型 从飞机上释放时的速度为v 0,速度方向水平。
火箭向后以相对于地面的速率u 喷出质量为m 的燃气后,火箭本身的速度变为多大?
【例题2】抛出的手雷在最高点时水平速度为10m/s ,这时忽然炸成两块,其中大块质量300g 仍按原方向飞行,其速度测得为50m/s ,另一小块质量为200g ,求它的速度的大小和方向。
四、碰撞中弹簧模型 【例1】
【例2】用轻弹簧相连的质量均为2kg 的A 、B 两物块都以v=6m/s 的速度在光滑的水平地面上运动,弹簧处于原长,质量为4kg 的物体C 静止在前方,如图3所示,B 与C 碰撞后二者粘在一起运动。
求:在以后的运动中
(1)当弹簧的弹性势能最大时物体A 的速度多大? (2)弹性势能的最大值是多大?
(3)A 的速度有可能向左吗?为什么?
解:(1)当A 、B 、C 三者的速度相等时弹簧的弹性势能最大,由于A 、B 、C 三者组成的系统动量守恒,有
A
C B A B A v )m m m (v )m m (++=+s
m v A /3=
班级:
学号:
姓名:
l
v 0 v S
(2)B 、C 碰撞时B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者速度为
三物块速度相等为vA 时弹簧的弹性势能最大为EP ,根据能量守恒得:
系统的机械能
由系统动量守恒得
故A 不可能向左运动 五、平均动量守恒问题——人船模型:
1.特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒)。
对于这类问题,如果我们应用“人船模型”也会使问题迅速得到解决,现具体分析如下:
【例题】静止在水面上的小船长为L ,质量为M ,在船的最右端站有一质量为m 的人,不计水的阻力,当人从最右端走到最左端的过程中,小船移动的距离是多大?
六、“子弹打木块”模型
1.运动性质:子弹对地在滑动摩擦力作用下匀减速直线运动;木块在滑动摩擦力作
用下做匀加速运动。
2.符合的规律:子弹和木块组成的系统动量守恒,机械能不守恒。
3.共性特征:一物体在另一物体上,在恒定的阻力作用下相对运动,系统动量守恒,机械能不守恒,ΔE = f 滑d 相对
此模型包括:“子弹打击木块未击穿”和“子弹打击木块击穿”两种情况,它们有一个共同的特点是:初态时相互作用的物体有一个是静止的(木块),另一个是运动的(子弹)。
1.“击穿”类
其特点是:在某一方向动量守恒,子弹有初动量,木块有或无初动量,击穿时间很短,击穿后二者分别以某一速度度运动。
【例1】质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速度v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
s
m v v m m v m C B B /2'')(=+=,J
v m m m v m v m m E A C B A A C B P 12)(2
1
21')(212
22=++-++=J
v m m m E E A C B A P 48)(21'2
=+++=B
C B A A B A v m m v m v m v m )(++=+设A 的速度方向向左 0
<A v s
m v B
/4>则 则作用后A 、B 、C 动能之和 J
v m m v m E B
C B A A k 48)(212122>++=L-S
L-S
班级:
学号:
姓名:
2.“未击穿”类
其特点是:在某一方向上动量守恒,如子弹有初动量而木块无初动量,碰撞时间非常短,
子弹射入木块后二者以相同速度一起运动。
【例2】一质量为M 的木块放在光滑的水平面上,一质量m 的子弹以初速度v 0水平飞来打进木块并留在其中,设相互作用力为f 。
求:①子弹、木块相对静止时的速度v ;
②子弹在木块内运动的时间t ;
③子弹、木块发生的位移s 1、s 2以及子弹打进木块的深度s ;
④系统损失的机械能/系统增加的内能E 。
【例3】 设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
V 1
图1
s M
相
S 2
S。