弹塑性力学学习体会
弹力主题课程心得体会(2篇)

第1篇一、引言弹力,这个看似简单的物理概念,却蕴含着丰富的科学内涵和实用价值。
在参加了一段时间的弹力主题课程后,我对弹力有了更加深入的理解和认识。
以下是我对弹力主题课程的心得体会。
二、课程内容概述弹力主题课程主要包括以下内容:1. 弹力的基本概念:通过学习,我们了解了弹力的定义、产生条件、作用效果等基本知识。
2. 弹性力学原理:学习了胡克定律、泊松比等弹性力学的基本原理,了解了弹性体在受力时的变形规律。
3. 弹性材料:了解了各种弹性材料的特点、应用领域和性能指标。
4. 弹力在实际工程中的应用:学习了弹力在桥梁、建筑、机械等领域的应用,了解了弹力在工程中的重要性。
5. 弹力测试与测量:学习了弹力测试的基本原理、方法和技术,了解了如何对弹力进行准确测量。
三、心得体会1. 弹力的普遍性通过学习弹力主题课程,我深刻认识到弹力在自然界和人类生活中的普遍性。
无论是生活中的弹簧、橡皮筋,还是工程中的桥梁、建筑,弹力都扮演着重要的角色。
了解弹力的基本原理,有助于我们更好地认识和利用这一自然现象。
2. 弹力与力的平衡在课程中,我们学习了胡克定律和泊松比等弹性力学原理,了解了弹力与力的平衡关系。
这使我认识到,在处理实际问题时应充分考虑力的平衡,确保结构的安全性和稳定性。
3. 弹性材料的选择与应用弹性材料在工程中具有广泛的应用,了解各种弹性材料的特点和性能,有助于我们在实际工程中选择合适的材料。
通过学习,我了解到不同弹性材料在力学性能、耐久性、加工工艺等方面的差异,为今后的工作积累了宝贵经验。
4. 弹力测试与测量技术在课程中,我们学习了弹力测试的基本原理和方法,了解了如何对弹力进行准确测量。
这对于工程实践具有重要意义,可以确保结构安全、提高工程质量。
5. 弹力在实际工程中的应用通过学习,我了解到弹力在桥梁、建筑、机械等领域的应用。
例如,桥梁的弹性变形可以减小车辆行驶时的振动,提高行驶舒适度;建筑中的弹性隔震装置可以降低地震对建筑物的破坏程度。
弹性力学课程总结

弹塑性力学课程学习总结弹塑性力学主要是对物体在发生变形时进行的弹性力学和塑性力学分析,由于塑性力学比较复杂,发展还不够完善,所以以弹性力学为主要内容。
下面是对本课程的学习总结。
弹性力学是固体力学的重要分支,它研究物体在外力和其它外界因素作用下产生的弹性变形和内力。
它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。
塑性力学研究的是物体发生塑性变形时的应力和应变。
物体变形包括弹性变形与塑性变形。
在外力作用下产生形变车去外力可以恢复原状是塑性变形;当外力达到一定值后,撤去外力,不再恢复原状是塑性变形。
当外力由小到大,物体变形由弹性变为弹塑性最后变为塑性直至破坏。
弹性变形是应力与应变一一对应。
主要任务是研究物体弹塑性的本构关系和荷载作用下物体内任一点应力变形。
为了便于研究我们常需要做一些假设,弹塑性力学的假设为:1、均匀连续性假设2、材料的弹性性质对塑性变形无影响3、时间对材料性质无影响4、稳定材料,荷载缓慢增加5、小变形假设。
弹性力学在研究对象上与材料力学和结构力学之间有一定的分工。
材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。
在材料力学和结构力学中主要是采用简化的可用初等理论描述的数学模型;在弹性力学中,则将采用较准确的数学模型。
有些工程问题(例如非圆形断面柱体的扭转,孔边应力集中,深梁应力分析等问题)用材料力学和结构力学的理论无法求解,而在弹性力学中是可以解决的。
有些问题虽然用材料力学和结构力学的方法可以求解,但无法给出精确可靠的结论,而弹性力学则可以给出用初等理论所得结果可靠性与精确度的评价。
弹性力学包括平面问题,空间问题,柱体扭转,能量原理,虚功原理和有限元法等。
在研究过程中,需要列出基本方程,空间问题有15个基本方程,包括平衡方程,物理方程,变形协调方程和边界条件。
工程弹塑性力学引论读书札记

《工程弹塑性力学引论》读书札记目录一、内容概述 (2)1.1 书籍简介 (3)1.2 作者介绍 (4)1.3 研究背景与意义 (5)二、基本概念与理论 (5)2.1 弹性力学基本方程 (7)2.2 塑性力学基本原理 (8)2.3 弹塑性力学分析方法 (9)三、工程弹塑性力学应用 (11)3.1 结构分析 (13)3.1.1 建筑结构 (15)3.1.2 桥梁工程 (15)3.1.3 机械工程 (17)3.2 材料加工 (18)3.3 土木工程 (19)四、工程弹塑性力学发展历程 (20)4.1 国外发展概况 (22)4.2 国内发展概况 (24)4.3 研究趋势与挑战 (25)五、结论与展望 (26)5.1 主要成果总结 (27)5.2 存在问题与不足 (28)5.3 未来研究方向与应用前景 (29)一、内容概述本书共分为七章,主要围绕工程中广泛关注的弹塑性力学问题展开。
第一章为引论,简要介绍了弹塑性力学的产生背景、研究意义和基本概念,为后续章节的深入学习奠定了基础。
在第一章中,作者首先阐述了弹塑性力学的产生背景和研究意义。
弹塑性力学作为经典力学的一个重要分支,在工程领域具有广泛的应用,特别是在结构分析和设计中。
通过学习弹塑性力学,工程师可以更好地了解材料的非线性行为,从而优化结构设计,提高产品的性能和安全性。
作者介绍了弹塑性力学中的基本概念,包括应力、应变、塑性变形、弹性变形等。
这些概念是理解弹塑性力学的基础,对于后续的学习至关重要。
作者还通过实例和图表等形式,帮助读者更好地理解和掌握这些概念。
在第一章中,作者还介绍了弹塑性力学的研究方法和应用领域。
弹塑性力学的研究方法包括理论推导、数值模拟和实验验证等,这些方法在工程实践中具有重要的指导意义。
作者还通过案例分析等形式,展示了弹塑性力学在实际工程中的应用价值。
第一章为读者提供了弹塑性力学的整体框架和基础知识,有助于读者更好地理解和学习这门课程。
塑性力学总结

塑性力学大报告1、绪论1.1 塑性力学的简介尽管弹塑性理论的研究己有一百多年,但随着电子计算机和各种数值方法的快速发展,对弹塑性本构关系模型的不断深入认识,使得解决复杂应力条件、加载历史和边界条件下的塑性力学问题成为可能。
现在复杂应力条件下塑性本构关系的研究,已成为当务之急。
弹塑性本构模型大都是在整理和分析试验资料的基础上,综合运用弹性、塑性理论建立起来的。
建立弹塑性材料的本构方程时,应尽量反映塑性材料的主要特性。
由于弹塑性变形的现象十分复杂,因此在研究弹塑性本构关系时必须作一些假设。
塑性力学是研究物体发生塑性变形时应力和应变分布规律的学科.是固体力学的一个重要分支。
塑性力学是理论性很强、应用范围很广的一门学科,它既是基础学科又是技术学科。
塑性力学的产生和发展与工程实践的需求是密不可分的,工程中存在的实际问题,如构件上开有小孔,在小孔周边的附近区域会产生“应力集中”现象,导致局部产生塑性变形;又如杆件、薄壳结构的塑性失稳问题,金属的压力加工问题等,均是因为产生塑性变形而超出了弹性力学的范畴,需要用塑性力学理论来解决的问题,另一方面,塑性力学能为更有效的利用材料的强度并节省材料、金属压力加工工艺设计等提供理论依据。
正是这些广泛的工程实际需要,促进了塑性力学的发展。
1.2 塑性力学的发展1913年,Mises提出了屈服准则,同时还提出了类似于Levy的方程;1924年,Hencky采用Mises屈服准则提出另一种理论,用于解决塑性微小变形问题很方便;1926年,Load证实了Levy-Mises应力应变关系在一级近似下是准确的;1930年,Reuss依据Prandtl的观点,考虑弹性应变分量后,将Prandtl所得二维方程式推广到三维方程式;1937年,Nadai研究了材料的加工硬化,建立了大变形的情况下的应力应变关系;1943年,伊柳辛的“微小弹塑性变形理论”问世,由于计算方便,故很受欢迎;1949年,Batdorf和Budiansky从晶体滑移的物理概念出发提出了滑移理论。
弹塑性力学读书报告

弹塑性力学在土力学方面的应用1.土的弹塑性性质传统的弹塑性理论认为,材料的全变形过程包括弹性变形和弹塑性变形两个阶段。
在加载过程中,随着应力的增加,材料除了会出现弹性变形,还会有塑性变形,且弹性变形的应力范围不断加大,这也就是所谓的塑性硬化。
一般认为,塑性硬化的过程不会改变卸载时的弹性性质,称为弹塑性的非耦合性。
且当材料反向受力时,不会出现包辛克效应,即不会产生于正向不同的塑性变形或塑性硬化。
但是,岩土材料具有不同于金属材料的一些性质,如岩土材料有时表现出极低的弹性区,屈服极限不明显;岩土除了塑性硬化之外,还可能出现塑性软化;岩土还具有弹塑性耦合性质,会出现包辛克效应等。
以上这些性质也就要求岩土的弹塑性理论要比传统的理论考虑更多的问题,要求我们就要考虑传统弹塑性的理论基础,又要考虑岩土材料的特殊性质。
2.土的弹塑性理论弹塑性理论都是采用增量法,建立应力增量与应变增量之间的关系,以适应和描述应力—应变发展的非线性规律。
在一定应力条件下,由应力的变化所引起的应变增量可以分解为弹性应变增量和塑性应变增量。
其表达式可以写成:p e d d d εεε=+ (1)式中况分别表示弹性和塑性情、p e 。
对于弹性应变部分,可以有弹性理论的应力—应变关系求出。
而对于塑性应变部分,可需要塑性理论来解决。
在应用塑性理论前,首先需要对塑性应变的标准、产生条件、应变方向、应变大小和应变发展变化的规律有一定的认识。
1)塑性判断标准。
塑性判断标准常用德鲁克公设(如图1)或依留申公设(如图2)。
德鲁克公设认为,一个盈利循环所做的功大于零才有塑性应变。
依留申公设认为,一个应变循环中所做的功大于零才有塑性应变。
图1 德鲁克公设 图2 依留申公设2)屈服条件。
塑性应变产生的条件称为屈服条件。
它是材料所受应力增大时由弹性状态到塑性状态的过渡应力条件,也是材料开始产生塑性应变时应力或者应变必须满足的条件。
这个条件在应力空间中代表一个包括无应力状态的封闭曲面,称为屈服面。
岩土塑性力学读书报告

岩土塑性力学读书报告本学期我们学习了弹塑性力学这一课程,在刘老师的讲解和自学的过程中学习到了不少弹塑性力学的基础知识。
我们是岩土工程专业的学生,弹塑性力学知识相当重要,是后续课程的基础,由于专业的实用性,我们阅读了郑颖人、孔亮编著的《岩土塑性力学》一书。
这本书将不少弹塑性力学的基础知识运用到岩土工程中,从弹塑性力学的角度来理解岩土这种特殊介质的力学性质,阅读之后让我受益匪浅。
以下是我阅读本书后的一些总结。
一、岩土材料的特点岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。
岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。
正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。
归纳起来,岩土材料有3点基本特性:1.摩擦特性。
2.多相特性。
3.双强度特性。
另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。
4.土体的塑性变形依赖于应力路径。
二、岩土塑性力学的基本假设由于塑性变形十分复杂,因此无论传统塑性力学还是岩土塑性力学都要做一些基本假设,只不过岩土塑性力学所做的假设条件比传统塑性力学少些,这是因为影响岩土材料塑性变形的因素较多,而且这些因素不能被忽视和简化。
下列两点假设不论是传统塑性力学还是广义塑性力学都必须服从:(1)忽略温度与实践影响及率相关影响的假设。
(2)连续性假设。
岩土塑性力学与传统塑性力学不同点:(1)岩土材料的压硬性决定了岩土的剪切屈服与破坏必须考虑平均应力和岩土材料的内摩擦。
(2)传统塑性力学只考虑剪切屈服,而岩土塑性力学不仅要考虑剪切屈服,还要考虑体积屈服。
(3)根据岩土的剪胀性,不仅静水压力可能引起塑性体积变化,而且偏应力也可能引起体积变化;反之,平均应力也可能引起塑性剪切变形。
(4)传统塑性力学中屈服面是对称的,而岩土材料的拉压不等,而使屈服面不对称,如岩土的三轴拉伸和三轴压缩不对称。
弹塑性力学总结

应用弹塑性力学读书报告姓名:学号:专业:结构工程指导老师:弹塑性力学读书报告弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。
研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。
它由弹性理论和塑性理论组成。
弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。
因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。
弹塑性力学也是连续介质力学的基础和一部分。
弹塑性力学包括:弹塑性静力学和弹塑性动力学。
弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。
并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。
1 基本思想及理论1.1科学的假设思想人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。
固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。
所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。
1.1.1连续性假定假设物体是连续的。
就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。
这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。
1.1.2线弹性假定(弹性力学)假设物体是线弹性的。
塑性力学期末总结

塑性力学期末总结尊敬的教授、亲爱的同学们:大家好!我是XX大学土木工程专业的学生,今天我非常荣幸地在这里向大家分享我的塑性力学期末总结。
在过去的一个学期里,我从这门课中学到了很多关于塑性力学的知识,让我对这个领域有了更深入的理解和认识。
首先,我想简要介绍一下塑性力学的基本概念。
塑性力学是研究物质在超过其弹性极限时产生形变和失去弹性恢复能力的力学学科。
在结构工程、材料科学以及地质工程中,塑性力学发挥着重要的作用。
通过研究塑性行为,可以预测物质在应力作用下的变形和破坏情况,从而为工程设计提供参考和指导。
在本学期的学习中,我主要掌握了塑性力学的基本原理和数学模型。
塑性力学的基本原理可以概括为两个方面:流动准则和能量原理。
流动准则描述了物质在塑性变形时所满足的条件,常用的准则有屈服准则、流动准则和强度准则等。
能量原理则是通过分析力学中的能量守恒原理推导出的,用于描述材料在塑性变形过程中会消耗多少能量。
为了进一步了解和应用塑性力学的原理和模型,我们还需要学习塑性力学的基本方程和数学方法。
在这门课中,我学习了塑性力学的单轴拉伸、双轴拉伸和多轴受压等基本问题的解法。
通过使用这些方法,我们可以计算材料在复杂应力状态下的变形和破坏情况,从而为实际工程问题的解决提供依据和方法。
除了理论知识的学习,本学期的课程还强调了实践和应用的能力培养。
教授布置了一些实际案例和工程问题,要求我们运用所学的知识进行分析和解决。
例如,我们需要分析一根受力梁的变形和破坏情况,还需要对某个建筑物的承载能力进行评估。
通过这些实践和应用,我逐渐提高了自己的问题解决能力和工程思维能力。
此外,塑性力学的计算方法和工具也是本学期课程的重要内容。
我们学习了一些计算塑性力学问题的常用软件和工具,如ANSYS、ABAQUS等。
这些工具可以帮助我们更加方便、快速地进行力学分析和计算。
通过参与课堂演示和实验操作,我熟悉了这些工具的操作和使用,提高了自己的计算能力和工程实践经验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹塑性力学读书报告本学期我们选修了樊老师的弹塑性力学,学生毕备受启发对工科来说,弹塑性力学的任务和材料力学、结构力学的任务一样,是分析各种结构物体和其构件在弹塑性阶段的应力和应变,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。
但是在研究方法上也有不同,材料力学为简化计算,对构件的应力分布和变形状态作出某些假设,因此得到的解答是粗略和近似的;而弹塑性力学的研究通常不引入上述假设,从而所得结果比较精确,并可验证材料力学结果的精确性。
弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。
并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。
通过一学期的弹塑性力学的学习,对其内容总结如下:第一章绪论首先是弹塑性力学的研究对象和任务。
1、弹塑性力学:固体力学的的一个分支学科,是研究可变形固体受到外载荷、温度变化及边界约束变动等作用时,弹性变形及应力状态的科学。
2、弹塑性力学任务:研究一般非杆系的结构的响应问题,并对基于实验的材料力学、结构力学的理论给出检验。
这里老师讲到过一个重点问题就是响应的理解,主要就是结构在外因的作用下产生的应力场(强度问题)、应变场(刚度问题),整体大变形(稳定性问题)。
3、弹性力学的基本假定求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量。
求解问题的方法是通过研究物体内部各点的应力与外力所满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。
在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解。
因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使得方程的求解成为可能。
(1)假设物体是连续的。
就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。
这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。
(2)假设物体是线弹性的。
就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。
而且,材料服从虎克定律,应力与应变成正比。
(3)假设物体是均匀的。
就是说整个物体是由同一种质地均匀的材料组成的。
这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变。
(4)假设物体是各向同性的。
也就是物体内每一点各个不同方向的物理性质和机械性质都是相同的。
(5)假设物体的变形是微小的。
即物体受力以后,整个物体所有各点的位移都小于物体的原有尺寸,因而应变和转角都远小于1。
这样,在考虑物体变形以后的平衡状态时,可以用变形前的尺寸代替变形后尺寸,而不致有显著的误差;并且,在考虑物体的变形时,应变和转角的平方项或乘积都可以略去不计,使得弹性力学中的微分方程都成为线性方程。
第二章应力作用于弹性体的外力可以分为体(积)力和(表)面力。
体力是分布在弹性体体积内质量上的力,例如重力和惯性力、磁力等。
在物体内任一点的体力,用作用于其上的单位体积的体力沿坐标轴上的投、、来表示。
它们的指向以沿坐标轴正方向为正;反之为负。
影X Y Z这三个投影称为该点的体力分量。
面力是指作用于弹性体表面上的外力,例如流体压力和接触力等。
可以是分布力,也可以是集中力。
在弹性表面上任一点的面力,用作用于其上的单位面积上面力沿坐标轴上的投影X、Y、Z来表示。
它们的指向也以沿坐标轴正方向的为正,反之为负。
这三个投影称为该点的面力分量。
弹性体在外力作用下变形,而在弹性体内部为了阻止其变形就产生了内力来平衡外力。
作用在单位面积上的内力称为应力。
1、应力状态的描述物体表面的外力可分为面力和体力。
我们在P 点处沿坐标轴x ,y ,z 方向取一个微小的四面体,四面体上的三个正交面上的应力的表示方法:第一个字母表示应力的方向,第二个字母表示应力所在的面的方向(法线方向),当法线方向与外法线方向一致(或法线方向与外法线方向相反),应力方向与坐标轴方向一致(或应力方向与坐标轴方向相反)为正,反之为负。
对于正应力,因为应力的方向与应力所在的面的方向一致,故只用一个字母。
由达朗伯原理可以得到四面体的平衡方程:面力之和+体力之和=0又因为体力之和是面力之和的高阶无穷小,从而有:面力之和=0主要就是柯西公式:x x xy xz x y yx y yz y zzxzyzzp n p n p n写成张量形式:剪应力的互等关系:作用在两个互相垂直的面上并且垂直于该两面交线的剪应力,是互等的(大小相等,正负号也相同)。
yzzyzx xzxy yx,,2、平衡方程主要是两种分析方法:直观法(微元分析法)取正交六面体,并对此正交六面体应用达朗伯原理;分析法:分析法的的优点是抽象,因为抽象往往一般、严谨,缺点也是抽象,因为抽象往往不直观。
写成张量形式:3、主应力我们知道,一点处各方向的应力由应力张量及方向数描述。
柯西公式可知斜面上的三个应力分量与应力张量的线性关系,而且体积力,,,iijjp n i j x y z000x xy xz x yx y yz z zxzyzyx F F y F z平动xy yx z xz zx y yzzyxm m m 转动z y x z y x m m m 式中、、、分别为体积力矩沿、、三个坐标轴的的分量。
,0,,ij jiF i x y z矩为零时,应力张量对称。
由对称矩阵的性质,我们想到,它有三个正交的特征向量。
写出特征方程:简单形式为:称为主应力,按值的大小排列,分别称为第一主应力、第二主应力、第三主应力,他们的方向与坐标轴的方向一致。
第三章应变1、变形首先大家都懂,在外力作用下,物体各点的位置要发生变化,即发生位移变形后是否改变了各点间初始状态的相对位置,则来分辨是刚体位移还是变形。
2、对位移张量显然,变形由相对位移引起而,而且变形的程度与下述相对位移张量相关。
112233x xy xz x yx yyzy zxzy zzl p l l p l l p l 123x x y y zzp n p n p n 123,,式中:u 、v 、w 分别为x ,y ,z 方向的位移。
3、应变率因为塑性变形与历史相关,对应的求解方法之一就是增量法,因此提出应变率的概念。
在无穷小的时间区间内,变形微小,因此,可用小变形张量对时间的偏导数定义应变率张量。
可见,只要在应变张量的各项讨论中每个应变符号上加一个圆点,便可以得到关于应变率的各种公式。
4、应变协调方程应变分量只确定物体中各点间的相对位置,而刚体位移并不包含在应变分量之中。
无应变状态下,可以产生任一种刚体移动。
另一方面,如果能求出物体各点的位移函数u ,v ,w ,根据应变位移方程求出各应变分量,则应变协调方程yx x y xyy x 22222自然可以满足。
因为变形协调方程本身是从应变位移方程推导出来的。
从物理意义来看,如果位移函数是连续的,变形自然是可以协调的。
第四章本构关系1、广义胡克定律在材料力学课程中,我们已经详细讨论了在单向应力状态时材料处于线性弹性阶段的应力应变关系。
而在三维应力状态下,描绘一点处的应力状态需要9个应力分量,与之相应的应变状态也要用9个应变分量。
x 11x 12y 13z 14xy 15yz 16zx y 21x 22y 23z 24xy 25yz 26zx z 31x 32y 33z 34xy 35yz 36zx xy 41x 42y 43z 44xy 45yz 46zx yz 51x 52y 53z 54xy 55yz c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 56zx zx61x62y63z64xy65yz66zxc c c c c c c 坐标系绕y 轴旋转180°得:113322121321233132110l l l l l l l l l 由坐标变换得:'222111213111212131311'''''y ''''''2(),,,,,,,,,xyyzzxxyxxyzxyyzzxxyzzxyyzzxxxyyzzxyyzyzzxzxllll l l l l l 同理由弹性常数不变知z xy yz zx '''''''11121314151611x 12y 13z 14xy 15yz 16zx1415ccc c c c c c c c c c c c 0xxyx同理24253435c c c c'''''''41424344454641x 42y 43z 44xy 45yz 46zx41424346c cc cccc c c c c c c =c=c=c 0xyxyzxyyzzxxy同理51525356c =c =c =c 06465c =c 0同理将坐标系绕X轴Z轴旋转时还可得16263645546c =c =c =c c=c =c =c =c即得均匀各向异性介质的胡克定律:x 11x 12y 13z y 21x 22y 23z z 31x 32y33zxy 44xy yz 55yz zx66zxc c c c c c c c c c c c 2、屈服函数屈服就是材料进入塑形状态。
一般地,介质在应力作用下发生屈服,不仅与介质的力学性质有关而且与应力状态有关。
若仅考虑屈服于应力状态的关系,可用下述函数表达屈服条件:3、屈服曲线的性质(1)屈服曲线是一条包围原点的闭曲线。
(2)初始屈服曲线与过坐标原点的直线相交一次且仅相交一次。
(3)若不计鲍辛格效应,屈服曲线对三个坐标轴的正负方向均为对称。
(4)强化材料的屈服曲线对坐标原点是外凸曲线。
5、常用屈服条件从材料的简单拉伸(或压缩)实验的应力应变曲线看到,当应力达到屈服极限时,材料开始进入塑性状态,对于处于复杂应力状态的物体,由弹性状态过渡到塑性状态的临界条件称为屈服条件。
在应力空间将初始屈服的应力点连成的弹性和塑性的分界面称为屈服面。
描述屈服面的数学表达式称为屈服函数。