c语言冒泡法详解

合集下载

C语言链表实现冒泡法排序

C语言链表实现冒泡法排序

C语⾔链表实现冒泡法排序功能是:从键盘输⼊字符以空格隔开当输⼊q或者Q时按回车表⽰输⼊结束先放出main函数int main(){MyNode *myNode = (MyNode *)malloc(sizeof(MyNode));if (NULL == myNode) {return 0;}getNum(myNode);sortList(myNode);printStr(myNode);freeStr(myNode);return 0;}然后就结构体#include <stdio.h>#include <stdlib.h>#include <string.h>typedef struct mynode{long value;struct mynode *next;}MyNode;最后是⼏个⽅法void getNum(MyNode *myNode){char s[20];printf("please input num and end with q/Q\n");scanf("%s", s);while ((strcmp(s, "q") != 0) && (strcmp(s , "Q") != 0)) {MyNode *temp = (MyNode *)malloc(sizeof(MyNode));if (NULL == temp) {return;}temp->value = strtol(s , 0, 0);temp->next = NULL;myNode->next = temp;myNode = myNode->next;scanf("%s", s);}}void printStr(MyNode *node){if (node == NULL) {return;}MyNode *temp = node;while (temp->next != NULL) {printf("%ld ", temp->next->value);temp = temp->next;}}void sortList(MyNode *node){if (NULL == node) {return;}MyNode *startP = node->next;MyNode *nextP = node->next;while (startP->next != NULL) {nextP = startP->next;while (nextP->next != NULL) {if (startP->next->value > nextP->next->value) { long temp = startP->next->value;startP->next->value = nextP->next->value; nextP->next->value = temp;}nextP = nextP->next;}startP = startP->next;}}void freeStr(MyNode *node){if (NULL == node) {return;}MyNode *old = NULL;while (node != NULL) {printf("d\n");old = node;node = node->next;free(old);}}。

c++冒泡排序法经典代码

c++冒泡排序法经典代码

c 冒泡排序法经典代码冒泡排序是一种简单的排序算法。

它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。

遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

以下是一个用C语言实现的冒泡排序算法的经典代码:```c#include <stdio.h>void bubbleSort(int array[], int size) {for (int step = 0; step < size - 1; ++step) {for (int i = 0; i < size - step - 1; ++i) {if (array[i] > array[i + 1]) {// 交换元素如果前一个元素大于后一个int temp = array[i];array[i] = array[i + 1];array[i + 1] = temp;}}}}// 在主函数中打印排序后的数组void printArray(int array[], int size) {for (int i = 0; i < size; ++i) {printf("%d ", array[i]);}printf("\n");}int main() {int data[] = {-2, 45, 0, 11, -9};int size = sizeof(data) / sizeof(data[0]);bubbleSort(data, size);printf("Sorted Array in Ascending Order:\n");printArray(data, size);}```以上代码中,`bubbleSort`函数用于执行冒泡排序,`printArray`函数用于打印排序后的数组。

在主函数`main`中,我们首先定义了一个待排序的数组,然后计算了数组的大小,然后调用`bubbleSort`函数进行排序,最后调用`printArray`函数打印排序后的数组。

沉底法冒泡法c语言

沉底法冒泡法c语言

沉底法冒泡法c语言全文共四篇示例,供读者参考第一篇示例:沉底法和冒泡法是两种常用的排序算法,它们都是基于比较的算法。

在C语言中,可以通过编写相应的代码来实现这两种排序算法。

下面将介绍沉底法和冒泡法的原理和实现方式。

一、沉底法(也称为选择排序)沉底法的原理很简单:依次从未排序的元素中选择最小(或最大)的元素,放到已排序序列的末尾。

具体的实现方式可以通过以下的伪代码来描述:1. 从数组的第一个元素开始,将其标记为已排序序列。

2. 从剩余未排序的元素中找到最小的元素,将其与已排序序列的末尾元素交换位置。

3. 将已排序序列的末尾向后移动一个位置,继续从剩余未排序的元素中找到最小的元素,重复以上步骤,直到所有元素都被排序。

以下是沉底法在C语言中的实现:```cvoid selectionSort(int arr[], int n) {int i, j, minIndex, temp;for (i = 0; i < n - 1; i++) {minIndex = i;for (j = i + 1; j < n; j++) {if (arr[j] < arr[minIndex]) {minIndex = j;}}temp = arr[i];arr[i] = arr[minIndex];arr[minIndex] = temp;}}```二、冒泡法冒泡法的原理是:比较相邻的元素,如果顺序不对则交换位置,直到没有需要交换的元素。

具体的实现方式可以通过以下的伪代码来描述:1. 从数组的第一个元素开始,依次比较相邻的两个元素。

2. 如果左侧的元素大于右侧的元素,则交换它们的位置。

3. 重复以上步骤,直到没有需要交换的元素。

通过以上的代码,我们可以很容易地实现沉底法和冒泡法。

这两种排序算法的时间复杂度都为O(n^2),对于小规模的数据量,它们都是比较有效的排序算法。

对于大规模的数据量,它们的效率相对较低。

c语言中冒泡法

c语言中冒泡法

c语言中冒泡法冒泡法是一种简单直观的排序算法,常被用于教学中。

它的实现过程简单易懂,算法效率较低,仅适合小规模数据排序。

下面我们就来深入了解一下什么是冒泡法,以及它的运作原理。

冒泡法排序可以用一个很形象的比喻来描述,在水中有很多气泡,气泡的大小不一,我需要从小到大排序将气泡排列好。

排列的方式就是在一次遍历中,将相邻的两个气泡进行大小的比较,将大的往后移动一位,一直遍历到最后,这样第一大的气泡就会“冒泡”到最后一位。

接着,再次遍历,只不过这一次不需要将最后一位参与比较,依次类推,最终完成排序。

在C语言中实现冒泡排序算法,需要先用数组来存储需要排序的数值,然后通过两重循环来实现。

外层循环控制遍历次数,内层循环进行相邻数值的比较并交换位置。

代码实现类似于下面:```cvoid bubble_sort(int arr[], int len){int i, j, temp;for (i = 0; i < len - 1; i++){for (j = 0; j < len - 1 - i; j++){if (arr[j] > arr[j + 1]){temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}}```冒泡排序算法的时间复杂度为O(n^2),因此效率较低。

但是,它的实现过程简单,易于理解,非常适合初学者学习排序算法。

同时,经过改进,冒泡排序算法也被广泛应用于其他领域,例如图像处理中的边缘检测。

总之,冒泡法虽然简单,但可以锻炼我们对算法的理解,增加对编程的把握。

具体算法实现可以根据实际情况进行不同的优化,达到更高的效率和效果。

C语言用函数冒泡排序

C语言用函数冒泡排序

C语言程序设计实验报告1实验目的1.透彻理解函数的概念。

2.掌握函数的定义方法。

3.了解函数地形参和实参之间的对应关系及“值传递”地方式。

4.了解函数的返回值的概念。

2实验内容写一主函数输入一数组,写一子函数实现对该数组的冒泡排序并输出。

输入数据:12,21,33,5,19,27,6,4,38,47,29,56,973算法描述流程图主函数:子函数bub:4源程序#include<stdio.h>int bub(int a[13]){int i,j,k;for(j=0;j<13;j++)for(i=0;i<13-j;i++){if(a[i]>a[i+1]){k=a[i+1];a[i+1]=a[i];a[i]=k;}}printf("排序好的数为;");for(i=0;i<13;i++)printf("%4d",a[i]);printf("\n");return 0;}void main(){int m[13],k;for(k=0;k<13;k++)scanf("%d",&m[k]);for(k=0;k<13;k++)printf("%4d",m[k]);printf("\n");bub(m);}5测试数据输入数据:12,21,33,5,19,27,6,4,38,47,29,56,97 6运行结果7出现问题及解决方法开始时不知道如何进行控制循环仅用一个for循环无法实现冒泡排序,只能找出最大值;用两个for循环。

8实验心得C语言在实践中更容易掌握。

c语言 冒泡算法

c语言 冒泡算法

c语言冒泡算法冒泡算法,又称为气泡排序,是一种简单的排序算法,可以按照升序或降序排列数据集。

它的基本思想是重复地访问数据集,比较相邻两个元素的大小,将较大或较小的元素不断地交换位置,直到整个数据集按照要求排列好为止。

下面,我们将详细介绍冒泡算法的实现步骤和时间复杂度等相关知识。

一、算法原理及流程1.算法原理:冒泡算法是一种比较简单的排序算法。

它的基本思路是从数据集的第一个元素开始,把相邻的两个元素进行比较,如果他们的顺序不对,则交换它们的位置,直到整个数据集都按照要求排序成为止。

冒泡排序有两种基本实现方法,分别是升序排序和降序排序。

在升序排序中,我们要把较小的元素不断地往前移动,直到它们在正确的位置上。

而在降序排序中,则需要把较大的元素往前移动,以达到正确的排序效果。

2.算法流程:冒泡排序的流程非常简单。

它可以用几个基本的步骤来描述,如下所示:1) 比较相邻元素。

如果第一个元素比第二个元素大(或小,根据排序要求而定),就交换它们的位置。

2) 对第一次排序以后的数据集按照第一步骤进行比较,并依次交换元素位置,直到整个数据集按照要求排序完成为止。

3.算法复杂度:冒泡排序的时间复杂度为O(n^2),其中n表示数据集的大小。

假设我们有n个元素要进行冒泡排序,每个元素都需要和其他n-1个元素进行比较,因此需要进行(n-1)+(n-2)+...+1=n*(n-1)/2次比较操作。

实际上,在最坏的情况下,冒泡排序还要进行n次交换操作,因此时间复杂度为O(n^2)。

二、C语言实现以下是使用C语言实现升序冒泡排序的代码:```c#include <stdio.h>#include <stdlib.h>#define N 10void BubbleSort(int a[N], int n){int i, j, temp;for (i = 0; i < n - 1; i++){for (j = 0; j < n - i - 1; j++){if (a[j] > a[j + 1]){temp = a[j];a[j] = a[j + 1];a[j + 1] = temp;}}}}BubbleSort(a, N);for (i = 0; i < N; i++)printf("%d ", a[i]);printf("\n");return 0;}```代码说明:1)定义常量N表示要排序的数据集大小,可以根据实际情况进行修改。

动画演示C语言冒泡排序算法精品PPT课件(绝对精品)

动画演示C语言冒泡排序算法精品PPT课件(绝对精品)
{ scanf("%d",&a[i]);
} for(j=0;j<=4;j++)
{ for(i=0;i<5-j;i++) {
if(a[i]>a[i+1]) { temp=a[i]; a[i]=a[i+1]; a[i+1]=temp; } }
} printf("排序后的数字是:"); for(i=0;i<=5;i++) printf("%3d",a[i]); }
进行(5-j)次比较
a[i]>a[i+1]


( a[i]a[i+1] )
输出a[0]到a[5]
语言程序设计——排序算法
情景导入 冒泡排序 编写程序 调试程序
#include<stdio.h> void main() {
int i,j,temp; int a[6]; printf("请输入6个数;\n"); for(i=0;i<=5;i++)
点击开始
语言程序设计——排序算法
情景导入 冒泡排序 编写程序 调试程序
算法思想 动画演示
第二趟比较
第二趟比较结束找到第二大数8,两两比较4次。
提出问题 填流程图
5 <7 >6 <8 >2 9
点击开始
语言程序设计——排序算法
情景导入 冒泡排序 编写程序 调试程序
算法思想 动画演示
第三趟比较
第三趟比较结束找到第三大数7,两两比较3次。
语言程序设计——排序算法
情景导入 冒泡排序 编写程序 调试程序

c语言几种数组排序方法

c语言几种数组排序方法

常用的c语言排序算法主要有三种即冒泡法排序、选择法排序、插入法排序。

一、冒泡排序冒泡排序:是从第一个数开始,依次往后比较,在满足判断条件下进行交换。

代码实现(以降序排序为例)#include<stdio.h>int main(){int array[10] = { 6,9,7,8,5,3,4,0,1,2 };int temp;for (int i = 0; i < 10; i++){//循环次数for (int j = 0; j <10 - i-1; j++){if (array[j] < array[j+1]){//前面一个数比后面的数大时发生交换temp = array[j];array[j] = array[j+1];array[j + 1] = temp;}}} //打印数组for (int i = 0; i < 10; i++) printf("%2d", array[i]); return 0;}}二、选择排序以升序排序为例:就是在指定下标的数组元素往后(指定下标的元素往往是从第一个元素开始,然后依次往后),找出除指定下标元素外的值与指定元素进行对比,满足条件就进行交换。

与冒泡排序的区别可以理解为冒泡排序是相邻的两个值对比,而选择排序是遍历数组,找出数组元素与指定的数组元素进行对比。

(以升序为例)#include<stdio.h>int main(){int array[10] = { 6,9,7,8,5,3,4,0,1,2 };int temp, index;for (int i = 0; i < 9; i++) {index = i;for (int j = i; j < 10; j++){if (array[j] < array[index])index = j;}if(i != index){temp = array[i]; array[i] = array[index]; array[index] = temp; }for(int i=0;i<10:i++) printf("%2d"array[i])return 0;}三、快速排序是通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最简单的排序方法是冒泡排序方法。
这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。
void doit(float* in,int count)
{
int x;
int y;
float temp;
for(y=0;y<count-1;y++)
{
for(x=1;x<count-y;x++)
{
if((*(in+x))>(*(in+x-1)))
{
temp=(*(in+x-1));
(*(in+x-1))=(*(in+x));
(2)改变扫描方向的冒泡排序
①冒泡排序的不对称性
能一趟扫描完成排序的情况:
只有最轻的气泡位于R[n]的位置,其余的气泡均已排好序,那么也只需一趟扫描就可以完成排序。
【例】对初始关键字序列12,18,42,44,45,67,94,10就仅需一趟扫描。
需要n-1趟扫描完成排序情况:
当只有最重的气泡位于R[1]的位置,其余的气泡均已排好序时,则仍需做n-1趟扫描才能完成排序。
(1)初始
R[1..n]为无序区。
(2)第一趟ቤተ መጻሕፍቲ ባይዱ描
从无序区底部向上依次比较相邻的两个气泡的重量,若发现轻者在下、重者在上,则交换二者的位置。即依次比较(R[n],R[n-1]),(R[n-1],R[n-2]),…,(R[2],R[1]);对于每对气泡(R[j+1],R[j]),若R[j+1].key<R[j].key,则交换R[j+1]和R[j]的内容。
冒泡排序的最坏时间复杂度为O(n2)。
(3)算法的平均时间复杂度为O(n2)
虽然冒泡排序不一定要进行n-1趟,但由于它的记录移动次数较多,故平均时间性能比直接插入排序要差得多。
(4)算法稳定性
冒泡排序是就地排序,且它是稳定的。
5、算法改进
上述的冒泡排序还可做如下的改进:
(1)记住最后一次交换发生位置lastExchange的冒泡排序
}
if(!exchange) //本趟排序未发生交换,提前终止算法
return;
} //endfor(外循环)
} //BubbleSort
4、算法分析
(1)算法的最好时间复杂度
若文件的初始状态是正序的,一趟扫描即可完成排序。所需的关键字比较次数C和记录移动次数M均达到最小值:
Cmin=n-1
Mmin=0。
在每趟扫描中,记住最后一次交换发生的位置lastExchange,(该位置之前的相邻记录均已有序)。下一趟排序开始时,R[stExchange-1]是有序区,R[lastExchange..n]是无序区。这样,一趟排序可能使当前有序区扩充多个记录,从而减少排序的趟数。具体算法【参见习题】。
【例】对初始关键字序列:94,10,12,18,42,44,45,67就需七趟扫描。
②造成不对称性的原因
每趟扫描仅能使最重气泡"下沉"一个位置,因此使位于顶端的最重气泡下沉到底部时,需做n-1趟扫描。
③改进不对称性的方法
在排序过程中交替改变扫描方向,可改进不对称性。
(2)具体算法
void BubbleSort(SeqList R)
{ //R(l..n)是待排序的文件,采用自下向上扫描,对R做冒泡排序
int i,j;
Boolean exchange;//交换标志
for(i=1;i<n;i++){ //最多做n-1趟排序
exchange=FALSE;//本趟排序开始前,交换标志应为假
第一趟扫描完毕时,"最轻"的气泡就飘浮到该区间的顶部,即关键字最小的记录被放在最高位置R[1]上。
(3)第二趟扫描
扫描R[2..n]。扫描完毕时,"次轻"的气泡飘浮到R[2]的位置上……
最后,经过n-1趟扫描可得到有序区R[1..n]
注意:
第i趟扫描时,R[1..i-1]和R[i..n]分别为当前的有序区和无序区。扫描仍是从无序区底部向上直至该区顶部。扫描完毕时,该区中最轻气泡飘浮到顶部位置R[i]上,结果是R[1..i]变为新的有序区。
for(j=n-1;j>=i;j--) //对当前无序区R[i..n]自下向上扫描
if(R[j+1].key<R[j].key){//交换记录
R[0]=R[j+1];//R[0]不是哨兵,仅做暂存单元
R[j+1]=R[j];
R[j]=R[0];
exchange=TRUE;//发生了交换,故将交换标志置为真
2、冒泡排序过程示例
对关键字序列为49 38 65 97 76 13 27 49的文件进行冒泡排序的过程
3、排序算法
(1)分析
因为每一趟排序都使有序区增加了一个气泡,在经过n-1趟排序之后,有序区中就有n-1个气泡,而无序区中气泡的重量总是大于等于有序区中气泡的重量,所以整个冒泡排序过程至多需要进行n-1趟排序。
若在某一趟排序中未发现气泡位置的交换,则说明待排序的无序区中所有气泡均满足轻者在上,重者在下的原则,因此,冒泡排序过程可在此趟排序后终止。为此,在下面给出的算法中,引入一个布尔量exchange,在每趟排序开始前,先将其置为FALSE。若排序过程中发生了交换,则将其置为TRUE。各趟排序结束时检查exchange,若未曾发生过交换则终止算法,不再进行下一趟排序。
(*(in+x))=temp;
}
}
}
}
冒泡排序的算法分析与改进
交换排序的基本思想是:两两比较待排序记录的关键字,发现两个记录的次序相反时即进行交换,直到没有反序的记录为止。
应用交换排序基本思想的主要排序方法有:冒泡排序和快速排序。
冒泡排序
1、排序方法
将被排序的记录数组R[1..n]垂直排列,每个记录R[i]看作是重量为R[i].key的气泡。根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R:凡扫描到违反本原则的轻气泡,就使其向上"飘浮"。如此反复进行,直到最后任何两个气泡都是轻者在上,重者在下为止。
冒泡排序最好的时间复杂度为O(n)。
(2)算法的最坏时间复杂度
若初始文件是反序的,需要进行n-1趟排序。每趟排序要进行n-i次关键字的比较(1≤i≤n-1),且每次比较都必须移动记录三次来达到交换记录位置。在这种情况下,比较和移动次数均达到最大值:
Cmax=n(n-1)/2=O(n2)
Mmax=3n(n-1)/2=O(n2)
相关文档
最新文档