《应用一元一次方程——追赶小明》典型例题

合集下载

第五章 5.6应用一元一次方程-追赶小明同步练习-2021-2022学年北师大版数学七年级上学期

第五章 5.6应用一元一次方程-追赶小明同步练习-2021-2022学年北师大版数学七年级上学期

初中数学北师大版七年级上学期第五章 5.6应用一元一次方程——追赶小明一、单选题1.一天,小明在家和学校之间行走,为了好奇,他测了一下在无风时的速度是50米/分,从家到学校用了15分钟,从原路返回用了18分钟20秒,设风的速度是x米/分,则所列方程为()A. B.C. D.2.中国古代数学著作《算法统宗》中有这样一段记载:“ 三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A. 96里B. 48里C. 24里D. 12里3.某铁路桥长1200m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.则火车的长度为()A. 180mB. 200mC. 240mD. 250m4.长为300米的春游队伍,以2米/秒的速度向东行进.在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为4米/秒.则往返共用的时间为()A. 200sB. 205sC. 210sD. 215s5.小明和小亮两人在长为50m的直道AB(A、B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……若小明跑步速度为5m/s,小亮跑步速度为4m/s,则起跑后60s内,两人相遇的次数为()A. 3B. 4C. 5D. 66.甲车与乙车同时从A地出发去往B地,如图所示,折线O-A-B-C和射线OC分别是甲、乙两车行进过程中路程与时间的关系,已知甲车中途有事停留36分钟后再继续前往C地,两车同时到达C地,则下列说法:①乙车的速度为70千米/时;②甲车再次出发后的速度为100千米/时;③两车在到达B地前不会相遇;④甲车再次出发时,两车相距60千米。

【七年级】初一上册应用一元一次方程 追赶小明练习题(含解析北师大版)

【七年级】初一上册应用一元一次方程 追赶小明练习题(含解析北师大版)

【七年级】初一上册应用一元一次方程追赶小明练习题(含解析北师大版)【七年级】初一上册应用一元一次方程-追赶小明练习题(含解析北师大版)初中一年级第一册:一元一阶方程的应用——追赶小明练习(含北京师范大学版分析)(30分钟50分)一、多项选择题(每个子题4分,共12分)一.一轮船往返于a,b两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,则轮船在静水中的速度是( )a、 18公里/小时b.15公里/小时c.12千米/时d.20千米/时2.在高速公路上,如果一辆长度为4米、速度为110公里/小时的汽车准备超越一辆长度为12米、速度为100公里/小时的卡车,那么汽车追赶和超越卡车所需的时间约为()a.1.6秒b.4.32秒c.5.76秒d.345.6秒3.A和B相距450公里。

a车和B车同时从a车和B车出发,已知a车的速度为120 km/h,B车的速度为80 km/h。

t小时后,两辆车之间的距离为50 km,则t值为()a.2或2.5b.2或10c.10或12.5d.2或12.5二、填空(每个子问题4分,共12分)4.我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔.如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔追上乌龟大概需要分钟.5.成渝铁路全长504km。

一列快车以90km/h的速度从重庆出发,一小时后,另一列慢车以48km/h的速度从成都出发。

然后,两列列车在慢车启动数小时后相遇(不计算沿途各站的停留时间)6.从甲地到乙地,公共汽车原需行驶7小时,开通高速公路后,车速平均每小时增加了20千米,只需5小时即可到达.甲乙两地的路程是千米.三、回答问题(共26分)7.(8分)王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/秒的速度跑了多少米?8.(8分)如图所示,a和B在圆形轨道上练习跑步。

5.6 应用一元一次方程——追赶小明.

5.6 应用一元一次方程——追赶小明.

小明
小彬
若设x s后小明能追上小彬.
10
小明
小彬
4x 6x
追及点 追及点
【解析】(1)设x s后两人相遇,由题意得 4x+6x=100, 10x=100, x=10,
答:10 s后两人相遇.
(2)设x s后小明追上小彬, 由题意得 6x-4x=10 2x=10 x=5
答:5 s后小明追上小彬.
【跟踪训练】
3.(潜江·中考)元代朱世杰所著的《算学启蒙》里有 这样一道题: “良马日行二百四十里,驽马日行一百五十里,驽马先 行一十二日,问良马几何追及之?”请你回答:良马几 天可以追上驽马. 【解析】设良马x天可以追上驽马,根据相等关系:驽马 先行一十二日的路程+驽马x天行的路程=良马x天行的路 程,可列方程12×150+150x=240x,解得x=20. 故良马20天可以追上驽马.
无论你怎样地表示愤怒,都不要做出任何 无法挽回的事来.
费14天完成,问乙、丙中途离开几天?
【解析】设丙中途离开x天,根据题意得
14 14 (x 3) 14 x 1
40
30
24
解得x=4.
答:丙中途离开4天,乙中途离开7天.
1.甲、乙两人都从某地出发到学校,甲每小时步行5 km,先
出发1.5 h,乙骑自行车,乙出发50 min后,两人同时到达学
校,则乙骑自行车的速度为每小时( )
A.12 km
B.13 km
C.14 km
D.15 km
2.挖一条2 200 m长的过江隧道,由甲、乙两队从两头同 时施工,如果甲队每天挖60 m,乙队每天挖多少m,才 能在20天内完成?如果设乙队每天挖x m,才能在20天内 完成,那么所列方程应为 20x+20×60=2 200 .

5.6 应用一元一次方程——追赶小明

5.6 应用一元一次方程——追赶小明

发开往B地,每小时行驶72千米,甲车出发
25分钟后,乙车从B地出发开往A地,每小时 行驶48千米,两车相遇后,各自按原速继续
行驶,那么相遇后两车相距100千米时,甲
车从出发开始共行驶多长时间?
练习3: 两地相距450千米,甲、乙两车分
别从A、B两地同时出发,相向而行,已知甲
车的速度为120千米每小时,乙车的速度为 80千米每小时,经过多少小时两车相距50千
2、甲乙两人赛跑,甲的速度是8 m/s ,乙的速度是5 m/s,如果甲从起跑点往后 退20 m,乙从起跑点向前进10 m,问甲经
过几秒钟追上乙?
解:设甲经过x秒追上乙
8x-5x=20+10,
x=10.
答:甲经过10秒追上乙.
解:(1)设爸爸追上小明用了x min,
80(x+5)=180x
x=4. 答:爸爸追上小明用了4min.
(3)设小明x秒后追上小彬,
6x=4(x+10)
2x=40 x=20 20+10=30(秒) 答:两人第一次相遇时,小明共跑了30秒。
追击问题:(2)同地不同时 快路程=慢路程
同时异地追及问题 乙的路程-甲的路程=甲乙之间的距离
T(
V 乙
- V甲 )=s
t
乙 甲
S
例2、小明每天早上要在7:50之前赶到距家
1 000 m的学校上学.一天,小明以80m/min的
速度出发,5min后,小明的爸爸发现他忘了 带语文书.于是,爸爸立即以180m/min的速
度去追小明,并且在途中追上了他.
(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?
同时同地同向在同一跑道进行比赛

应用一元一次方程—追赶小明

应用一元一次方程—追赶小明
甲的行程=乙先走的行程+乙后走的行程。
3、相遇问题的相等关系:
甲的行程+乙的行程=两地的距离。
作业布置:
完成练习册本课时的习题
3、相遇后,当联络员再次追上七(1)学生时,用了 多长时间?此时联络员或七(1)班学生及七(2)班学生 离学校又有多远?或两个班的学生相距有多远?
4、当七(2)班学生追上了七(1)班学生时,用了多 长时间?此时他们离学校有多远?
谈谈这节课你有什么收获?
1、借助线段图理解题意。 2、追及问题的相等关系:
分析:1、应用题的类型:行程问题。 2、计算公式:路程=速度×时间。 3、相等关系:A、B两地的路程=小亮的行程+小明的行程。
x 4、若设小亮的速度为 千米/小时,可
x 解:若设小亮的速度为 千米/小时,根据题意,得
+
x 解方程,得 = 19
= 72
19 — 2 = 17
所以,小亮的速度为19千米/小时,小明的速度 为17 千米/小时。
分析:1、这是一道关于行程问题的应用题,在七(1)班学生、 七(2)班学生、联络员这三个对象中,他们的 速度 是已知的,而 他们的 行程和时间 是未知的,所以在提问时应从 行程和时间 两 方面来提。
2、在行程过程中,联络员先是追 七(1)班学生 ,后是与 七(2)学生 相遇,然后又去追 七(1)班学生 ,而七(2)班 学生一直都是在追 七(1)班学生 。
x 解方程,得 = 4
因此,爸爸追上小明用了4min。
(2)180×4=720(m)
1000 —720=280(m) 所以,追上小明时,距离学校还有280(m)。
小亮骑自行车
小亮骑自行车从A地到B地,小明骑自行车从B地到 A地,两人均匀速前进,2小时后,他们相遇。已知A、B 两地相距72千米,小亮的速度比小明的速度每小时快2千 米,求两人的速度。

56应用一元一次方程——追赶小明

56应用一元一次方程——追赶小明

56应用一元一次方程——追赶小明追赶小明小明是一个活泼好动的孩子,非常喜欢跑步。

有一天,小明在学校里参加了一次1500米的长跑比赛。

比赛开始后不久,小明发现有一个同学比他快了一些。

小明决定加快自己的速度,追赶上那个同学。

小明知道,自己跑完1500米需要的时间是8分钟,而那个同学跑完同样的距离只需要6分钟。

小明想知道,他要想在比赛结束前追赶上那个同学,他需要以多快的速度跑步。

首先,我们设小明的速度为x米/分钟,那个同学的速度为y米/分钟。

根据题意可得以下一元一次方程:1500=8x(1)1500=6y(2)我们可以通过联立方程(1)和方程(2)来求解x和y的值。

通过方程(2)可以得到y=1500/6=250米/分钟。

将y=250代入方程(1),得到1500=8x,解得x=1500/8=187.5米/分钟。

所以,小明的速度为187.5米/分钟,即每分钟小明能跑过187.5米的距离。

为了追赶上那个同学,小明需要以比他快的速度跑。

那个同学的速度为250米/分钟,所以小明的速度需要大于250米/分钟。

假设小明的速度为250+z米/分钟,其中z为任意正数。

那么,小明追赶那个同学所需的时间为:追赶时间=1500/(250+z)假设追赶时间为T分钟,代入上述公式可得:T=1500/(250+z)在这个等式中,只要z>0,T就会小于8分钟。

也就是说,小明只需要以比那个同学快的任何速度跑,就能在比赛结束前追赶上他。

比如说,如果小明的速度为251米/分钟,那么他追赶那个同学所需的时间为:T=1500/(250+1)=1500/251可以看出,不论小明的速度有多快,只要他的速度大于那个同学的速度,他都能在比赛结束前追赶上他。

通过以上的例子,我们可以发现,追赶问题中,解一元一次方程可以帮助我们找到问题的答案。

在这个例子中,方程的解告诉我们小明需要以多快的速度跑步才能追赶上那个同学。

这不仅能帮助我们理解数学中的方程解法,还能让我们更好地应用数学知识解决实际生活中的问题。

应用一元一次方程---追赶小明

应用一元一次方程---追赶小明
10x+5x=400, 解得x= 80 .
3
答:经过 80 秒两人第
3
一次相遇
环形跑道问题:设v甲>v乙,环形跑道长s米,经过t 秒甲、乙第一次相遇.
一般有如下两种情形:
①同时同地、同向而行: v甲t-v乙t=s. ①同时同地、背向而行: v甲t+v乙t=s.
例2 小明和他的哥哥早晨起来沿长为400 m的
6x+4x=100. 解得:x=10. 答:经过10秒后两人相遇.
(2)如果小丽站在百米跑道起跑处,小红站在她面前10 米处,两人同时同向起跑,几秒后小丽追上小红?
题目中已知些什么?用图表示出来.
10米
小红跑的路程 (4x)
小丽跑的路程 (6x)
追及点
等量关系:小丽所跑的路程-小红所跑的路程=10米.
分析:当爸爸追上小明时,两人所走路程相等.
解:(1)设爸爸追上小明用了x分钟,则此题的
数量关系可用线段图表示.
80×5
80x
180x
据题意,得 80×5+80x=180x. 化简,得 100x=400. x=4.
答:爸爸追上小明用了4分钟. (2)180×4=720(米),1000-720=280(米).
答:追上小明时,距离学校还有280米.
在审题过程中,如果能把文字语言变成图 形语言——线段图,即可使问题更加直观,等 量关系更加清晰.我们只要设出未知数,并用代 数式表示出来,便可以得到方程.
例题讲解
例1 小丽和小红每天早晨坚持跑步,小红每秒跑 4米,小
丽每秒跑6米.
(1)如果她们从100米跑道的两端相向跑,那么几秒 之后两人相遇? (2)如果小丽站在百米跑道起跑处,小红站在她面前10米 处,两人同时同向起跑,几秒后小丽追上小红?

应用一元一次方程--追赶小明

应用一元一次方程--追赶小明
3、小明用4分钟绕学校操场跑了两圈(每圈400米),
那么他的速度为 200 米/分。
小明每天早上要在7:50之前赶到距家1000米的学校 上学.一天,小明以80米/分的速度出发.5分钟后,小明 的爸爸发现他忘了带语文书.于是,爸爸立即以180米/分 的速度去追小明。
(1)爸爸追上小明用了多长时间?
相遇问题:
A走的路程
相遇处
B走的路程
A
B
A与B之间相隔的路程
等量关系:
A走的路程+B走的路程=A与B之间相隔的路程
小 结:
1、这节课你学到了什么知识? 2、谈谈你的收获?
作业:P192 习题5.10 问题解决1
85×0.4
85x
110x
南京
北京
1170
解:设两车行驶了x小时相遇,
根据题意,得
85×0.4+85x+110x=1170
解得
x≈5.83
答:轿车行驶了约5.83小时两车相遇。
追及问题:
B
A与B之间相隔的路程 A
A后走的路程
B追A追到地方
B所走的路程
等量关系: A与B之间相隔的路程+A后走的路程=B所走的路程
根据题意,得 85x+110x=1170
化简
195x=1170
x=6
答:两车行驶了6小时相遇。
轿车方向
南京到北京的路程为1170公里。客车从南京开出,每小时
行驶85公里,轿车从北京开出,每小时行驶110公里,
(2)客车先开出24分钟,两车相向而行,轿车行驶了多少
小时两车相遇? (结果精确到0.01)
(1)爸爸追上小明用了多长时间?
(2)追上小明时,距离学校还有多远?
80×5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《应用一元一次方程——追赶小明》典型例题
例1 某校新生列队去学校实习基地锻炼,他们以每小时4千米的速度行进,走了4
1小时时,一学生回校取东西,他以每小时5千米的速度返回学校,取东西后又以同样速度追赶队伍,结果在距学校实习基地1500米的地方追上队伍,求学校到实习基地的路程.
例2 某初一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,__________?”(横线部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列出方程.
例3 甲骑自行车从A 地出发,以每小时12千米的速度驶向B 地,经15分钟后乙骑自行车从B 地出发,以每小时14千米的速度驶向A 地,两人相遇时,乙已超过中点1.5千米,求A 、B 两地的距离.
参考答案
例1 分析 该题可以有如下相等关系:
一学生从学校追上队伍走的路程=队伍走过的路程
如果设当学生追上队伍时,队伍走了x 小时,则队伍走过的路程可以表示
为4x ,学生离开队伍到追上队伍共走了4
1-x 小时,所以学生从学校追上队伍走过的路程可以表示为441)41(5⨯--x ,所以可得方程.444
1)41(5x x =⨯-- 解 设从队伍出发到学生追上队伍所用的时间是x 小时,根据题意,得
x x 444
1)41(5=⨯-- 解这个方程,得 4
12=x ,所以学校到实习基地的路程是: 5.105.14
124=+⨯ 答:学校到实习基地的路程是10.5千米.
说明:该题也可以直接设学校到实习基地的路程是x 千米,有兴趣的读者可以自己试一试.
例2 分析 可以进行不同的构思.比如:相遇问题、追及问题等.
解法一 补充:若两车分别从两地同时开出,相向而行,经几小时两车相遇? 解答:设经x 小时两车相遇,根据题意,得 .403545++x x
解法二 补充:如果两车同时从甲地出发,当摩托车到达乙地时,运货汽车距乙地还有多远?
解答:设运货汽车距乙地还有x 千米,依题意得 .45
403540=-x 解法三 补充:两车同时从甲地出发,摩托车到达乙地后立即返回,两车在距甲地多少千米处相遇?
解答:设两车在距甲地x 千米处相遇,依题意得 .45
40235x x -⨯= 请和你的同学一起研究,争取写出更多的补充部分,列出更多的方程. 说明: 这里是条件开放,探究需要补充什么条件求解.
例3 分析 (1)首先我们可以从行驶时间和行驶路程两个角度寻找相等关系.
1)从行驶时间角度考虑,有下列相等关系:
①乙从出发到相遇所行时间=甲从出发到相遇所行时间-甲提前经过的时间;
②乙从出发到相遇所行时间+甲提前经过的时间=甲从出发到相遇所行时间;
③从整体考虑,乙出发到相遇所行时间二甲、乙两人以速度和行驶全程(两地距离)与甲提前15分钟行驶路程的差所用时间.
2)从行驶路程角度考虑,有下列等量关系:
①甲行驶的路程=全程一半-1.5千米;
②乙行驶的路程=全程一半+1.5千米.
(2)本题也可以通过间接设元法来找到答案.
甲、乙两人的速度已知,行驶时间未知,我们可以从行程中找到等量关系.根据本题特点,A 、B 两地的半程、全程、甲行程、乙行程都存在相应的数量关系,我们利用这些等量关系,也可以顺利解出本题.
解法一 设A 、B 两地距离为2x 千米,依时间关系①,得
60
15125.1145.1--=+x x , 即4
124322832--=+x x , 两边乘以4,得16
32732--=+x x , 去分母,得42)32(7)32(6--=+x x ,
解这个方程,得.812=x
答:A 、B 两地的距离为81千米.
为节省篇幅,对以下不同解法,只给出方程,不再给出求解的过程. 解法二 设A 、B 两地的距离为2x 千米,依时间关系②,得
.12
5.16015145.1-=++x x 解法三 设A 、B 两地的距离为2x 千米,依时间关系③.14126015122145.1+⨯-=+x x 解法四 设乙出发x 小时后与甲相遇,则A 、B 两地相距)5.114(2-x 千米,
依路程关系①,得 .5.1145.1601512-=+⎪⎭⎫ ⎝
⎛+x x 解这个方程,得.3=x
81)5.1314(2)5.114(2=-⨯⨯=-x ,
答:A 、B 两地相距81千米.
解法五 设甲出发x 小时后与乙相遇,则A 、B 两地相距)5.112(2+x 千米,依路程关系②,得
5.1125.1601514+=-⎪⎭⎫ ⎝
⎛-⨯x x 解这个方程,得25.3=x ,
.81)5.125.312(2)5.112(2=+⨯=+x
说明: 这里介绍五种解法,目的启发同学创新意识,并运用创新意识求解应用问题,其他解法不一一列举,均大同小异.。

相关文档
最新文档