全等三角形的判定(2)

合集下载

12.2三角形全等的判定2(SAS)

12.2三角形全等的判定2(SAS)

例1 已知:如图,AB=CB,∠ABD=∠CBD , △ABD 和△CBD 全等吗? 变式1:若条件不变,你能
B A
D
得到AD=CD, BD 平分∠ADC 吗? 变式2:已知AD=CD, BD 平分∠ADC 。 问∠A=∠C 吗?
C
例2 如图,AC=BD,∠CAB=∠DBA,你 能判断BC=AD吗?说明理由。 C D
课堂小结:
1.三角形全等的条件,两边和它们的夹角对 应相等的两个三角形全等 (边角边或SAS) 2.用尺规作图:已知两边及其夹角的三 角形画三角形 3.会判定三角形全等
E
△ABC≌△EFD 根据“SAS”
探究(2)

由“两边和其中一边的对角 对应相等的两个三角形全等 吗?”
以2.5cm,3.5cm为三角形的两边, 长度为2.5cm的边所对的角为40°, 情况又怎样?动手画一画,你发现 了什么? FCA源自40°BD
40°
E
结论:两边及其一边所对的角
相等,两个三角形不一定全等。
回顾 预学
从两个三角形中的六对元素中任取三对元素 能断定两个三角形全等吗? (1)三个角对应相等( 不一定全等 ) (2)三条边对应相等(全等 )
三边对应相等的两个三角形全等 (可以简写为“边边边”或“SSS”) A 。 用符号语言表述:
在△ABC和△DEF中 AB=DE BC=EF CA=FD B D
学习目标:1.掌握三角形全等的“边角边” 判定方法,并能运用“边角边”判定方 法进行简单的证明。 2.使学生经历探索三角形全等的过程,体 验操作、归纳得出数学结论的过程。 3.通过画图、比较、验证,培养学生重视 观察、善于思考、不断总结的良好习惯。 学习重点:掌握三角形的“边角边”判 定方法。 学习难点:运用“边角边”判定方法进 行简单的证明。

全等三角形判定(二)

全等三角形判定(二)

例01.如图,已知:21∠=∠,43∠=∠. 求证:BCD ADC ∆≅∆.分析:ADC ∆与BCD ∆的对应边是DC 与DC ,AD 与BC ,AC 与BD . 对应角是1∠与2∠,ADC ∠与BCD ∠,DAC ∠与CBD ∠. 由条件已有一对应边DC 与DC ,和一对应角1∠和2∠相等,只需证明BCD ADC ∠=∠,就可以证明两三角形全等.证明:21∠=∠,43∠=∠(已知),∴ 4231∠+∠=∠+∠. 即BCD ADC ∠=∠ 在ADC ∆与BCD ∆中,⎪⎩⎪⎨⎧∠=∠=∠=∠)(12)()(已知公共边已证CD DC BCD ADC ∴ )(ASA BCD ADC ∆≅∆例02.已知:如图,21∠=∠,C B ∠=∠. 求证:COD BOE ∆≅∆.分析:欲证COD BOE ∆≅∆,已有两组条件,即C B ∠=∠和COD BOE ∠=∠. 因此,必须再具备一组对应边相等这一条件. BE 和CD 是在BOE ∆和COD ∆中,但直接证明CE BE =比较困难. 若证OE 和OD 相等或OB 和OC 相等,可以分别转化到证明AOD AOE ∆≅∆和AOC AOB ∆≅∆. 由已知条件,不难证出这两对三角形分别全等.证明:∵ 21∠=∠(已知),DOC EOB ∠=∠(对顶角相等), ∴ DOC EOB ∠+∠=∠+∠21. 即 AOC AOB ∠=∠. 在AOB ∆与AOC ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(公共边已证已知AO AO AOC AOB C B ∴ )(AAS AOC AOB ∆≅∆. ∴CO BO =在EOB ∆与COD ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(已知已证对顶角相等C B CO BO COD EOB∴ COD BOE ∆≅∆(ASA )例03.如图,已知:AB 与CD 相交于点O ,且OD OC BD AC =,//,E 、F 为AB 上两点,且BF AE =.求证:DOF COE ∆≅∆.分析:欲证DOF COE ∆≅∆,已具备了两个条件,OD OC =和DOF COE ∠=∠. 所以只需证另一对角相等或证明OF OE =,即可. 证明另一对角相等,比较困难. 所以就证明OF OE =. 因为有BF AE =. 要证OF OE =只需证OB OA =即可. 由已知条件容易证得BOD AOC ∆≅∆,从而证明OB OA =.证明:∵BD AC //(已知)∴B A ∠=∠(两直线平行,内错角相等) 在AOC ∆与BOD ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知对顶角相等已证OD OC BOD AOC B A ∴)(AAS BOD AOC ∆≅∆∴BO AO =(全等三角形的对应边相等) ∵BF AE =(已知), ∴BF BO AE AO -=-. 即OF OE =在COE ∆与DOF ∆中,⎪⎩⎪⎨⎧=∠=∠=)()()(已证对顶角相等已知OE OE DOE COE DO CO ∴)(SAS DOF COE ∆≅∆例04.如图,已知:CE BD ACE ABD DAE BAC =∠=∠∠=∠,,. 求证:AE AD =.分析:欲证相等的两条线段AD ,AE 分别在ABD ∆和ACE ∆中,由于CE BD =,ACE ABD ∠=∠,所以只需再证CAE BAD ∠=∠即可,这由已知条件DAE BAC ∠=∠容易得到.证明:∵DAE BAC ∠=∠(已知) ∴DAC DAE DAC BAC ∠-∠=∠-∠ 即CAE BAD ∠=∠ 在ABD ∆与ACE ∆中,⎪⎩⎪⎨⎧∠=∠∠=∠=)()()(已证已知已知CAE BAD ACE ABD CE BD ∴)(AAS ACE ABD ∆≅∆∴AE AD =(全等三角形的对应边相等)例05.已知:(如图)21,∠=∠∠=∠D A . 求证:DO AD =分析:要证DO AD =,只要证DOC AOB ∆≅∆即可,在AOB ∆和DOC ∆中,已知D A ∠=∠,DOC AOB ∆=∆,只要再证一边对应相等即可,根据已知可得DCB ABC ∆≅∆,从而可证DC AB =,进而可证DO AO =,思路即为:DO AO =⇐DOC AOB ∆≅∆⇐DC AB =⇐DCB ABC ∆≅∆⇐“AAS ”证明:在ABC ∆和DCB ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(21公共边已知已知CB BC D A ∴)(AAS DCB ABC ∆≅∆∴DC AB =(全等三角形的对应边相等)在AOB ∆和DOC ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已证已知对顶角相等DC AB D A DOC AOB ∴ )(AAS DOC AOB ∆≅∆∴ DO AO =(全等三角形的对应边相等)例06.求证:三角形的一边的两端到这边的中线或中线的延长线的距离相等.分析:这是一道了题,必须先根据题意画出图形,再结合题意写出已知,求证,再证明.已知:AD 是ABC ∆的中线. 如图,且AD CF ⊥于F ,AD BE ⊥的延长线于E , 求证:CF BE =证明:∵AD 为ABC ∆的中线(已知) ∴ CD BD =(中线定义)∵ AD BE ⊥ AD CF ⊥(已知)∴ ︒=∠=∠90CFD BED (等于定义) 在BED ∆与CFD ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠)()(21)(已证对顶角相等已知CD BD CFD BED ∴CFD BED ∆≅∆(AAS )∴CF BE =(全等三角形对应边相等)说明 本题还可利用面积相等来证明,提示,过A 作BC AN ⊥于N ,希同学们自己来证明.例07.已知:如图,BC AD CD AB //,//, 求证:CD AB =.分析:因为四边形,我只学过三角形的有关知识,因此只要连结四边形的对角线从而把四边形的总是转化为三角形的总是来解决.证明:连结AC∵BC AD CD AB //,//(已知)∴43,21∠=∠∠=∠(两直线平行内错角相等)在ABC ∆和CDA ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已知CA AC∴ )(ASA CDA ABC ∆≅∆∴CD AB =(全等三角形的对应边相等)例08.已知:如图,AO CO DO BO ==,求证:OF OE =证明:在BOC ∆和DOA ∆中⎪⎩⎪⎨⎧=∠=∠=)()()(已知对顶角相等已知OA OC DOA BOC DO BO ∴ )(SAS DOA BOC ∆≅∆∴ D B ∠=∠(全等三角形的对应角相等) 在BOE ∆和DOF ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(对顶角相等已知已证DOF BOE DO BO D B ∴)(ASA DOF BOE ∆≅∆∴OF OE =(全等三角形的对应边相等)说明 找到题目中的隐性条件并加以应用是关键.例09.如图,在ABC ∆和DBC ∆中,43,21∠=∠∠=∠,P 是BC 上任意一点, 求证:PD PA =.证明:在ABC ∆和DBC ∆中,⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已知公共边已知BC BC ∴ )(ASA DBC ABC ∆=∆∴ DB AB =(全等三角形对应边相等) 在ABP ∆和DBP ∆中,⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知已证BP BP DB AB ∴ )(SAS DBP ABP ∆≅∆∴ PD PA =(全等三角形对应边相等)说明:本题也可通过DBC ABC ∆≅∆,得到DC AC =,从而证DCP ACP ∆≅∆,得到PD PA =.选择题(1)已知ABC Rt ∆与C B A Rt '''∆,︒=∠90C ,︒='∠90C ,B A '∠=∠.B A AB ''=.那么下列结论正确的是( )(A )C A AC ''= (B )C B BC ''= (C )C B AC ''= (D )以上答案都不对(2)在ABC ∆和C B A '''∆,甲:B A AB ''=;乙:C B BC ''=;丙:C A AC ''=;丁:A A '∠=∠;戊:B B '∠=∠;己:C C '∠=∠,则不能保证ABC ∆≌C B A '''∆成立的条件为( )(A )丙、丁、己 (B )甲、丙、戊 (C )甲、乙、戊 (D )乙、戊、己 (3)如图,已知ABD ∆和ACE ∆均为等边三角形,那么ADC ∆≌ABE ∆的根据是( )(A )ASA (B )SAS(C )AAS (D )以上都不对(4)如图,C 是BE 上一点,CD AB =,D A ∠=∠,E BCA ∠=∠,那么( )(A )ECD B ∠=∠ (B )C 是BE 的中点 (C )CD AB //(D )以上结论都正确参考答案:(1)C (2)B (3)B (4)D填空题(1)如图,已知:21∠=∠,D C ∠=∠. 求证:AD AC =.证明:在ACB ∆与ADB ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠) _______()()(21AB D C 已知已知 ∴ACB ∆≌ADB ∆( ) ∴AD AC =(2)如图,已知:BC AB ⊥,DC AD ⊥,垂足分别为B ,D .21∠=∠. 求证:AD AB =.证明:在ABC ∆与ADC ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠) ()(21)(AC AC ADC ABC ∴ ABC ∆≌ADC ∆( ) ∴AD AB =( )(3)如图,已知:CE AE =,C A ∠=∠.求证:ADE ∆≌CEB ∆.证明:在AED ∆与CEB ∆中,⎪⎩⎪⎨⎧==∠=∠) _____(______)()(已知CE AE C A ∴ AED ∆≌CEB ∆(ASA )(4)如图,已知:C B ∠=∠,AD AE =.求证:AEC ∆≌ADB ∆.证明:在AEC ∆与ADB ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠) ()()(AE AE C B A A 已知 ∴AEC ∆≌ADB ∆( )参考答案:(1)AB ;公共边;AAS ;全等三角形的对应边相等(2)垂直定义;已知;公共边;AAS ;全等三角形的对应边相等. (3)已知:AED ∠;CEB ∠;对顶角相等 (4)公共角;已知;AAS证明题1.如图,已知,21∠=∠,DCB ABC ∠=∠. 求证:DC AB =.2.如图,已知:E D ∠=∠,AM EM CN DN ===. 求证:点B 是线段AC 的中点.3.如图,已知:21∠=∠,AE AD =. 求证:OC OB =.4.如图,已知:在ABC ∆中,AD 是BAC ∠的平分线,AB DE ⊥于E ,AC DF ⊥于C ,求证:AF AE =.5.如图,已知:E 在AC 上,21∠=∠,43∠=∠. 求证:DE BE =.6.如图,已知:BC AD //,21∠=∠,43∠=∠,直线DC 过E 点交AD 于D ,交BC 于C .求证:AB BC AD =+.7.求证:三角形一边的两个端点到这边上的中线的距离相等. 8.如图,已知:DE AB =,直线AE ,BD 相交于点C ,︒=∠+∠180D B ,DE AF //,交BD 于F .求证:CD CF =.9.如图,已知:AB 与CD 相交于点O ,O 是AB ,CD 的中点,过点O 引直线EF 分别与AD ,BC 相交于E 、F 两点.求证:BF AE =.参考答案:1.证:由DCB ABC =∠,21∠=∠,可得ACB DBC ∠=∠.易证ABC ∆≌DCB ∆,∴ DC AB =2.证:易证DNB ∆≌EMB ∆,∴ EB DB =,由此可证:EA DC =.因此,可证DCB ∆≌EAB ∆.∴BC AB =,∴B 是AC 的中点.3.易证ABE ∆≌ACD ∆,∴C B ∠=∠,AC AB =,又∵AE AD =,∴CE BD =.由此可证BOD ∆≌COE ∆,∴OC OB =4.︒=∠=∠90AFD AED ,FAD EAD ∠=∠,AD AD =,∴AFD AED ∆≅∆,∴AF AE =.5.∵ 21∠=∠,AC AC =,43∠=∠,∴ABC ∆≌ADC ∆,∴AD AB =,又∵21∠=∠,AE AE =,∴ADE ABE ∆≅∆,∴DE BE =6.在AB 上取一点F ,使BF BC =,又∵43∠=∠,EB EB =,∴EC B EFB ∆≅∆,∴C EFB ∠=∠,又∵BC AD //,由此可推出D EFA ∠=∠.可证AFE ADE ∆≅∆,∴AF AD =,∴BC AD AB +=.7.已知:如图,AD 为ABC ∆的中线,AD BF ⊥于F ,AD CE ⊥于E . 求证:CE BF =.证:︒=∠=∠90BFD CED ,BDF CDE ∠=∠,BD CD =,∴ BFD CED ∆≅∆,∴ CE BF =8.证:∵ DE AF //, ∴AFC D ∠=∠,又∵︒=∠+∠180AFB AFC ,︒=∠+∠180D B ,∴ AFB B ∠=∠∴ DE AF AB ==,∴ 可证ECD ACF ∆≅∆,∴CD CF =9.证:BO AO =,BOC AOD ∠=∠,CO DO =,∴B O C A O D ∆≅∆,∴B A ∠=∠.而BOF AOE ∠=∠,BO AO =,∴BOF AOE ∆≅∆,∴ BF AE =能力:1、如图1,已知:AD 平分∠BAC ,AB=AC ,连接BD ,CD ,并延长相交AC 、AB 于F 、E 点.则图形中有( )对全等三角形.A 、2B 、3C 、4D 、5答案:C.2、如图2,已知:∠1=∠2,AB=DC ,图中全等三角形的对数是( )A 、0B 、1C 、2D 、3答案:A3、如图3,已知:△ABC 中,DF=FE ,BD=CE ,AF ⊥BC 于F ,则此图中全等三角形共有( )A 、5对B 、4对C 、3对 D2对答案:C.1、如图4,已知:在△ABC 中,AD 是BC 边上的高,AD=BD ,DE=DC ,延长BE 交AC 于F ,求证:BF 是△ABC 中边上的高. 图1 A B B 、E F D C AD B O C 1 2 图2 图3 D FE C AF C D B E 图4提示:关键证明△ADC ≌△BFC2、如图5,已知:∠D=∠E ,DN=EM ,AM=CN ,求证:点B 是线段AC 的中点.提示:欲证点B 是线段AC 的中点,只需证AB =BC.选择AB 、BC 所在的两个三角形,然后证这两个三角形△AMB ≌△CNB.由条件可得△EMB ≌△DNB ,所以得到∠EMB =∠DNB ,MB =NB由此易证△AMB ≌△CNB.3、如图6,已知:AB=CD ,∠A=∠D.求证:∠ABC=∠DCB提示:欲证∠ABC=∠DCB ,选择这两个角所在的三角形,只需证△ABC ≌△DBC由条件可知△ADC ≌△DAB ,所以得到∠DAC =∠ADB ,BD =AC ,加之条件利用边角边公理可证△ABC ≌△DBC4、如图7,已知:在△ABC 中,∠ACB=090,AC=BC ,AE 是BC 边上的中线过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于点D.(1)求证:AE=CD.(2)AC=12cm ,求BD 的长.提示:欲证AE=CD ,只需证△ACE ≌△CBD 由条件可知∠CAE =∠BCD (同角的余角相等)加之其它两个条件易证得结论.由E 是BC 的中点,EC =BE又BD =EC ,BC =AC 知BD =6 cm5、如图8,已知:在△ABC 中,AB=AC ,∠A=90,BD 平分∠ABC 交AC 于D ,CE ⊥BD 交BD 的延长线于E ,求证:BD=2CE提示:本题的关键是从结论BD=2CE 出发,想到构造线段CF =2CE ,再证BD =CFA M N E C DB 图5 A D BC 图6 O E ┛ ┓ ┏D A CF 图7 B A E C D 图8 F。

1.2.-3三角形全等的判定(二)角边角定理

1.2.-3三角形全等的判定(二)角边角定理

例2:如图,已知AB=AC,∠ADB= ∠AEC,
求证:△ABD≌△ACE 证明:∵ AB=AC,
∴ ∠B= ∠C(等边对等角)
∵ ∠ADB= ∠AEC, AB=AC, ∴ △ABD≌△ACE(AAS)
B D
A
E
C
例 3:若△ABC中 , BE⊥ AD于 E, CF⊥ AD于 F,且 BE=CF,那么 BD与 CD相等吗?为什么? 证明:∵ BE⊥ AD, CF⊥ AD(已知) ∴∠ BED=∠ CFD= 900 (垂直的定义) 在△ BDE和△ CDF中
A
B
3、如图,△ABC是等腰三角形,AD、BE分 别是∠BAC、∠ABC的角平分线,△ABD和 △BAE全等吗?试说明理由?
思考:如果两个三角形有两个角和其 中一个角的对边分别对应相等,那么 这两个三角形是否全等?
A A′
B
C B′
C′
动脑筋
△ ABC =BC ,∠A=∠A′,∠B=∠B′. 求证:△ABC和 是全等三角形 在△ABC和 △ ABC 中,
B
A
E
图3-35
C
D
证明:
图3-35
练习
1.如图3-37,观察图中的三角形.小强说:“图 中有两个三角形全等.”你认为小强的判断对吗? 请说明理由.
证明:
图3-37
例2 如图3-39中,已知BE//DF,∠B=∠D,
AE=CF.求证:△ADF≌△CBE.
证明:
图3-39
2.要使下列各对三角形全等,需要增加什 么条件? (1) (2)
4、判定定理:
如果两个三角形有两个角及其夹边分别 对应相等,那么这两个三角形全等。简 记为A.S.A.(或角边角)

14.2全等三角形的判定(2)

14.2全等三角形的判定(2)
14.2 三角形全等的判定(2)
复习导入:
1.什么叫全等三角形? 2.三角形全等的判定方法1的内容是什么?
学习目标:
1.理解并掌握三角形全等的判定方法2, 即“ASA”。
2.会运用“ASA”证明两三角形全等。
自学提纲:
1.已知两角和夹边时,三角形的形状、大小
能确定吗?你能通过画图来验证吗?
2.判定两个三角形全等的方法2的内容是什 么?
F
证明:∵ AF∥DE(已知)
∴∠A=∠D(两直线平行,内错角相等)
∵AC=BD(已知)
∴AC-BC=BD-BC(等式的性质)
即AB=DC ∵ BF∥CE(已知)
A
B
C
D
∴∠FBC=∠ECB(两直线平行,内错角相等)
∵∠ABF+∠FBC=180°, ∠DCE+∠ECB=180° (平角定义)
∴ ∠ABF= ∠DCE (等角的补角相等) E
∠ABC+∠4 =180° (平角定义)
D
又∵ ∠3=∠4 (已知)
A 1 B3
2
4
∴ ∠ABD =∠ABC (等角的补角相 在△ABD和△ABC中,
C
∵ 1 2 (已知)
AB
AB (公共边)
ABD ABC(已证)
∴ △ABD≌△ABC (ASA)
∴ DB=CB (全等三角形对应边相等).
例4 已知:如图,要测量河对岸相对的两点A、B之间 的距离,可以在AB的垂线BF上取两点C、D,使BC=CD,再 过点D作BF的垂线DE,使点A、C、E在一条直线上,这时 测得DE的长等于AB的长,请说明理由。
3.课本101页例3证明两条线段相等的方法是 什么?
4.例4中测量方法和理由是什么?

12.2三角形全等的判定_第(2)课时SAS

12.2三角形全等的判定_第(2)课时SAS
一边 两边
三角
(3)三个条件 三边 两边一角
两角一边
8cm
8cm
满足下列条件的两个三角形是一定否全等:
(1)一个条件
一边
(2)两个条件
× 只有一个条件对应相等的 一角 × 两个三角形不一定全等。 一边一角 × 只有两个条件对应相 两角 × 等的两个三角形不一 两边 × 定全等。
三角
三边 两边一角 两角一边
1. 三角形全等的判定2:
两边和它们的夹角对应相等的两个三 角形全等。 (边角边或SAS)
2. 求证两个三角形中的边或角相等时, 一般要先证明这两个三角形全等。
证明三角形全等的过程
1、准备条件
2、指明范围
3、摆齐根据
4、写出结论
课堂小测

课本39页练习1.、2。
作业

1.课本43页练习第2题; 2.课本44页第10题
112.2 三角形全等的判定(2)
---边角边公理“SAS”
满足下列条件的两个三角形是否一定全等:
(1)一个条件
一边 一角 一边一角
(2)两个条件
两角
两边 三角
(3)三个条件
三边 两边一角
两角一边
8cm
8cm
满足下列条件的两个三角形是否一定全等:
(1)一个条件
一边 一角 一边一角 两角 两边
×
两角一边
8cm
8cm
满足下列条件的两个三角形是否一定全等:
一个条件 一边 一角
× ×
只有一个条件对应相等的 两个三角形不一定全等。
只有两个条件对应相 等的两个三角形不一 定全等。
两个条件
一边一角 × 两角 × 两边 × 三角 × 三边 两边一角 两角一边

三角形全等的判定(角边角)课件 (二)

三角形全等的判定(角边角)课件 (二)
61°
70°
20
10
47° 10 61° 20 47° 27°
70° 83°

(1)
5 72° 60° 48° 48°

108° 108°
(2)
48° 5
60°
(3)
×

(4)
我解题,我选择
在△ABC 和△A′B ′C ′中 ∠A = ∠A′ AB = A′B ′
A
(已知)
(已知)
) ASA
B A′



如果只需拿一块破碎玻璃,你会选择 拿一块呢?
已知△ABC是任意一个三角形,画△A ′B′C ′使
A ′ B ′ =AB , ∠A ′ = ∠A , ∠B′ = ∠B
N M
C
A
B
A′
B′
画法: 1. 画线段A ′ B ′ = AB
想 一 想
2.在A ′ B ′ 的同旁,分别以A ′ 、 B ′为顶点画 ∠M A ′ B ′ = ∠ A,∠N B ′ A ′= ∠ B , A ′M 、 B ′ N交于点C ′, 得△ A ′B′C ′ 由上面的画图过程 你能否总结出判定三角形全等的方法?
*
x
*
x
( 2 ) BC=BD ∠CBA= ∠DBA(SAS)
C A
B
D
生活中的数学
内有学生出入

一个小朋友看见了,一个箭步走上去,小心 翼翼的拾起它,自言自语地说:“天啊,不 能没有这个三角形警示牌啊,如果以后来往 的司机不知道这儿有学生出入,急速驾驶的 汽车会伤害老师和学生的。我必须马上去订 做一块一样大的三角形玻璃。现在这块三 角形玻璃警示牌已经撞成三块了,我将拿哪 一块去买一块同样大的警示牌呢?”这个小 朋友左思右想,你会帮他出出主意吗?不妨 试一试吧。三块玻璃如图所示:

全等三角形判定二

全等三角形判定二

两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA ”). 【例】已知:如图点D 在AB 上,点E 在AC 上,AB AC B C =∠=∠,.求证:AD AE =.EDCB A分析:AD 和AE 分别在ADC △和AEB △中,所以要证AD AE =,只需证明ADC AEB ≌△△即可. 证明:在ADC △和AEB △中,A AAC AB C B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ADC AEB ≌△△ ()ASA ∴AD AE =.问题:①在一个三角形中,两角确定,第三个角一定确定,对吗?为什么?②可不可以不作图,用“ASA ”推出“两角和其中一角的对边对应相等的两三角形全等”呢?如图,在ABC △和DEF △中,A D B E BC EF ∠=∠∠=∠=,,,ABC △与DEF △全等吗?能利用角边角条件证明你的结论吗?全等三角形判定(二)新知学习FED CBA证明:∵180A B C D E F ∠+∠+∠=∠+∠+∠=︒ A D B E ∠=∠∠=∠,∴A B D E ∠+∠=∠+∠∴C F ∠=∠在ABC △和DEF △中 B EBC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC DEF ≌△△ ()ASA两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”).【例1】在ABC △和A B C '''△中,A A'BC B'C'∠=∠=,,C C'∠=∠,则ABC △与'''A B C △ .【例2】如图,点CF 在BE 上,ACB DFE BC EF ∠=∠=,,请补充一个条件,使ABC DEF ≌△△,补充的条件是 .F EDC B A【例3】如图,已知MB ND =,MBA NDC ∠=∠,下列条件不能判定是ABM CDN ≌△△的是( )A .M N ∠=∠ B. AB CD =C .AM CN = D. AM CN ∥MNDC B A基础演练【例4】如图,90E F ∠=∠=︒,B C AE AF ∠=∠=,,给出下列结论:①CAD BAD ∠=∠ ②BE CF = ③ACN ABM ≌△△ ④CD DN =其中正确的结论是_________ _________NMFEDCB A【例5】如图,在ABC △和DCB △中,AB DC =,要使ABO DCO ≌△△,请你补充条件________________(只填写一个你认为合适的条件).ODC BA【例6】如图,已知A C ∠=∠,AF CE =,DE BF ∥,求证:ABF CDE ≌△△. FEDCBA【例7】如图,CD AB ⊥,BE AC ⊥,垂足分别为D E 、,BE 交CD 于F ,且AD DF = 求证:AC BF =FEDC BA【例8】已知:如图,AD AE =,ACD ABE ∠=∠求证:BD CE =.ED CB A【例9】如图,在t R ABC △中,AB AC =,90BAC ∠=︒,过点A 的任一直线AN ,BD AN ⊥于D ,BD AN ⊥于E ,求证:DE BD CE =-【例10】已知:如图,C D BAC ABD ∠=∠∠=∠,求证:OC OD =ODCBAN EDCBA【例11】如图,已知:AB CD =,AD BC =,O 是BD 中点,过O 点的直线分别交DA 和BC 的延长线于E F ,.求证:AE CF =.FOEDCBA斜边与一直角边对应相等的两个直角三角形全等.(HL ) 【例】已知:如图,AB BD ⊥,CD BD ⊥,AD BC =,求证:AB CD =.DBCA证明:∵AB BD ⊥,CD BD ⊥ ∴ABD CDB ∠=∠在Rt ABD △与Rt CDB △中 AD CBBD BD=⎧⎨=⎩ ∴Rt ABD Rt CDB ≌△△ ()HL ∴AB CD =【习题1】如图,已知321∠=∠=∠,AB AD =.求证:BC DE =.新知学习课后练习321O EDCBA【习题2】已知:如图,AB CD ∥,AE CF =求证:AB CD =OFEDCBA【习题3】如图,已知:BE CD =,B C ∠=∠,求证:12∠=∠21OED CBA【习题4】如图,ABC △中,D 是BC 上一点,DE AB ⊥,DF AC ⊥,E F 、分别为垂足,且AE AF =,求证:DE DF =,AD 平分BAC ∠.21FEDBA【习题5】如图,在ABC △中,D 是BC 的中点,DE AB ⊥,DF AC ⊥,垂足分别是E F 、,且DE DF =, 证明:AB AC =.FEDCBA【习题6】如图,AB CD=,DF AC⊥于F,BE AC⊥于E,DF BE=,求证:AF CE=.F EDCBA至此,我们有六种判定三角形全等的方法:1.全等三角形的定义2.判定定理边边边()SSS边角边()SAS角边角()ASA角角边()AAS HL(仅用在t R△中)推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.知识总结。

数学人教版八年级上册12.2三角形全等的判定定理2(SAS).2 三角形全等的判定

数学人教版八年级上册12.2三角形全等的判定定理2(SAS).2 三角形全等的判定

A
A
B 图一 在图一中, ∠A 是AB和AC的夹角, 符合图一的条件,它可称为 “两边夹角”。
C
B
图二
C
符合图二的条件, 通常 说成“两边和其中一边的对角”
探索边角边
已知△ABC,画一个△A′B′C′使A B =A′B′,A C =A′ C ′, ∠A =∠A′。
画法: 1.画 ∠DA′ E= ∠A; ′ 2.在射线A D上截取A′ B′ =AB,在射线A′ E上截 取A ′C ′=AC; C C′ 3. 连接B ′C′.
补充题:
例1 如图AC与BD相交于点O, 已知OA=OC,OB=OD,说明 △AOB≌△COD的理由。 A B
O
D C C D
例2 如图,AC=BD, ∠CAB= ∠DBA,你能判断 BC=AD吗?说明理由。
A B 归纳:判定两条线段相等或二个角相等可以通 过从它们所在的两个三角形全等而得到。
课堂小结:
A B A′ B′ D
思考: ① △A′ B′ C′ 与 △ABC 全等吗?如何验正? 思考: ②这两个三角形全等是满足哪三个条件? 结论:两边及夹角对应相等的两个三角形全等
三角形全等判定方法2
两边和它们的夹角对应相等的两个三角形全
等。(可以简写成“边角边”或“ SAS ” )
用符号语言表达为:
A D
B
1
那么量出ED的长,就是A、B的 距离.为什么?【要求学生写出 理由即证明过程】
C
2
E
D
例2:点E、F在AC上,AD//BC,AD=CB,AE=CF
求证(1)△AFD≌△CEB
A 分析:证三角形全等的三个条件 边 AD = CB (已知) 角 ∠A=∠ 边 C AF = CE E F C D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.2 三角形全等的条件(二)
创设情景
A
B
因铺设电线的需要,要在 池塘两侧A、B处各埋设一根 电线杆(如图),因无法直 接量出A、B两点的距离,现 有一足够的米尺。怎样测出A、 B两杆之间的距离呢?。
知识回顾
三边对应相等的两个三角形全等(可以简写 为“边边边”或“SSS”)。 用 数学语言表述:
C F
A 40°
B
D
40°
E
结论:两边及其一边所对的角相等,两
个三角形不一定全等
猜一猜: 是不是二条边和一个角对应相等,这样的两 个三角形一定全等吗?你能举例说明吗? 如图△ABC与△ABD中, AB=AB,AC=BD, ∠B=∠B 他们全等吗?
B C D
A
注:这个角一定要是这两边所夹的角
课堂小结:
AC=DC ∠ACB=∠DCE BC=EC △ACB≌△DCE AB=DE
小明做了一个如图所示的风筝,其中 ∠EDH=∠FDH, ED=FD ,将上述条件标注 在图中,小明不用测量就能知道EH=FH吗? 与同桌进行交流。
D E F
H
△EDH≌△FDH 根据“SAS”,所 以EH=FH
探究2
以3cm,5cm为三角形的两边,长度为 5cm的边所对的角为40° ,情况又怎样? 动手画一画,你发现了什么?
D
E
B
C
三个角对应相等的两个三角形不一定全等
探究2
做一做:画△ABC,使AB=3cm,AC=4cm。 这样画出来的三角形与同桌所画的三角形 进行比较,它们互相重合吗? 若再加一个条件,使∠A=45°,画出△ABC
画法: 1. 画∠MAN= 45° 2. 在射线AM上截取AB= 3cm
3. 在射线AN上截取AC=4cm 4.连接BC ∴△ABC就是所求的三角形 把你们所画的三角形剪下来与同桌所画的三角 形进行比较,它们能互相重合吗?
A
B C
D
练习 (2) 已知:AD=CD, BD 平分∠ ADC 。 问∠A=∠ C 吗?
A B C
D
补充题:
例1 如图AC与BD相交于点O, 已知OA=OC,OB=OD,说明 △AOB≌△COD的理由。 A B
O
D C C D
例2 如图,AC=BD, ∠CAB= ∠DBA,你能判断 BC=AD吗?说明理由。
A
分析: △ ABD ≌△ CBD
边: AB=CB(已知) (SAS)
B
D
角: ∠ABD= ∠CBD(已知) 边:
C

现在例1的已知条件不改变,而问题改 变成:
问AD=CD,BD平分∠ADC吗?
例题 推广
已知:如图, AB=CB ,∠ ABD= ∠ CBD 。
问AD=CD, BD 平分∠ ADC 吗?
300
5㎝
C F
三角形全等判定方法2
两边和它们的夹角对应相等的两个三 角形全等。简写成“边角边”或“SAS” 用符号语言表达为: 在△ABC与△DEF中 AB=DE
A
∠B=∠E BC=EF
B
C
D
∴△ABC≌△DEF(SAS)
E
F
例1
已知:如图, AB=CB ,∠ ABD= ∠ CBD △ ABD 和△ CBD 全等吗?
A
在△ABC和△ DEF中 AB=DE BC=EF CA=FD ∴ △ABC ≌△ DEF(SSS)
B
C
D
E
F
探1
对于三个角对应相等的两个三角形全等吗? A 如图, △ABC和△ADE中, 如果 DE∥AB,则 ∠A=∠A,∠B=∠ADE, ∠C= ∠ AED,但△ABC 和△ADE不重合,所以不 全等。
问:如图△ABC和△ DEF 中,
AB=DE=3 ㎝,∠ B=∠ E=300 , BC=EF=5 ㎝
则它们完全重合?即△ABC≌△ DEF ? A 3㎝ B
300
D 3㎝
300
5㎝
CE
5㎝
F
问:如图△ABC和△ DEF 中,
AB=DE=3 ㎝,∠ B=∠ E=30°, BC=EF=5 ㎝
则它们完全重合?即△ABC≌△ DEF ? A D 3㎝ B E
A B 归纳:判定两条线段相等或二个角相等可以通 过从它们所在的两个三角形全等而得到。
探究新知
A
B
因铺设电线的需要,要在 池塘两侧A、B处各埋设一根 电线杆(如图),因无法直 接量出A、B两点的距离,现 有一足够的米尺。请你设计 一种方案,粗略测出A、B两 杆之间的距离。。
小明的设计方案:先在池塘旁取一 个能直接到达A和B处的点C,连结AC并 延长至D点,使AC=DC,连结BC并延长 至E点,使BC=EC,连结CD,用米尺测 出DE的长,这个长度就等于A,B两点的 距离。请你说明理由。
1. 三角形全等的条件,两边和它们的夹角对应相等的两 个三角形全等 (边角边或SAS) 2. 用尺规作图:已知两边及其夹角的三角形画三角 形 3、会判定三角形全等
作业
• 1、P43 2 3 10 • 2、《名师学案》
相关文档
最新文档