(完整版)二次函数含参问题
二次函数存在性问题专题复习(全面典型含答案)

中考数学专题复习——存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来包括深圳在内各地中考的“热点”。
这类题目解法的一般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
以下为几种典型的二次函数中出现的存在性问题,讲解后希望各位考生在以后的考试中如果遇到此类型时能够很顺畅的把过程写下来。
一、二次函数中相似三角形的存在性问题1.(2011枣庄10分)如图,在平面直角坐标系xoy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D. (1)写出h k 、的值;(2)判断△ACD 的形状,并说明理由;(3)在线段AC 上是否存在点M ,使△AOM ∽△ABC ?若存在,求出点M 的坐标;若不存在,说明理由.2.(2011临沂13分)如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C . (1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.二、二次函数中面积的存在性问题3. (2011日照10分)如图,抛物线()20y ax bx a >=+与双曲线ky x=相交于点A ,B .已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan ∠AOX 错误!未找到引用源。
二次函数专题——含参二次函数完整版题型汇总

二次函数专题——含参二次函数完整版题型汇总含参的二次函数在高中阶段考试中经常出现,因为参数的存在使得函数形成一种动态,随着参数的变化,函数也会不同。
这就使得本来简单的二次函数变得复杂起来。
例如,考虑求解$f(x)=x-2ax$在$[2,4]$上的最大值和最小值。
由于参数的存在,这个函数是动态的。
为了解决这个问题,我们需要考虑动轴定区间问题,即对称轴随着参数的变化而变化,但是在给定区间上问最大值和最小值。
对于这个问题,需要分类讨论。
在$[2,4]$这个区间上,可能出现对称轴不在这个区间里面的情况,对称轴就在区间里面的情况,或者对称轴在区间右侧的情况。
因此,我们需要分别考虑这些情况。
具体来说,我们需要找到在整个函数的区间上,哪个数离对称轴最远。
这个分界线就应该在$2$和$4$中间的位置上,即$3$。
当对称轴在$x=3$这条线左边的时候,对称轴离$2$就比较近,离$4$就比较远;对称轴在右边的时候,离$2$就比较近,离$4$就比较远。
因此,这个函数的最大值可以表示为:f_{\max}(x)=\begin{cases}f(4)=16-8a& (a\leq 3)\\f(2)=4-4a&(a>3)\end{cases}$$当$a=3$时,放在哪边都可以。
代入上面的式子,得到$f_{\max}(x)=-8$。
因此,最大值为$-8$。
接下来,我们来讨论含参的二次函数的最大值和最小值问题。
这类问题的重点在于能否清晰地做分类讨论,得到一个分段函数的解析式。
我们可以按照对称轴的位置进行分类讨论。
首先,对于对称轴在区间左侧,且$a\leq 2$的情况,函数在$x=2$处取得最小值,即$f_{min}(x)=f(2)=4-4a$。
其次,对于对称轴在区间中间,即$24$的情况,函数在$x=4$处取得最小值,即$f_{min}(x)=f(4)=16-8a$。
另外,还有一类问题叫做定轴动区间的问题。
对于这类问题,我们同样需要进行分类讨论,只不过区间在变化。
解答题压轴题纯含参二次函数问题(解析版)-中考数学专项训练

解答题压轴题纯含参二次函数问题模块一2022中考真题集训1.(2022•北京)在平面直角坐标系xOy 中,点(1,m ),(3,n )在抛物线y =ax 2+bx +c (a >0)上,设抛物线的对称轴为直线x =t .(1)当c =2,m =n 时,求抛物线与y 轴交点的坐标及t 的值;(2)点(x 0,m )(x 0≠1)在抛物线上.若m <n <c ,求t 的取值范围及x 0的取值范围.思路引领:(1)将点(1,m ),(3,n )代入抛物线解析式,再根据m =n 得出b =-4a ,再求对称轴即可;(2)再根据m <n <c ,可确定出对称轴的取值范围,进而可确定x 0的取值范围.解:(1)法一、将点(1,m ),(3,n )代入抛物线解析式,∴m =a +b +c n =9a +3b +c,∵m =n ,∴a +b +c =9a +3b +c ,整理得,b =-4a ,∴抛物线的对称轴为直线x =-b 2a =--4a 2a=2;∴t =2,∵c =2,∴抛物线与y 轴交点的坐标为(0,2).法二、当m =n 时,点A (1,m ),B (3,n )的纵坐标相等,由抛物线的对称性可得,抛物线的对称轴为x =1+32,∴t =2,∵c =2,∴抛物线与y 轴交点的坐标为(0,2).(2)∵m <n <c ,∴a +b +c <9a +3b +c <c ,解得-4a <b <-3a ,∴3a <-b <4a ,∴3a 2a <-b 2a <4a 2a ,即32<t <2.由题意可知,点(x 0,m )与点(1,m )关于x =t 对称;∴t =x 0+12;当t =32时,x 0=2;当t =2时,x 0=3.∴x 0的取值范围2<x 0<3.综上,t 的取值范围为:32<t <2;x 0的取值范围2<x 0<3.总结提升:本题考查二次函数的性质,解题关键是根据数形结合求解.2.(2022•安顺)在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点.例如:点(1,1),12,12,(-2,-2),⋯⋯都是和谐点.(1)判断函数y =2x +1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y =ax 2+6x +c (a ≠0)的图象上有且只有一个和谐点52,52.①求a ,c 的值;②若1≤x ≤m 时,函数y =ax 2+6x +c +14(a ≠0)的最小值为-1,最大值为3,求实数m 的取值范围.思路引领:(1)设函数y =2x +1的和谐点为(x ,x ),可得2x +1=x ,求解即可;(2)将点52,52代入y =ax 2+6x +c ,再由ax 2+6x +c =x 有且只有一个根,Δ=25-4ac =0,两个方程联立即可求a 、c 的值;②由①可知y =-x 2+6x -6=-(x -3)2+3,当x =1时,y =-1,当x =3时,y =3,当x =5时,y =-1,则3≤m ≤5时满足题意.解:(1)存在和谐点,理由如下,设函数y =2x +1的和谐点为(x ,x ),∴2x +1=x ,解得x =-1,∴和谐点为(-1,-1);(2)①∵点52,52 是二次函数y =ax 2+6x +c (a ≠0)的和谐点,∴52=254a +15+c ,∴c =-254a -252,∵二次函数y =ax 2+6x +c (a ≠0)的图象上有且只有一个和谐点,∴ax 2+6x +c =x 有且只有一个根,∴Δ=25-4ac =0,∴a =-1,c =-254;②由①可知y =-x 2+6x -6=-(x -3)2+3,∴抛物线的对称轴为直线x =3,当x =1时,y =-1,当x =3时,y =3,当x =5时,y =-1,∵函数的最大值为3,最小值为-1;当3≤m ≤5时,函数的最大值为3,最小值为-1.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,理解定义,并与二次函数的性质结合解题是关键.3.(2022•长沙)若关于x 的函数y ,当t -12≤x ≤t +12时,函数y 的最大值为M ,最小值为N ,令函数h =M -N 2,我们不妨把函数h 称之为函数y 的“共同体函数”.(1)①若函数y =4044x ,当t =1时,求函数y 的“共同体函数”h 的值;②若函数y =kx +b (k ≠0,k ,b 为常数),求函数y 的“共同体函数”h 的解析式;(2)若函数y =2x(x ≥1),求函数y 的“共同体函数”h 的最大值;(3)若函数y =-x 2+4x +k ,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数“h 的最小值.若存在,求出k 的值;若不存在,请说明理由.思路引领:(1)①由题意求出M =6066,N =2022,再由定义可求h 的值;②分两种情况讨论:②当k >0时,M =kt +12k +b ,N =kt -12k +b ,h =12k ;当k <0时,M =kt -12k +b ,有N =kt +12k +b ,h =-12k ;(2)由题意t -12≥1,M =2t -12,N =2t +12,则h =44t 2-1,所以h 有最大值12;(3)分四种情况讨论:①当2≤t -12时,M =-t -12-2 2+4+k ,N =-t +12-2 2+4+k ,h =t -2;②当t +12≤2时,N =-t -12-2 2+4+k ,M =-t +12-2 2+4+k ,h =2-t ,;③当t -12≤2≤t ,即2≤t ≤52,N =-t +12-2 2+4+k ,M =4+k ,h =12t -32 2;④当t <2≤t +12,N =-t -12-2 2+4+k ,M =4+k ,h =12t -52 2,画出h 的函数图象,结合图象可得18=4+k ,解得k =-318.解:(1)①∵t =1,∴12≤x ≤32,∵函数y =4044x ,∴函数的最大值M =6066,函数的最小值N =2022,∴h =2022;②当k >0时,函数y =kx +b 在t -12≤x ≤t +12有最大值M =kt +12k +b ,有最小值N =kt -12k +b ,∴h =12k ;当k <0时,函数y =kx +b 在t -12≤x ≤t +12有最大值M =kt -12k +b ,有最小值N =kt +12k +b ,∴h =-12k ;综上所述:h =12k;(2)t -12≥1,即t ≥32,函数y =2x (x ≥1)最大值M =2t -12,最小值N =2t +12,∴h =44t 2-1,当t =32时,h 有最大值12;(3)存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数“h 的最小值,理由如下:∵y =-x 2+4x +k =-(x -2)2+4+k ,∴函数的对称轴为直线x =2,y 的最大值为4+k ,①当2≤t -12时,即t ≥52,此时M =-t -12-2 2+4+k ,N =-t +12-2 2+4+k ,∴h =t -2,此时h 的最小值为12;②当t +12≤2时,即t ≤32,此时N =-t -12-2 2+4+k ,M =-t +12-2 2+4+k ,∴h =2-t ,此时h 的最小值为12;③当t -12≤2≤t ,即2≤t ≤52,此时N =-t +12-2 2+4+k ,M =4+k ,∴h =12t -32 2,∴h 的最小值为18;④当t <2≤t +12,即32≤t <2,此时N =-t -12-2 2+4+k ,M =4+k ,∴h =12t -52 2,∴h 的最小值为18;h 的函数图象如图所示:h 的最小值为18,由题意可得18=4+k ,解得k =-318;综上所述:k 的值为-318.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,理解定义,根据定义结合所学的一次函数、反比例函数、二次函数的图象及性质综合解题,分类讨论是解题的关键.4.(2022•广州)已知直线l :y =kx +b 经过点(0,7)和点(1,6).(1)求直线l 的解析式;(2)若点P (m ,n )在直线l 上,以P 为顶点的抛物线G 过点(0,-3),且开口向下.①求m 的取值范围;②设抛物线G 与直线l 的另一个交点为Q ,当点Q 向左平移1个单位长度后得到的点Q ′也在G 上时,求G在4m5≤x≤4m5+1的图象的最高点的坐标.思路引领:(1)用待定系数法求解析式即可;(2)①设抛物线的解析式为y=a(x-m)2+7-m,将点(0,-3)代入可得am2+7-m=-3,再由a= m-10m2<0,求m的取值即可;②由题意求出Q点的横坐标为m+12,联立方程组y=-x+7y=a(x-m)2+7-m,整理得ax2+(1-2ma)x+am2-m=0,根据根与系数的关系可得m+m+12=2m-1a,可求a=-2,从而可求m=2或m=-52,确定抛物线的解析式后即可求解.解:(1)将点(0,7)和点(1,6)代入y=kx+b,∴b=7k+b=6 ,解得k=-1 b=7 ,∴y=-x+7;(2)①∵点P(m,n)在直线l上,∴n=-m+7,设抛物线的解析式为y=a(x-m)2+7-m,∵抛物线经过点(0,-3),∴am2+7-m=-3,∴a=m-10m2,∵抛物线开口向下,∴a<0,∴a=m-10m2<0,∴m<10且m≠0;②∵抛物线的对称轴为直线x=m,∴Q点与Q'关于x=m对称,∴Q点的横坐标为m+12,联立方程组y=-x+7y=a(x-m)2+7-m ,整理得ax2+(1-2ma)x+am2-m=0,∵P点和Q点是直线l与抛物线G的交点,∴m+m+12=2m-1a,∴a=-2,∴y=-2(x-m)2+7-m,∴-2m2+7-m=-3,解得m=2或m=-5 2,当m=2时,y=-2(x-2)2+5,此时抛物线的对称轴为直线x=2,图象在85≤x≤135上的最高点坐标为(2,5);当m=-52时,y=-2x+522+192,此时抛物线的对称轴为直线x=-5 2,图象在-2≤x≤-1上的最高点坐标为(-2,9);综上所述:G在4m5≤x≤4m5+1的图象的最高点的坐标为(-2,9)或(2,5).总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,会用待定系数法求函数的解析式,分类讨论是解题的关键.5.(2022•贵阳)已知二次函数y=ax2+4ax+b.(1)求二次函数图象的顶点坐标(用含a,b的代数式表示);(2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(-1,e),(-3,f)四点,判断c,d,e,f的大小,并说明理由;(3)点M(m,n)是二次函数图象上的一个动点,当-2≤m≤1时,n的取值范围是-1≤n≤1,求二次函数的表达式.思路引领:(1)将二次函数解析式化为顶点式求解.(2)分类讨论a>0,a<0,根据抛物线对称轴及抛物线开口方向求解.(3)分类讨论a>0,a<0,由抛物线开口向上可得m=-2时,n=-1,m=1时,n=1,由抛物线开口向下可得m=-2时,n=1,m=1时,n=-1,进而求解.解:(1)∵y=ax2+4ax+b=a(x+2)2-4a+b,∴二次函数图象的顶点坐标为(-2,-4a+b).(2)由(1)得抛物线对称轴为直线x=-2,当a>0时,抛物线开口向上,∵3-(-2)>1-(-2)>(-1)-(-2)=(-2)-(-3),∴d>c>e=f.当a<0时,抛物线开口向下,∵3-(-2)>1-(-2)>(-1)-(-2)=(-2)-(-3),∴d<c<e=f.(3)当a>0时,抛物线开口向上,x>-2时,y随x增大而增大,∴m=-2时,n=-1,m=1时,n=1,∴-1=4a-8a+b 1=a+4a+b,解得a=29b=-19,∴y=29x2+89x-19.当a<0时,抛物线开口向下,x>-2时,y随x增大而减小,∴m=-2时,n=1,m=1时,n=-1,∴b-4a=1a+4a+b=-1 ,解得a=-29b=19.∴y=-29x2-89x+19.综上所述,y=29x2+89x-19或y=-29x2-89x+19.总结提升:本题考查二次函数的综合应用,解题关键是掌握二次函数与方程的关系,通过分类讨论求解.6.(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A( -1,0)和点B.(Ⅰ)若b=-2,c=-3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.思路引领:(Ⅰ)①利用待定系数法求出抛物线的解析式,即可得顶点P的坐标;②求出直线BP的解析式,设点M(m,m2-2m-3),则G(m,2m-6),表示出MG的长,可得关于m 的二次函数,根据二次函数的最值即可求解;(Ⅱ)由3b=2c得b=-2a,c=-3a,抛物线的解析式为y=ax2-2a-3a.可得顶点P的坐标为(1,-4a),点N的坐标为(2,-3a),作点P关于y轴的对称点P',作点N关于x轴的对称点N',得点P′的坐标为(-1,-4a),点N'的坐标为(2,3a),当满足条件的点E,F落在直线P'N'上时,PF+FE+ EN取得最小值,此时,PF+FE+EN=P'N'=5延长P'P与直线x=2相交于点H,则P'H⊥N'H.在Rt△P'HN'中,P'H=3,HN'=3a-(-4a)=7a.由勾股定理可得P'N′2=P'H2+HN2=9+49a2=25.解得a1=47,a2=-47(舍).可得点P'的坐标为-1,-167,点N′的坐标为2,127.利用待定系数法得直线P 'N ′的解析式为y =43x -2021.即可得点E ,F 的坐标.解:(Ⅰ)①若b =-2,c =-3,则抛物线y =ax 2+bx +c =ax 2-2x -3,∵抛物线y =ax 2+bx +c 与x 轴相交于点A (-1,0),∴a +2-3=0,解得a =1,∴抛物线为y =x 2-2x -3=(x -1)2-4,∴顶点P 的坐标为(1,-4);②当y =0时,x 2-2x -3=0,解得x 1=-1,x 2=3,∴B (3,0),设直线BP 的解析式为y =kx +n ,∴3k +n =0k +n =-4,解得k =2n =-6 ,∴直线BP 的解析式为y =2x -6,∵直线x =m (m 是常数,1<m <3)与抛物线相交于点M ,与BP 相交于点G ,设点M (m ,m 2-2m -3),则G (m ,2m -6),∴MG =2m -6-(m 2-2m -3)=-m 2+4m -3=-(m -2)2+1,∴当m =2时,MG 取得最大值1,此时,点M (2,-3),则G (2,-2);(Ⅱ)∵抛物线y =ax 2+bx +c 与x 轴相交于点A (-1,0),∴a -b +c =0,又3b =2c ,b =-2a ,c =-3a (a >0),∴抛物线的解析式为y =ax 2-2ax -3a .∴y =ax 2-2ax -3a =a (x -1)2-4a ,∴顶点P 的坐标为(1,-4a ),∵直线x =2与抛物线相交于点N ,∴点N 的坐标为(2,-3a ),作点P 关于y 轴的对称点P ',作点N 关于x 轴的对称点N ',得点P ′的坐标为(-1,-4a ),点N '的坐标为(2,3a ),当满足条件的点E ,F 落在直线P 'N '上时,PF +FE +EN 取得最小值,此时,PF +FE +EN =P 'N '=5.延长P 'P 与直线x =2相交于点H ,则P 'H ⊥N 'H .在Rt △P 'HN '中,P 'H =3,HN '=3a -(-4a )=7a .∴P 'N ′2=P 'H 2+HN ′2=9+49a 2=25.解得a 1=47,a 2=-47(舍).∴点P '的坐标为-1,-167 ,点N ′的坐标为2,127.∴直线P 'N ′的解析式为y =43x -2021.∴点E 57,0 ,点F 0,-2021.总结提升:此题是二次函数综合题,主要考查了待定系数法,两点间的距离公式,轴对称求最小值问题,勾股定理等,利用待定系数法求出直线解析式是解本题的关键.7.(2022•嘉兴)已知抛物线L 1:y =a (x +1)2-4(a ≠0)经过点A (1,0).(1)求抛物线L 1的函数表达式.(2)将抛物线L 1向上平移m (m >0)个单位得到抛物线L 2.若抛物线L 2的顶点关于坐标原点O 的对称点在抛物线L 1上,求m 的值.(3)把抛物线L 1向右平移n (n >0)个单位得到抛物线L 3,若点B (1,y 1),C (3,y 2)在抛物线L 3上,且y 1>y 2,求n 的取值范围.思路引领:(1)把(1,0)代入抛物线的解析式求出a 即可;(2)求出平移后抛物线的顶点关于原点对称点的坐标,利用待定系数法求解即可;(3)抛物线L 1向右平移n (n >0)个单位得到抛物线L 3,的解析式为y =(x -n +1)2-4,根据y 1>y 2,构建不等式求解即可.解:(1)∵y =a (x +1)2-4(a ≠0)经过点A (1,0),∴4a -4=0,∴a =1,∴抛物线L 1的函数表达式为y =x 2+2x -3;(2)∵y =(x +1)2-4,∴抛物线的顶点(-1,-4),将抛物线L 1向上平移m (m >0)个单位得到抛物线L 2.若抛物线L 2的顶点(-1,-4+m ),而(-1,-4+m )关于原点的对称点为(1,4-m ),把(1,4-m )代入y =x 2+2x -3得到,1+2-3=4-m ,∴m =4;(3)抛物线L 1向右平移n (n >0)个单位得到抛物线L 3,的解析式为y =(x -n +1)2-4,∵点B (1,y 1),C (3,y 2)在抛物线L 3上,∴y 1=(2-n )2-4,y 2=(4-n )2-4,∵y 1>y 2,∴(2-n )2-4>(4-n )2-4,解得n >3,∴n 的取值范围为n >3.总结提升:本题属于二次函数综合题,考查了二次函数的性质,待定系数法,平移变换等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.8.(2022•杭州)设二次函数y 1=2x 2+bx +c (b ,c 是常数)的图象与x 轴交于A ,B 两点.(1)若A ,B 两点的坐标分别为(1,0),(2,0),求函数y 1的表达式及其图象的对称轴.(2)若函数y 1的表达式可以写成y 1=2(x -h )2-2(h 是常数)的形式,求b +c 的最小值.(3)设一次函数y2=x-m(m是常数),若函数y1的表达式还可以写成y1=2(x-m)(x-m-2)的形式,当函数y=y 1-y2的图象经过点(x0,0)时,求x0-m的值.思路引领:(1)根据A、B两点的坐标特征,可设函数y1的表达式为y1=2(x-x1)(x-x2),其中x1,x2是抛物线与x轴交点的横坐标;(2)把函数y1=2(x-h)2-2,化成一般式,求出对应的b、c的值,再根据b+c式子的特点求出其最小值;(3)把y1,y2代入y=y1-y2求出y关于x的函数表达式,再根据其图象过点(x0,0),把(x0,0)代入其表达式,形成关于x0的一元二次方程,解方程即可.解:(1)∵二次函数y1=2x2+bx+c过点A(1,0)、B(2,0),∴y1=2(x-1)(x-2),即y1=2x2-6x+4.∴抛物线的对称轴为直线x=-b2a =32.(2)把y1=2(x-h)2-2化成一般式得,y1=2x2-4hx+2h2-2.∴b=-4h,c=2h2-2.∴b+c=2h2-4h-2=2(h-1)2-4.把b+c的值看作是h的二次函数,则该二次函数开口向上,有最小值,∴当h=1时,b+c的最小值是-4.(3)由题意得,y=y1-y2=2(x-m)(x-m-2)-(x-m)=(x-m)[2(x-m)-5].∵函数y的图象经过点(x0,0),∴(x0-m)[2(x0-m)-5]=0.∴x0-m=0,或2(x0-m)-5=0.即x0-m=0或x0-m=5 2.总结提升:本题考查了二次函数表达式的三种形式,即一般式:y=ax2+bx+c,顶点式:y=a(x-h)2 +k,交点式:y=a(x-x1)(x-x2).9.(2022•连云港)已知二次函数y=x2+(m-2)x+m-4,其中m>2.(1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;(2)求证:二次函数y=x2+(m-2)x+m-4的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=-x-2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.思路引领:(1)把O (0,0)代入y =x 2+(m -2)x +m -4可得y =x 2+2x =(x +1)2-1,即得函数图像的顶点A 的坐标为(-1,-1);(2)由抛物线顶点坐标公式得y =x 2+(m -2)x +m -4的顶点为2-m 2,-m 2+8m -204,根据m >2,-m 2+8m -204=-14(m -4)2-1≤-1<0,可知二次函数y =x 2+(m -2)x +m -4的顶点在第三象限;(3)设平移后图像对应的二次函数表达式为y =x 2+bx +c ,其顶点为-b 2,4c -b 24,将-b 2,4c -b 24 代入y =-x -2得c =b 2+2b -84,可得OB =-c =-b 2+2b -84,过点A 作AH ⊥OB 于H ,有S △AOB =12OB •AH =12×-b 2+2b -84 ×1=-18(b +1)2+98,由二次函数性质得△AOB 面积的最大值是98.(1)解:把O (0,0)代入y =x 2+(m -2)x +m -4得:m -4=0,解得m =4,∴y =x 2+2x =(x +1)2-1,∴函数图像的顶点A 的坐标为(-1,-1);(2)证明:由抛物线顶点坐标公式得y =x 2+(m -2)x +m -4的顶点为2-m 2,-m 2+8m -204 ,∵m >2,∴2-m <0,∴2-m 2<0,∵-m 2+8m -204=-14(m -4)2-1≤-1<0,∴二次函数y =x 2+(m -2)x +m -4的顶点在第三象限;(3)解:设平移后图像对应的二次函数表达式为y =x 2+bx +c ,其顶点为-b 2,4c -b 24,当x =0时,B (0,c ),将-b 2,4c -b 24 代入y =-x -2得:4c -b 24=b2-2,∴c =b 2+2b -84,∵B (0,c )在y 轴的负半轴,∴c <0,∴OB =-c =-b 2+2b -84,过点A 作AH ⊥OB 于H ,如图:∵A (-1,-1),∴AH =1,在△AOB 中,S △AOB =12OB •AH =12×-b 2+2b -84 ×1=-18b 2-14b +1=-18(b +1)2+98,∵-18<0,∴当b =-1时,此时c <0,S △AOB 取最大值,最大值为98,答:△AOB 面积的最大值是98.总结提升:本题考查二次函数综合应用,涉及待定系数法,三角形面积,二次函数图像上点坐标的特征等,解题的关键是掌握二次函数的性质及数形结合思想的应用.10.(2022•赛罕区校级一模)在平面直角坐标系中,抛物线y =2(x -m )2+2m (m 为常数)的顶点为A .(1)若点A 在第一象限,且OA =5,求此抛物线所对应的二次函数的表达式,并写出函数值y 随x 的增大而减小时x 的取值范围;(2)当x ≤2m 时,若函数y =2(x -m )2+2m 的最小值为3,求m 的值;(3)分别过点P (4,2)、Q (4,2-2m )作y 轴的垂线,交抛物线的对称轴于点M ,N .当抛物线y =2(x -m )2+2m 与四边形PQNM 的边有两个交点时,将这两个交点分别记为点B ,点C ,且点B 的纵坐标大于点C 的纵坐标.若点B 到y 轴的距离与点C 到x 轴的距离相等,则m 的值是多少?思路引领:(1)运用勾股定理建立方程求解即可;(2)分两种情况进行讨论:①当m <0时,2(2m -m )2+2m =3,解方程即可得出答案;②当m >0时,2(m -m )2+2m =3,解方程即可得出答案;(3)分情况讨论:①当m >1时,如图1,抛物线y =2(x -m )2+2m 与四边形PQNM 的边没有交点;②当m =1时,如图2,抛物线y =2(x -m )2+2m 与四边形PQNM 的边只有一个交点;③当12≤m <1时,如图3,抛物线y =2(x -m )2+2m 与四边形PQNM 的边有两个交点,若点B 在PM 边上,点C 在MN 边上,令y =2,则2=2(x -m )2+2m ,得出B (m +1-m ,2),C (m ,2m ),根据题意,得2m =m+1-m ,求解即可;④当0≤m <12时,如图4,可得B (m +1-m ,2),C (m +1-2m ,2-2m ),则2-2m =m +1-m ,求解即可;⑤当m <0时,如图5,B (m +1-2m ,2-2m ),C (m +1-m ,2),则|m +1-2m |=2,求解即可.解:(1)∵点A (m ,2m )在第一象限,且OA =5,∴m 2+(2m )2=(5)2,且m >0,解得:m =1,∴抛物线的解析式为y=2(x-1)2+2,当x≤1时,函数值y随x的增大而减小;(2)∵当x≤2m时,若函数y=2(x-m)2+2m的最小值为3,∴分两种情况:2m<m,即m<0时,或2m>m,即m>0时,①当m<0时,2(2m-m)2+2m=3,解得:m=-1+72(舍)或m=-1+72,②当m>0时,2(m-m)2+2m=3,解得:m=3 2,综上所述,m的值为32或-1+72;(3)P(4,2)、Q(4,2-2m),抛物线y=2(x-m)2+2m,①当m>1时,如图1,∵2m>2,2-2m<0,∴抛物线y=2(x-m)2+2m与四边形PQNM的边没有交点;②当m=1时,如图2,∵2m=2,2-2m=0,∴抛物线y=2(x-m)2+2m的顶点在边PM边上,即抛物线y=2(x-m)2+2m与四边形PQNM的边只有一个交点;③当12≤m<1时,如图3,∵1≤2m<2,0<2-2m≤1,P(4,2)、Q(4,2-2m),∴M(m,2),N(m,2-2m),抛物线y=2(x-m)2+2m与四边形PQNM的边有两个交点,若点B在PM边上,点C在MN边上,∴令y=2,则2=2(x-m)2+2m,∴x=m+1-m或x=m-1-m(不合题意,应舍去),∴B(m+1-m,2),C(m,2m),根据题意得:2m=m+1-m,解得:m=5-12或m=-5-12(不合题意,应舍去);④当0≤m<12时,如图4,∴点B在PM边上,点C在NQ边上,∴B(m+1-m,2),C(m+1-2m,2-2m),则2-2m=m+1-m,解得:m=11±1318,∵0≤m<12,∴m=11-1318,⑤当m<0时,如图5,∵2m<0,2-2m>2,∴点B在NQ边上,点C在PM边上,B(m+1-2m,2-2m),C(m+1-m,2),则|m+1-2m|=2,当m+1-2m=2时,得m2-2m+3=0,∵Δ=(-2)2-4×1×3=-8<0,∴该方程无解;当m+1-2m=-2时,得m2+6m+3=0,解得:m=-3-6或m=-3+6,当m=-3+6时,|m+1-2m|=|-3+6+1-2(-3+6)|=26-4≠2,不符合题意,舍去,综上所述,m的值为5-12或11-1318或-3-6.总结提升:本题考查了二次函数的综合应用,熟练掌握二次函数图象和性质,矩形性质等相关知识,运用数形结合思想和分类讨论思想是解题的关键.11.(2022•婺城区校级模拟)在平面直角坐标系中,点A是抛物线y=-12x2+mx+2m+2与y轴的交点,点B在该抛物线上,将该抛物线A,B两点之间(包括A,B两点)的部分记为图象G,设点B的横坐标为2m-1.(1)当m=1时,①图象G对应的函数y的值随x的增大而增大(填“增大”或“减小”),自变量x的取值范围为x≤1;②图象G 最高点的坐标为 1,92 .(2)当m <0时,若图象G 与x 轴只有一个交点,求m 的取值范围.(3)当m >0时,设图象G 的最高点与最低点的纵坐标之差为h ,直接写出h 与m 之间的函数关系式.思路引领:(1)①当m =1时,抛物线的表达式为y =-12x 2+x +2,当函数y 的值随x 的增大而增大时,则图象在对称轴的左侧,即可求解;②函数的对称轴为x =1,当x =1时,y =92,即点G 的坐标为1,92;(2)求出点A 、B 的坐标,确定点A 在点B 的上方,进而求解;(3)分m ≤0,0<m ≤12,12<m ≤1,m >1四种情况,分别确定点A 、B 、H 的位置,进而求解.解:(1)①当m =1时,抛物线的表达式为y =-12x 2+x +4,∵-12<0,故抛物线开口向下,当函数y 的值随x 的增大而增大时,图象在对称轴的左侧,即x ≤1,故答案为:增大,x ≤1;②函数的对称轴为x =1,当x =1时,y =-12x 2+x +4=92,即点G 的坐标为1,92 ,故答案为:1,92 ;(2)当x =2m -1时,y =-12x 2+mx +2m +2=3m +32,则点B 的坐标为2m -1,3m +32,所以,点A 的坐标为(0,2m +2),∵m <0,则y B -y A =3m +32-2m -2=m -12<0,即点A 在点B 的上方,故当y A >0且y B ≤0时,符合题意,即2m +2>0且3m +32≤0,解得-1<m ≤-12,当抛物线顶点落在x 轴上时,此时m 2-4×-12×(2m +2)=0,解得:m =-2,此时抛物线对称轴为直线x =-2,B 点横坐标为-5,符合题意,综上,-1<m ≤-12或m =-2;(3)设抛物线的顶点为H,则点H m,12m2+2m+2,由抛物线的表达式知,点A、B的坐标分别为(0,2m+2),2m-1,3m+3 2,①当0<m≤12时,此时点A、B分别是G的最高和最低点,则h=y A-y B=(2m+2)-3m+3 2=-m+12;②当12<m≤1时,此时点B、A分别是G的最高和最低点,则h=y B-y A=m-1 2;③当m>1时,此时点H、A分别是G的最高和最低点,则h=y H-y A=12m2;∴h=-m+120<m≤12m-1212<m≤112m2(m>1).总结提升:本题考查二次函数的综合应用,掌握一次和二次函数的性质、二次函数图象上点的坐标特征,确定图象上点的位置关系和分类求解是解题的关键.12.(2022•保定二模)已知:如图,点O(0,0),A(-4,-1),线段AB与x轴平行,且AB=2,点B在点A的右侧,抛物线l:y=kx2-2kx-3k(k≠0).(1)当k=1时,求该抛物线与x轴的交点坐标(-1,0),(3,0);(2)当0≤x≤3时,求y的最大值(用含k的代数式表示);(3)当抛物线l经过点C(0,3)时,l的解析式为y=-x2+2x+3,顶点坐标为(1,4),点B不(填“是”或“不”)在l上;若线段AB以每秒2个单位长的速度向下平移,设平移的时间为t(秒)①若l与线段AB总有公共点,求t的取值范围;②若l同时以每秒3个单位长的速度向下平移,l在y轴及其右侧的图象与直线AB总有两个公共点,直接写出t的取值范围.思路引领:(1)当k=1时,该抛物线解析式y=x2-2x-3,令y=0时,得x2-2x-3=0,解方程即可得出答案;(2)先确定出对称轴直线x=--2k2k =1,再分k大于0和小于0两种情况讨论即可得出答案;(3)当抛物线经过点C(0,3)时,抛物线的解析式为y=-x2+2x+3,顶点坐标(1,4),A(-4,-1),将x =-2代入y=-x2+2x+3,y=-5≠-1,点B不在l上;①设平移后B(-2,-1-2t),A(-4,-1-2t),当抛物线经过点B时,有y=-5,当抛物线经过点A 时,有y=-21,l与线段AB总有公共点,则-21≤-1-2t≤-5,解得2≤t≤10;②平移过程中,设C(0,3-3t),则抛物线的顶点(1,4-3t),于是-1-2t≥3-3t-1-2t<4-3t,解得4≤t<5.解:(1)当k=1时,该抛物线解析式y=x2-2x-3,y=0时,x2-2x-3=0,解得x1=-1,x2=3,∴该抛物线与x轴的交点坐标(-1,0),(3,0);(2)抛物线y=kx2-2kx-3k的对称轴直线x=--2k2k=1,∵k<0,∴x=1时,y有最大值,y最大值=k-2k-3k=-4k;当k>0时,x=3时,y有最大值,y最大值=9k-6k-3k=0;(3)当抛物线经过点C(0,3)时,-3k=3,k=-1,∴抛物线的解析式为y=-x2+2x+3,顶点坐标(1,4),∵A(-4,-1),线段AB与x轴平行,且AB=2,∴B(-2,-1),将x=-2代入y=-x2+2x+3,y=-5≠-1,∴点B不在l上,故答案为:y=-x2+2x+3,(1,4),不;①设平移后B(-2,-1-2t),A(-4,-1-2t),当抛物线经过点B时,有y=-(-2)2+2×(-2)+3=-5,当抛物线经过点A时,有y=-(-4)2+2×(-4)+3=-21,∵l与线段AB总有公共点,∴-21≤-1-2t≤-5,解得2≤t≤10;②平移过程中,设C(0,3-3t),则抛物线的顶点(1,4-3t),∵抛物线在y轴及其右侧的图象与直线AB总有两个公共点,-1-2t≥3-3t-1-2t<4-3t,解得4≤t<5.总结提升:本题属于二次函数综合题,考查了二次函数,熟练掌握二次函数图象的性质与平移规律是解题的关键.13.(2022•都安县校级二模)在平面直角坐标系中,抛物线y=2(x-m)2+2m(m为常数)顶点为A.(1)当m=12时,点A的坐标是 12,1 ,抛物线与y轴交点的坐标是 0,32 ;(2)若点A在第一象限,且OA=5,求此抛物线所对应的二次函数的表达式,并写出函数值y随x的增大而减小时x 的取值范围;(3)抛物线y =2(x -m )2+2n (m 的常数)的对称轴为直线x =m .M (x 1,y 1),N (x 2,y 2)为抛物线上任意两点,其中x 1<x 2.若对于x 1+x 2>3,都有y 1<y 2.求m 的取值范围.思路引领:(1)将m =12代入抛物线解析式中,即可得出顶点坐标,再令x =0,即可求得答案;(2)运用勾股定理建立方程求解即可;(3)由题意点(x 1,0),(x 2,0)连线的中垂线与x 轴的交点的坐标大于32,利用二次函数的性质判断即可.解:(1)当m =12时,y =2x -12 2+1,∴顶点A 12,1,令x =0,得y =32,∴抛物线与y 轴交点的坐标为0,32,故答案为:12,1 ,0,32 ;(2)∵点A (m ,2m )在第一象限,且OA =5,∴m 2+(2m )2=(5)2,且m >0,解得:m =1,∴抛物线的解析式为y =2(x -1)2+2,当x ≤1时,函数值y 随x 的增大而减小;(3)∵y =2(x -m )2+2n 的对称轴为直线x =m .M (x 1,y 1),N (x 2,y 2)为抛物线上任意两点,∵x 1<x 2,x 1+x 2>3,都有y 1<y 2.∴x 1+x22>m ,∴m <32.总结提升:本题考查考查了待定系数法,二次函数的性质,二次函数图象上点的坐标特征,解题的关键是理解题意,灵活运用所学知识解决问题.14.(2022•香洲区校级三模)直线y =-12x +1与x ,y 轴分别交于点A ,B ,抛物线的解析式为y =2x 2-4ax +2a 2+a .(1)求出点A ,B 的坐标,用a 表示抛物线的对称轴;(2)若函数y =2x 2-4ax +2a 2+a 在3≤x ≤4时有最大值为a +2,求a 的值;(3)取a =-1,将线段AB 平移得到线段A 'B ',若抛物线y =2x 2-4ax +2a 2+a 与线段A 'B '有两个交点,求直线A 'B '与y 轴交点的纵坐标的取值范围.思路引领:(1)根据坐标轴上点的特征分别令x =0,y =0即可求得点A ,B 的坐标,利用公式或运用配方法即可求得抛物线的对称轴;(2)利用二次函数的性质建立方程求解即可得出答案;(3)求出直线A ′B ′与抛物线相切时与y 轴交点的纵坐标,再求出线段A ′B ′两个端点均落在抛物线上时直线A ′B ′与y 轴交点的纵坐标,即可得出答案.解:(1)在y =-12x +1中,令x =0,得y =1,∴B (0,1),令y =0,得-12x +1=0,解得:x =2,∴A (2,0),∵y =2x 2-4ax +2a 2+a =2(x -a )2+a ,∴抛物线的对称轴为直线x =a ;(2)函数y =2x 2-4ax +2a 2+a 在3≤x ≤4时有最大值为a +2,当a ≤72时,32-16a +2a 2+a =a +2,解得:a =3或a =5(不符合题意,舍去);当a >72时,18-12a +2a 2+a =a +2,解得:a =4或a =2(不符合题意,舍去);综上所述,a 的值为3或4;(3)当a =-1时,y =2x 2+4x +1=2(x +1)2-1,∵直线AB 的解析式为y =-12x +1,∴设直线A ′B ′的解析式为y =-12x +b ,与抛物线解析式联立,得:2x 2+4x +1=-12x +b ,整理得:4x 2+9x +2-2b =0,当直线y =-12x +b 与抛物线只有一个公共点时,Δ=81-16(2-2b )=0,解得:b =-4932,当线段A ′B ′的两个端点恰好落在抛物线上时,|x 1-x 2|=2,即(x 1-x 2)2=4,∴(x 1+x 2)2-4x 1x 2=4,∵x 1+x 2=-94,x 1x 2=1-b2,∴8116-2(1-b )=4,解得:b =1532,∴直线A 'B '与y 轴交点的纵坐标的取值范围为-4932<b ≤1532.总结提升:本题考查了二次函数的图象和性质,二次函数的最值,平移变换的性质,直线与抛物线的交点,一元二次方程根与系数的关系的应用等,属于中档题.15.(2022•柘城县校级三模)在平面直角坐标系xOy 中,点(2,m )和点(6,n )在抛物线y =ax 2+bx (a <0)上.(1)若m =4,n =-12,求抛物线的对称轴和顶点坐标;(2)已知点A (1,y 1),B (4,y 2)在该抛物线上,且mn =0.①比较y 1,y 2,0的大小,并说明理由;②将线段AB 沿水平方向平移得到线段A 'B ',若线段A 'B '与抛物线有交点,直接写出点A '的横坐标x 的取值范围.思路引领:(1)利用待定系数法解答即可;(2)①利用分类讨论的方法分m=0和n=0两种情形讨论解答:分别求得抛物线的对称轴,利用抛物线的对称性和二次函数的性质,数形结合的思想方法解答即可;②结合函数的图象利用平移的性质分别求得A'的横坐标x的最小值与最大值即可得出结论.解:(1)∵m=4,n=-12,∴点(2,4)和点(6,-12)在抛物线y=ax2+bx(a<0)上.∴4a+2b=436a+6b=-12 ,解得:a=-1 b=4,∴抛物线的解析式为y=-x2+4x.∵y=-x2+4x=-(x-2)2+4,∴抛物线的对称轴为直线x=2,顶点坐标为(2,4);(2)①∵mn=0,∴m=0或n=0.当m=0时,∵抛物线y=ax2+bx(a<0)的开口方向向下,经过(0,0),(2,0),∴抛物线的对称轴为x=0+22=1,∴A(1,y1)为抛物线的顶点,∴y1为函数的最大值且大于0,∵点(2,0)在x轴上,∴点B(4,y2)在x轴的下方,∴y2<0,∴y1,y2,0的大小关系为:y1>0>y2;当n=0时,∵抛物线y=ax2+bx(a<0)的开口方向向下,经过(0,0),(6,0),∴抛物线的对称轴为x=0+62=3,∴当x<3时,y随x的增大而增大,由抛物线的对称性可知:(2,y2)在抛物线上,∵0<1<2,∴0<y1<y2.综上,当m=0时,y1>0>y2,当n=0时,0<y1<y2;②A'的横坐标x的取值范围为:当n=0时,-1<x<5,当m=0时,-5<x<1.理由:由①知:当m=0时,抛物线y=ax2+bx的对称轴为x=1,∴点A,B关于对称轴对称的点的坐标分别为A′(1,y1),B′(-2,y2),∵将线段AB沿水平方向向左平移至B与B′重合时,线段A'B'与抛物线有交点,再向左平移就没有交点了,而由B平移到B′平移了6个单位,∴A'的横坐标x的最小值为1-6=-5,而最大值为1,∴A'的横坐标x的取值范围为:-5<x<1;由①知:当n=0时,抛物线y=ax2+bx的对称轴为x=3,∴点A,B关于对称轴对称的点的坐标分别为A′(5,y1),B′(2,y2),∵将线段AB沿水平方向向左平移至B与B′重合时,线段A'B'与抛物线有交点,再向左平移就没有交点了,而由B平移到B′平移了2个单位,∴A'的横坐标x的最小值为1-2=-1,∵将线段AB沿水平方向向右平移至A与A′重合时,线段A'B'与抛物线有交点,再向右平移就没有交点了,而由A平移到A′平移了4个单位,∴A'的横坐标x的最大值为1+4=5,∴A'的横坐标x的取值范围为:-1<x<5.综上,A'的横坐标x的取值范围为:当n=0时,-1<x<5,当m=0时,-5<x<1.总结提升:本题主要考查了待定系数法确定函数的解析式,二次函数的性质,平移的点的坐标的特征,数形结合法,利用待定系数法和数形结合法解答是解题的关键.16.(2022•新兴县校级模拟)已知抛物线y=ax2-4ax-2a+3与x轴的两个交点分别为A,B(点A 在点B的左侧).(1)若点A,B均在x轴正半轴上,求OA+OB的值;(2)若AB=6,求a的值;(3)过点P(0,1)作与x轴平行的直线交抛物线于C,D两点.若CD≥4,请直接写出a的取值范围.思路引领:(1)令y=0,则ax2-4ax-2a+3=0,A,B在x轴正半轴,由跟与系数的关系得出OA+ OB=x1+x2=4;(2)根据跟与系数的关系得出x1+x2=4,x1•x2=-2+3a,然后由AB=6解出a的值;(3)联立方程组y=1y=ax2-4ax-2a+3,化简得ax2-4ax-2a+2=0,然后x C+x D=4,x C•x D=-2a+2a,再由CD≥4求出a的取值范围.解:(1)令y=0,则ax2-4ax-2a+3=0,由根与系数的关系得:x1+x2=--4aa=4,∵点A,B均在x轴正半轴上,∴OA=x1,OB=x2,∴OA+OB=x1+x2=4;(2)由(1)知,x1+x2=4,x1•x2=-2a+3a =-2+3a,AB=|x2-x1|=(x1+x2)2-4x1x2=42-4-2+3a=6,化简得:24-12a=6,解得a=-1,经检验a=-1符合题意,∴a=-1;(3)∵过点P(0,1)作与x轴平行的直线交抛物线于C,D两点,∴联立方程组y=1y=ax2-4ax-2a+3 ,化简得ax 2-4ax -2a +2=0,∴x C +x D =4,x C •x D =-2a +2a,∴CD =|x C -x D |=(x C +x D )2-4x C ⋅x D =16-4-2+2a =24-8a,∵CD ≥4,∴24-8a ≥4,化简得:1a≤1,∴a ≥1或a <0.总结提升:本题考查二次函数图象与系数的关系,二次函数图象上点的坐标特征以及抛物线与x 轴的交点,解题的关键是对二次函数图象和性质的综合运用.17.(2022•柘城县校级四模)如图,抛物线y =mx 2-2mx +4经过点A ,B ,C ,点A 的坐标为(-2,0).(1)求抛物线的解析式和顶点坐标;(2)当-2≤x ≤2时,求y 的最大值与最小值的差;(3)若点P 的坐标为(2,2),连接AP ,并将线段AP 向上平移a (a ≥0)个单位得到线段A 1P 1,若线段A 1P 1与抛物线只有一个交点,请直接写出a 的取值范围.思路引领:(1)将A 点代入y =mx 2-2mx +4,可求函数的解析式及顶点坐标;(2)当-2≤x ≤2时,y 的最大值为92,最小值为0,即可求解;(3)由题意可求A 1(-2,a ),P 1(2,2+a ),当P 1在抛物线上时,线段与抛物线有两个交点,则0≤a <2时,线段A 1P 1与抛物线只有一个交点;求出平移后直线A 1P 1的解析式y =12x +1+a ,当直线与抛物线有一个交点时,求出a 的值.解:(1)将A 点代入y =mx 2-2mx +4,∴4m +4m +4=0,解得m =-12,∴y =-12x 2+x +4,∵y =-12x 2+x +4=-12(x -1)2+92,∴顶点为1,92;(2)当x =-2时,y =0,∴当-2≤x ≤2时,y 的最大值为92,最小值为0,。
含参二次函数的最值问题课件

学生在学习过程中,对于含参二 次函数的最值问题往往存在困惑,
需要有针对性的教学课件进行讲 解和指导。
课程目标
掌握含参二次函数的最值问题的基本概念和求解方法。
理解参数对二次函数最值的影响,以及如何根据实际问题的需求进行参数的取值。
通过案例分析和实践练习,提高学生解决实际问题的能力,培养学生的数学思维和 数学应用能力。
二次函数的图像和性质
二次函数的图像是一个抛物线,其开 口方向由系数$a$决定,当$a > 0$时, 开口向上;当$a < 0$时,开口向下。
二次函数的最值点在顶点处取得,当 开口向上时,最小值为顶点的纵坐标; 当开口向下时,最大值为顶点的纵坐 标。
二次函数的对称轴是直线$x = frac{b}{2a}$,顶点坐标为$left(frac{b}{2a}, fleft(frac{b}{2a}right)right)$。
得到最值。
配方法
对于二次函数,可以通 过配方将其转化为顶点 式,从而容易找到最值。
判别式法
对于二次方程,可以通 过判别式判断其根的情
况,从而得到最值。
换元法
通过引入新的变量进行 换元,将原函数转化为 更简单的形式,便于寻
找最值。
04
含参二次函数的最值问 题解析
CHAPTER
参数对最值的影响
参数对开口方向的影响 参数对对称轴的影响 参数对最值点的影响
最值求解方法
01
02
配方法
判别式法
03 导数法
参数取值范围的确定
根据题目条件确定
根据图像特征确定
根据实际意义确定
05
实例解析
CHAPTER
简单实例解析
二次函数含参问题1

二次函数含参问题 (1)姓名________ 班级________ 学号____________1.“动轴定区间”型的二次函数最值例 函数2()23f x x ax =-+在[0,4]x ∈上的最值。
例 函数2()(21)3f x ax a x =+--在区间3[,2]2-上最大值为1,求实数a 的值2“动区间定轴”型的二次函数最值例 求函数2()23f x x x =-+在x ∈[a,a+2]上的最值。
3.“动轴动区间”型的二次函数最值已知函数22()96106f x x ax a a =-+--在1[,]3b -上恒大于或等于0,其中实数[3,)a ∈+∞,求实数b 的范围.巩固习题1.已知函数()222f x x x =++,若[]R a a a x ∈+∈,2,,求函数的最小值,并作出最小值的函数图象。
2.已知函数2()3f x x =-+,若()26f x kx ≤-+在区间[]2,1-上恒成立,求实数k 的取值范围。
3.已知k 为非零实数,求二次函数,122++=kx kx y (,2]x ∈-∞的最小值。
4.已知3a ≤,若函数()221f x x ax =-+在[]3,1上的最大值为()a M ,最小值为()a m ,又已知函数()()()a m a M a g -=,求()a g 的表达式。
5. 已知函数()12-+=ax ax x f ,若()0<x f 恒成立,求实数a 的取值范围。
6. 当20≤≤x 时,函数()()3142-++=x a ax x f 在2=x 时,取得最大值,求实数a 的取值范围。
7. 已知函数322+-=x x y ,在m x ≤≤0时有最大值3,最小值2,求实数m 的取值范围。
8. 已知函数()122+-=px x x f ,当0≥x 时,有()0≥x f 恒成立,求实数p 的取值范围。
9. 方程0122=++x ax 至少的一个负数根,求实数a 的取值范围。
中考数学专项突破——含参二次函数(word版+详细解答)

中考数学专项突破——含参二次函数类型一 函数类型确定型1. 已知抛物线 y =3ax 1 2+ 2bx +c.(1) 若 a =3k ,b = 5k ,c =k +1,试说明此类函数图象都具有的性质;1(2) 若 a =3, c =2+b ,且抛物线在- 2≤x ≤2区间上的最小值是- 3,求 b 的值;(3) 若a +b +c =1,是否存在实数 x ,使得相应的 y 值为 1,请说明理 由.解:(1)∵a =3k ,b =5k ,c =k +1,∴抛物线 y =3ax 2+ 2bx +c 可化为 y =9kx 2+10kx +k +1=(9x 2+10x +1)k +1,∴令 9x 2+10x + 1=0,1解得 x 1=- 1,x 2=-9,1∴图象必过点 (-1,1),(-9, 1),1(2)∵a =3,c =2+b ,∴抛物线 y =3ax 2+2bx +c 可化为 y =x 2+2bx +2+b ,∴对称轴为直线 x =- 2 =- b ,∴对称轴为直线 x =10k2×9k 59;当-b>2 时,即b<-2,∴x=2时,y 取到最小值为- 3.9∴4+4b+2+b=-3,解得b=-5(不符合题意,舍去),当- b <-2 时即b>2,∴x=-2时,y 取到最小值为- 3.∴4-4b+2+b=-3,解得b=3;当-2<-b<2时,即-2<b<2,当x=-b 时,y取到最小值解得b1=1+221(不符合题意,舍去),1-214(2+b)-4b2为-3,∴4=-3,综上所述,b=3 或2;(3)存在.理由如下:∵ a+b+c=1,∴c-1=-a-b,令y=1,则3ax2+2bx+c=1.∴Δ=4b2-4(3a)(c-1)=4b2+4(3a)(a+b)=9a2+12ab+4b2+3a2=(3a+2b)2+3a2,∵a≠0,∴(3a+2b)2+3a2>0,∴Δ>0,∴必存在实数x,使得相应的y 值为 1.2. 在平面直角坐标系中,一次函数y=kx+b 的图象与x 轴、y 轴分别相交于 A (-3,0)、B (0,- 3)两点,二次函数 y =x 2+mx +n 的图 象经过点 A.(1)求一次函数 y =kx +b 的表达式;(2)若二次函数 y =x 2+ mx +n 的图象顶点在直线 AB 上,求 m ,n 的 值;(3)①设 m =- 2,当- 3≤x ≤0时,求二次函数 y =x 2+mx +n的最小值; ②若当- 3 ≤x ≤0时,二次函数 y =x 2+mx +n 的最小值为- 4,求 m , n 的值.解: (1)将点 A (-3,0),B (0,-3)代入 y =kx +b 得-3k +b =0,解得b =-3∴一次函数 y =kx +b 的表达式为 y =- x -3; m 4n - m 2 (2)二次函数 y =x 2+mx +n 的图象顶点坐标为 (- 2, 4 ),∵顶点在直线 AB 上,4n - m 2 m ∴ 4 = 2 - 3,又 ∵ 二次函数 y =x 2+ mx +n 的图象经过点 A (- 3,0),∴9- 3m +n =0,4n - m 2 m∴组成方程组为 4 = 2-3,9-3m +n =0k =-1 b =-3(3)①当 m =- 2时,由(2)得 9-3m +n =0,解得 n =- 15, ∴y = x 2-2x -15.∵二次函数对称轴为直线 x =1,在- 3 ≤x ≤0右侧, ∴当x =0 时, y 取得最小值是- 15.②∵二次函数 y = x 2+mx + n 的图象经过点 A , ∴9- 3m +n =0,二次函数 y =x 2+mx +n 的对称轴为直线 x =- m 2 ,i) 如解图①,m4n - m 2当对称轴- 3<- m 2<0 时,最小值为 4 =- 4,联立 4n -m 2 4 =-4 ,9-3m +n =0m = 2m =10 m解得 或 (由- 3<- 2 <0 知不符合题意舍去 )n =- 3 n =21 2m =2 n =-3ii) 如解图②,当对称轴- m 2>0 时,∵-3≤x ≤0,∴当 x =0时,y 有最小值为- 4,m =4 解得或n =3m =6 n =9把(0,- 4)代入 y =x 2+mx +n ,得 n =-4,5把 n =- 4 代入 9-3m +n = 0,得 m =3.m-2>0, ∴m <0,∴此种情况不成立;iii ) 当对称轴- m 2=0 时, y =x 2+mx +n 当 x =0 时,取得最小值 为-4,把(0,- 4)代入 y =x 2+mx +n 得 n =-4, 5 把 n =- 4 代入 9- 3m +n = 0,得 m =3.0,∴m =0,∴此种情况不成立;iiii ) 当对称轴- 2≤-3 时,∵-3 ≤x ≤0,∴当x =- 3 时,y取得最小值-4,∵当x =-3 时,y =0,不成立.第2 题解图综上所述, m3. 在平面直角坐标系中,二次函数y1=x2+2(k-2)x+k2-4k +5.(1)求证:该二次函数图象与坐标轴仅有一个交点;(2)若函数y2=kx+3经过y1图象的顶点,求函数y1的表达式;(3)当1≤x≤3时,二次函数的最小值是2,求k 的值.(1)证明:∵b2-4ac=4(k-2)2-4(k2-4k+5)=-4<0,∴函数图象与x 轴没有交点,当x=0 时,y1=k2-4k+5=(k-2)2+1>0,∴二次函数与坐标轴仅有一个交点;(2)解:∵y1=(x+k-2)2+1,∴函数y1 的顶点坐标为(2-k,1),代入函数y2=kx+3 得(2-k)k+3=1,解得k=1+3或k=1-3,∴y1=x2+2( 3-1)x+5-2 3或y1=x2-2( 3+1)x+5+23;b(3)解:①当对称轴x=-2b a=2-k≤1时,k≥1,当x=1 时,y1 取得最小值2,即1+2(k-2)+k2-4k+5=2,解得k=0(舍去)或k=2;②当对称轴1<2-k<3 时,-1<k<1,当x=2-k 时,最小值恒为1,无解;③当对称轴x=2-k≥3时,k≤-1,当x=3 时,y1 取得最小值2,即9+6(k-2)+k2-4k+5=2,化简得k2+2k=0,解得k =0(舍去)或 k =- 2.综上所述, k 的值为 2 或-2.4. 已知二次函数 y =ax 2+bx +c (a ≠ 0的) 图象经过 A (1,1)、B (2,4) 和 C 三点.(1)用含 a 的代数式分别表示 b 、 c ;(2)设抛物线 y = ax 2+bx +c 的顶点坐标为 (p ,q ),用含 a 的代数式分 别表示 p 、 q ;3(3)当 a >0 时,求证: p <2, q ≤1.(1)解:∵二次函数 y =ax 2+bx +c 的图象经过 A (1,1)、B(2,4)两点, 1=a +b +c 4=4a +2b +c化解得 3= 3a + b , ∴b = 3- 3a , ∴1= a + 3-3a +c , ∴c =2a -2;(2)解:由(1)得 b =3-3a ,c =2a -2,4a (2a -2)-( 3-3a )2 -a 2+10a -9 ∴q =(3)证明: ∵a > 0,3b 3a- 3∴p =-2a=2a4a4a2a<0,3a-3 3 3 3 ∴p=2a =2-2a<2;-(a-3)2 ∵≤0,4a-a2+6a-9 4a-(a-3)2 ∴q=4a+4a=+1 ≤1.4a5. 已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.(1)用含a、c 的代数式表示b;(2)判断点 B 所在象限,并说明理由;c (3)若直线y2=2x+m 经过点B,且与该抛物线交于另一点C(a,b+8),求当x≥1时,y1 的取值范围.解:(1)∵抛物线y1=ax2+bx+c(a≠0,a≠c)经过点A(1,0),把点A(1,0)代入即可得到a+b+c=0,即b=-a-c;(2)点 B 在第四象限.理由如下:∵抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),∴抛物线y1与x 轴至少有1个交点,令ax2+bx+c=0,c ∴x1·x2=a,c ∴x1=1,x2=,∵a≠c,a∴抛物线与x 轴有两个不同的交点,又∵抛物线不经过第三象限,∴a>0,且顶点 B 在第四象限;(3)∵ 点C(a c,b+8)在抛物线上,令b+8=0,得b=-8,由(1)得a+c=-b,∴a+c=8,b4ac-b2c把B(-2a,4a)、C(a,b+8)两点代入直线解析式得4ac-b2b4a=2×(-2a)+mc b+8=2× +maa+c=8a= 2 a= 4b=-8 b=-8或(a≠c,舍去),c= 6 c= 4如解图所示,C在A的右侧,6. 在平面直角坐标系中,设二次函数y1=ax2+2ax+3(a≠ 0.)(1)若函数y1的图象经过点(-1,4),求函数y1 的表达式;(2)若一次函数y2=bx+a(b≠ 0的)图象经过y1图象的顶解得m=-6 m=-2当x≥1时,4ac-b2y1≥4a点,探究实数a, b 满足的关系式;(3)已知点P(1,m)和Q(x0,n)在函数y1 的图象上,若m>n,求x0 的取值范围.解:(1)∵二次函数y1=ax2+2ax+3 的图象经过点(-1,4),∴4=a-2a+3,∴a=-1,∴函数y1的表达式为y1=-x2-2x+3;(2)∵y1=ax2+2ax+3=a(x+1)2+3-a,∴y1 图象的顶点坐标为(-1,3-a).∵一次函数y2=bx+a(b≠ 0的)图象经过y1 图象的顶点,∴3-a=-b+a,∴实数a、b 满足的关系式为b=2a-3;2a(3)∵ 二次函数y1=ax2+2ax+3 的图象的对称轴为直线x=-2a=-1,∴当m=n 时,x0=- 3.当a>0时,如解图①所示,第6 题解图m>n,∴-3<x0<1;当a<0时,如解图②所示,∵m>0,∴x0<-3或x0>1.综上所述:-3<x0<1 (a>0)x0 的取值范围为.x0<-3或x0> 1 (a< 0)类型二函数类型不确定型1. 已知函数y=(n+1)x m+mx+1-n(m,n 为实数).(1)当m,n 取何值时,此函数是我们学过的哪一类函数?它一定与x轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n>-1,那么:①当x<0时,y随x的增大而减小,请判断这个命题的真假并说明理由;②它一定经过哪个点?请说明理由.解:(1)①当m=1,n≠-2 时,函数y=(n+1)x m+mx+1-n(m,n 为实数)是一次函数,它一定与x 轴有一个交点,∵当y=0 时,(n+1)x m+mx+1-n=0,n-1∴x=n+2∴函数y=(n+1)x m+mx+1-n(m,n为实数)与x轴有交点;②当m=2,n≠-1 时,函数y=(n+1)x m+mx+1-n (m,n 为实数)是二次函数,当 y =0 时, (n +1)x m +mx + 1-n =0,即(n +1)x 2+2x +1-n =0,∴Δ=22-4(n +1)(1-n )=4n 2≥0, ∴函数y =(n +1)x m+mx +1-n (m ,n 为实数)与 x 轴有交点;③ 当 n =- 1,m ≠0 时,函数 y =(n +1)x m +mx +1-n 是一次函 n -1数,当 y =0 时, x = m ,∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与 x 轴有交点;(2)①假命题,若它是一个二次函数,则 m = 2,函数 y =(n +1)x 2+2x +1-n ,∵n >- 1,∴n + 1>0,抛物线开口向上,∴对称轴在 y 轴左侧,当 x <0时,y 可能随 x 的增大而增大,也 可能随 x 的增大而减小,故为假命题;②它一定过点 (1,4)和 (-1,0),理由如下:当 x =1 时, y =n +1+2+1-n =4.当 x =- 1 时, y = 0.∴它一定经过点 (1,4)和(-1,0).2. 设函数 y =kx 2+(2k +1)x +1(k 为实数).(1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并且b对称轴: x =-2b a =-2(n +1)= 1 n +11<0,在同一坐标系中,用描点法画出它们的图象;(2) 根据所画图象,猜想出:对任意实数k,函数的图象都具有的特征,并给予证明;(3) 对于任意负实数k,当x<m时,y随x的增大而增大,试求m的取值范围.第 2 题图解:(1)令k=0,k=1,则这两个函数为y=x+1,y=x2+3x+1,描点法画函数图象如解图所示;(2)不论k取何值,函数y=kx2+(2k+1)x+1的图象必过定点(0,1),(-2,-1),且与x 轴至少有1个交点.证明:①∵当x=0 时,y=1;当x=-2 时,y=- 1.∴函数图象必过(0,1),(-2,-1);②∵当k=0时,函数为一次函数,∴y=x+1的图象是一条直线,且与x 轴有一个交点;∵当k≠0时,函数为二次函数,y=kx2+(2k+1)x+1 的图象是一条抛物线.Δ=(2k+1)2-4×k×1=4k2+4k+1-4k=4k2+1>0,∴抛物线y=kx2+(2k+1)x+ 1 与x 轴有两个交点.综上所述,函数y=kx2+(2k+1)x+1(k 为实数)与x 轴至少有一个交点;(3)∵k<0,2k+1 ∴函数y=kx2+(2k+1)x+ 1 的图象在对称轴直线x=-2k的左侧时,y 随x 的增大而增大.2k+1根据题意,得m≤-2k,2k+ 1 1而当k<0 时,-2k=-1-2k>-1,∴m≤-1.43. 已知函数y=kx2+(3-3k)x-4.(1)求证:无论k 为何值,函数图象与x 轴总有交点;(2)当k≠0时,A(n-3,n-7)、B(-n+1,n-7)是抛物线上的两个不同点.①求抛物线的表达式;②求 n 的值.4(1)证明:当 k =0时,函数为一次函数,即 y =3x -4,与 x 轴交于点(3,0);当 k ≠0时,函数为二次函数,44 ∵Δ=(3-3k )2-4k ×(-4)=(3k +3)2≥0,∴函数与 x 轴有一个或两个交点;综上可知,无论 k 为何值,函数图象与 x 轴总有交点;4 (2)解:①当 k ≠0时,函数 y =kx 2+(3-3k )x -4 为二次函数,∵A (n -3,n -7)、B (-n +1,n -7)是抛物线上的两个不同点,n - 3-n +1∴抛物线的对称轴为直线 x ==- 1, 4解得 k =145, ∴抛物线的表达式为 y =15x2+15x - 4;48 ②∵(n - 3,n -7)是抛物线 y =15x 2+ 15x -4 上的点,4 2 8∴n -7=15(n -3)2+15(n -3)-4,19解得 n 1= 4 , n 2=3.43-3k 2k -1,4. 已知y 关于x 的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.(1)求k 的取值范围;(2)若x1,x2是函数图象与x 轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2=4x1x2.①求k 的值;②当k≤x≤k+2 时,请结合函数图象确定y的最大值和最小值.解:(1)当k=1 时,函数为一次函数y=-2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x 轴有一个或两个交点,令y=0 得(k-1)x2-2kx+k+2=0.Δ=(-2k)2-4(k-1)(k+2)≥,0解得k≤ 2即. k≤2且k≠ 1. 综上所述,k的取值范围是k≤ 2.(2)①∵ x1≠x2,由(1)知k<2且k≠1,函数图象与x轴有两个交点,∴由题意得(k-1)x12+(k+2)=2kx1①,将①代入(k-1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.令(k-1)x2-2kx+k+2=0,2k k+2则x1+x2=,x1x2=,k- 1 k-1∴2k 2k·k-1=k+2 4·k-1解得k1=-1,k2=2(不合题意,舍去).∴所求k的值为-1;第 4 题解图13 ②如解图,∵k=-1,∴y=-2x2+2x+1=-2(x-2)2+2.且- 1 ≤x≤ 1.13 由图象知:当x=-1时,y 最小=-3;当x=2时,y 最大=2.∴y的最大值为23,最小值为- 3.5. 设函数y1=(x-k)2+k 和y2=(x+k)2-k 的图象相交于点A,函数y1,y2的图象的顶点分别为B和 C.(1)画出当k=0,1 时,函数y1,y2在直角坐标系中的图象;(2)观察(1)中所画函数图象的顶点位置,发现它们均分布在某个函数的图象上,请写出这个函数的解析式,并说明理由;(3) 设A(x,y),求证:x 是与k 无关的常数,并求y 的最小值.第 5 题图(1)解:画出图象如解图所示;(2)解:∵当k=0时,函数y1=y2=x2的顶点为(0,0),当k=1 时,函数y1=(x-1)2+1的顶点为(1,1),函数y2=(x+1)2-1的顶点为(-1,-1),∴它们的顶点都在直线y=x 的图象上,因为它们的坐标均满足解析式y=x;(3)证明:令(x-k)2+k=(x+k)2-k,整理得4kx=2k,∵函数y1=(x-k)2+k 和y2=(x+k)2-k 的图象相交于点A,∴k≠0,1解得x=12,∴x 是与k 无关的常数;1 1 1 1此时y=(21+k)2-k=k2+41≥14,即y的最小值为41.。
完整版)二次函数含参综合专题

完整版)二次函数含参综合专题轴平移3个单位,得到抛物线y=x-2ax+(b+3),求新抛物线的表达式;2)若a=2,b=3,求点P、Q的坐标和抛物线的对称轴;3)将抛物线在x轴上方的部分沿y轴平移2个单位,得到抛物线G,求G与x轴交点的横坐标。
综合专题:二次函数二次函数的特征很多时候是隐藏在式子中的,需要找到关键点才能解决问题。
下面分别对不等关系类、翻折类、平移类的例题进行分析。
例1.在平面直角坐标系xOy中,抛物线y=ax²与x轴交于A、B两点(点A在点B左侧)。
1) 当抛物线过原点时,a的值为0;2) ①对称轴为x=0,顶点纵坐标为0;②顶点为原点,纵坐标为0;3) 当AB≤4时,a∈[-2,2]。
巩固练:在平面直角坐标系xOy中,抛物线y=ax²-4ax+3a(a>0)与x轴交于A、B两点(A在B的左侧)。
1) 对称轴为x=2,A(-a,0),B(3a,0);2) 点C(t,3)在抛物线上,过C作x轴的垂线交x轴于D,①CD=AD时,a=t²-4t+3;②CD>AD时,t∈(-∞,0)∪(1,∞)。
例2.在平面直角坐标系xOy中,抛物线y=nx²-4nx+4n-1(n≠0),与x轴交于点C、D(C在D的左侧),与y轴交于点A。
1) 顶点坐标为(M,n-1),其中M=n;2) A(0,n-1),B(3-n,n-1);3) 翻折后的图象记为G,直线y=n-1与G有一个交点时,m∈(-∞,n-1)。
巩固练:在平面直角坐标系xOy中,抛物线y=ax²-4ax+3a的最高点纵坐标为2.1) 对称轴为x=1,表达式为y=(a-1)²-1;2) 图象G1在x∈[1,4]上,将G1沿直线x=1翻折得到G2,图象G由G1和G2组成,直线y=b与G只有两个公共点时,b∈(-∞,-1)∪(3,∞),x1+x2=2.例3.在平面直角坐标系xOy中,已知抛物线y=x-2ax+b 的顶点在x轴上,P(x1,m)、Q(x2,m)(x1<x2)是此抛物线上的两点。
二次函数专题——含参二次函数

含参的二次函数二次函数在初中的时候就比较重要,那么在高中阶段二次函数的考点更加重要,难度也会加大。
高中阶段比较喜欢考含有参数的二次函数,参数就会让函数形成一种动态,随着参数不同,函数是不一样的,这就使得本来简单的二次函数变得复杂起来。
例1. 求2()2f x x ax =-在[2,4]上的最大值和最小值。
解析:这道题因为参数的存在使得函数的本身是动的,在动的情况下考虑这个函数最大值和最小值的问题,这就涉及到高中比较爱考的一类问题,动轴定区间问题。
这道题中对称轴正好是x a =,随着a 不同,这个对称轴在变化,但是在给定区间上问最大值和最小值,那么就会有下面几种情况,在[2,4]这个区间上,有可能(1)这个对称轴不在这个区间里面这个时候的最大值最小值;也有可能(2)这个对称轴就在区间里面,这个时候的最值,还可能(3)对称轴在区间右侧这几个图针对这个函数并不严谨,上面的是一般函数的示意图,这道题中的函数一定是过原点的。
可以感受,随着a 的不同,最大值和最小值是不一样的,所以这种含参的动态的问题往往需要我们做的一个工作就是分类讨论。
那么函数在什么时候取到最大值呢,比如说(1),就会在4的地方取得最大值,(2)在4的地方取得最大值,(3)就会在2的地方取得最大值。
那么在整个函数的区间上,什么时候能取得最大值呢,我们就要看在这个区间上,哪个数离对称轴最远。
那么就有两种情况了,有的时候是2离得比较远,有的时候是4离得比较远,是怎么分界的呢?这个分界线就应该在2和4中间的位置上是3,当对称轴在3x =这条线左边的时候,对称轴离2就比较近,离4就比较远,对称轴在右边的时候,离2就比较近,离4就比较远。
因此这个函数的最大值,经过分类讨论之后,就会得到一个分段函数:max (4)=168(3)()(2)44(3)f a a f x f a a -≤⎧=⎨=->⎩也就是如果这个对称轴在3的左侧,也就是3a ≤的时候,离4远,在4处取得最大值,如果在右侧的话,也就是3a >的时候,离2远,在2处取得最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数含参问题
本质:解决二次函数含参问题就是解决对称轴与定义域的问题。
课堂例题:
1. 若函数a ax x x f --=2)(在区间[0,2]上的最大值为1,则实数=a ;
2. 若函数x x x f 3)(2-=,在[]m ,0上的值域为⎥⎦
⎤⎢⎣⎡-0,49,则m 的取值范围为 ;
当堂练习:
1. 若函数)0(22
≠-=a ax ax y 在区间]3,0[上有最大值3,则a 的值是 ;
2. 已知函数22)(22++-=a ax x x f [])3,1(-∈x 有最大值18,则实数a 的值为 ;
1. 若函数f(x)=4
x−12−a ·2x +272在区间[]2,0上的最大值为9,求实数a 的值;
当堂练习:
1. 已知函数)0(4
9433)(22>+
+--=b b x x x f 在区间[-b, 1-b]上的最大值为25,求b 的值;
2. 已知函数2244)(22+-+-=a a ax x x f 在区间[]2,0上有最小值3,求实数a 的值;
家庭作业:
1.函数432--=x x y 的定义域为[]m ,0,值域为⎥⎦
⎤⎢⎣⎡--4,425,则实数m 的取值范围是__________. 2.若函数12)(2+-=x x x f 在区间[]2,+a a 上的最大值为4,则a 的值为 ;
3.已知函数32)(2+-=x x x f 在闭区间[]m ,0上的最大值为3,最小值为2,则m 的取值范围为 ;
4.若函数22422y x ax a a =-+-+在[0,2]的最小值是2,则a 的值为 ;
5.若三条抛物线,,中至少有一条与轴有交点,则的取值范围是 ;
3442+-+=a ax x y 22)1(a x a x y +-+=a ax x y 222-+=x a
1.不等式(2−α)x2−2(a−2)x+4>0对于一切实数x都成立,求α的取值范围;
2.若不等式x2−2αx+a2−a>0,当x∈[0,1]时恒成立,求 α的取值范围;
当堂练习:
1.求对于−1≤α≤1,不等式x2+(α−2)x+1−a>0恒成立的x的取值范围;
)恒成立,则α的取值范围是多少;
2. 若不等式 x2+αx+1≥0对于一切x∈(0,1
2
3.不等式αx2+2x+1>0在x∈[−2,1]上恒成立,求实数α的取值范围;
4.设不等式αx2−2x−a+1<0对于满足|α|≤2的一切值都恒乘以,求x的取值范围;
家庭作业:
1.函数f(x)=αx2−2x+2 (a∈R),对于满足1<x<4的一切x值都有f(x)>0,求实数α的取值范围;
>0 对任意2.已知f(x)是定义在区间[−1,1]上的函数,且f(1)=1,若m,n∈[−1,1],m+n≠0时,有f(m)+f(n)
m+n x∈[−1,1],f(−x)=−f(x)都成立。
)<f(1−x);
(1)解不等式f(x+1
2
(2)若f(x)≤t2−2at+1对所有x∈[−1,1],α∈[−1,1]恒成立,求实数t的取值范围。