弹塑性力学读书报告

合集下载

(完整)弹塑性力学读书报告DOC

(完整)弹塑性力学读书报告DOC

一、弹塑性力学发展史(一)弹性力学的发展近代弹性力学,可认为始于柯西(Cauchy,A. L.)在1882年引进应变与应力的概念,建立了平衡微分方程、边界条件、应变与位移关系。

它的发展进程对促进数学和自然科学基本理论的建立和发展,特别是对促进造船、航空、建筑、水利、机械制造等工业技术的发展起了相当重要的作用。

柯西的工作是近代弹性力学以及近代连续介质力学的一个起点。

之后,世界各国的一大批学者相继做出了重要贡献,使得弹性力学迅速发展起来,并根据实际的需要形成了一些专门分支学科,如热弹性力学,弹性动力学,弹性系统的稳定理论,断裂力学,损伤力学,等等。

弹性力学为社会发展、人类的文明进步起了至关重要的作用。

交通业、造船、铁路建筑、机械制造、航空航天事业、水利工程、房屋建筑、军事工程等的发展,都离不了力学工作者的贡献。

从18世纪开始.涌现出了一大批力学家,像柯西、欧拉(Euler L.)、圣维南(Saint—Venant)、纳维(Navier)、克希霍夫(Kirchoff,G.R.)、拉格朗日(Lagran8e,J. L.)、乐甫(Love,A.E.H.)、铁木辛柯(Timoshenkn,S.P.)及我国的钱学森、钱伟长、徐芝纶、胡海昌等。

他们都对弹性力学的发展做出了贡献,他们的优秀著作培养了一代又一代的工程师和科学家。

弹性力学虽是一门古老的学科,但现代科学技术的发展给弹性力学提出了越来越多的理论问题和工程应用问题,弹性力学在许多重要领域展现出它的重要性。

本书将介绍其基本原理和实用的解题方法.二、弹塑性力学模型在弹塑性力学的研究中,如同在所有科学研究中一样,都要对研究对象进行模拟,建立相应的力学模型(科学模型)。

“模型"是“原型”的近似描述或表示.建立模型的原则,一是科学性-—尽可能地近似表示原型;二是实用性--能方便地应用。

显然,一种科学(力学)模型的建立,要受到科学技术水平的制约。

总的来说,力学模型大致有三个层次:材料构造模型、材料力学性质模型,以及结构计算模型.第一类模型属基本的,它们属于科学假设范畴.因此,往往以“假设”的形式比现.“模型”有时还与一种理论相对应;因而在有些情况下,‘模型”、“假设”和“理论”可以是等义的。

弹性力学课程总结

弹性力学课程总结

弹塑性力学课程学习总结弹塑性力学主要是对物体在发生变形时进行的弹性力学和塑性力学分析,由于塑性力学比较复杂,发展还不够完善,所以以弹性力学为主要内容。

下面是对本课程的学习总结。

弹性力学是固体力学的重要分支,它研究物体在外力和其它外界因素作用下产生的弹性变形和内力。

它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。

塑性力学研究的是物体发生塑性变形时的应力和应变。

物体变形包括弹性变形与塑性变形。

在外力作用下产生形变车去外力可以恢复原状是塑性变形;当外力达到一定值后,撤去外力,不再恢复原状是塑性变形。

当外力由小到大,物体变形由弹性变为弹塑性最后变为塑性直至破坏。

弹性变形是应力与应变一一对应。

主要任务是研究物体弹塑性的本构关系和荷载作用下物体内任一点应力变形。

为了便于研究我们常需要做一些假设,弹塑性力学的假设为:1、均匀连续性假设2、材料的弹性性质对塑性变形无影响3、时间对材料性质无影响4、稳定材料,荷载缓慢增加5、小变形假设。

弹性力学在研究对象上与材料力学和结构力学之间有一定的分工。

材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。

在材料力学和结构力学中主要是采用简化的可用初等理论描述的数学模型;在弹性力学中,则将采用较准确的数学模型。

有些工程问题(例如非圆形断面柱体的扭转,孔边应力集中,深梁应力分析等问题)用材料力学和结构力学的理论无法求解,而在弹性力学中是可以解决的。

有些问题虽然用材料力学和结构力学的方法可以求解,但无法给出精确可靠的结论,而弹性力学则可以给出用初等理论所得结果可靠性与精确度的评价。

弹性力学包括平面问题,空间问题,柱体扭转,能量原理,虚功原理和有限元法等。

在研究过程中,需要列出基本方程,空间问题有15个基本方程,包括平衡方程,物理方程,变形协调方程和边界条件。

工程弹塑性力学引论读书札记

工程弹塑性力学引论读书札记

《工程弹塑性力学引论》读书札记目录一、内容概述 (2)1.1 书籍简介 (3)1.2 作者介绍 (4)1.3 研究背景与意义 (5)二、基本概念与理论 (5)2.1 弹性力学基本方程 (7)2.2 塑性力学基本原理 (8)2.3 弹塑性力学分析方法 (9)三、工程弹塑性力学应用 (11)3.1 结构分析 (13)3.1.1 建筑结构 (15)3.1.2 桥梁工程 (15)3.1.3 机械工程 (17)3.2 材料加工 (18)3.3 土木工程 (19)四、工程弹塑性力学发展历程 (20)4.1 国外发展概况 (22)4.2 国内发展概况 (24)4.3 研究趋势与挑战 (25)五、结论与展望 (26)5.1 主要成果总结 (27)5.2 存在问题与不足 (28)5.3 未来研究方向与应用前景 (29)一、内容概述本书共分为七章,主要围绕工程中广泛关注的弹塑性力学问题展开。

第一章为引论,简要介绍了弹塑性力学的产生背景、研究意义和基本概念,为后续章节的深入学习奠定了基础。

在第一章中,作者首先阐述了弹塑性力学的产生背景和研究意义。

弹塑性力学作为经典力学的一个重要分支,在工程领域具有广泛的应用,特别是在结构分析和设计中。

通过学习弹塑性力学,工程师可以更好地了解材料的非线性行为,从而优化结构设计,提高产品的性能和安全性。

作者介绍了弹塑性力学中的基本概念,包括应力、应变、塑性变形、弹性变形等。

这些概念是理解弹塑性力学的基础,对于后续的学习至关重要。

作者还通过实例和图表等形式,帮助读者更好地理解和掌握这些概念。

在第一章中,作者还介绍了弹塑性力学的研究方法和应用领域。

弹塑性力学的研究方法包括理论推导、数值模拟和实验验证等,这些方法在工程实践中具有重要的指导意义。

作者还通过案例分析等形式,展示了弹塑性力学在实际工程中的应用价值。

第一章为读者提供了弹塑性力学的整体框架和基础知识,有助于读者更好地理解和学习这门课程。

塑性力学总结

塑性力学总结

塑性力学大报告1、绪论1.1 塑性力学的简介尽管弹塑性理论的研究己有一百多年,但随着电子计算机和各种数值方法的快速发展,对弹塑性本构关系模型的不断深入认识,使得解决复杂应力条件、加载历史和边界条件下的塑性力学问题成为可能。

现在复杂应力条件下塑性本构关系的研究,已成为当务之急。

弹塑性本构模型大都是在整理和分析试验资料的基础上,综合运用弹性、塑性理论建立起来的。

建立弹塑性材料的本构方程时,应尽量反映塑性材料的主要特性。

由于弹塑性变形的现象十分复杂,因此在研究弹塑性本构关系时必须作一些假设。

塑性力学是研究物体发生塑性变形时应力和应变分布规律的学科.是固体力学的一个重要分支。

塑性力学是理论性很强、应用范围很广的一门学科,它既是基础学科又是技术学科。

塑性力学的产生和发展与工程实践的需求是密不可分的,工程中存在的实际问题,如构件上开有小孔,在小孔周边的附近区域会产生“应力集中”现象,导致局部产生塑性变形;又如杆件、薄壳结构的塑性失稳问题,金属的压力加工问题等,均是因为产生塑性变形而超出了弹性力学的范畴,需要用塑性力学理论来解决的问题,另一方面,塑性力学能为更有效的利用材料的强度并节省材料、金属压力加工工艺设计等提供理论依据。

正是这些广泛的工程实际需要,促进了塑性力学的发展。

1.2 塑性力学的发展1913年,Mises提出了屈服准则,同时还提出了类似于Levy的方程;1924年,Hencky采用Mises屈服准则提出另一种理论,用于解决塑性微小变形问题很方便;1926年,Load证实了Levy-Mises应力应变关系在一级近似下是准确的;1930年,Reuss依据Prandtl的观点,考虑弹性应变分量后,将Prandtl所得二维方程式推广到三维方程式;1937年,Nadai研究了材料的加工硬化,建立了大变形的情况下的应力应变关系;1943年,伊柳辛的“微小弹塑性变形理论”问世,由于计算方便,故很受欢迎;1949年,Batdorf和Budiansky从晶体滑移的物理概念出发提出了滑移理论。

弹性力学读书报告剖析

弹性力学读书报告剖析

弹塑性力学学习报告指导老师:王建伟学生:李佳伟学号;20159200弹塑性力学学习报告绪论:经过几月的学习我对弹性力学有了一个初步的认识,对它研究的对象也有了一个概括性的认识。

弹性力学是高等的材料力学,不同于材料力学只能解决形状非常固定的细长杆件,它可以解决任意形状的材料性能计算问题。

对于很多情况都可以分析出力学模型,然后得到方程组,但是大部分情况下解方程组却是非常困难的。

下面给出一个典型的模型对弹性力学做一个形象的表示:这个模型就是最普通的一个计算模型,它有分布力,集中力,约束,重力等作用。

在这些条件下我们可以根据受力平衡列出方程组,从而求出各处的位移和形变。

报告正文一、弹性力学的发展及基本假设弹性力学是伴随着工程问题不断发展起来的,它是固体力学的一个分支,是研究弹性体由于外力作用或温度改变等原因而发生的应力、应变和位移的一门学科。

最早可以追溯到伽利略研究梁的弯曲问题、胡克的胡克定律。

之后牛顿三定律的形成以及数学的不断发展,后经纳维、柯西、圣维南、艾瑞、基尔、里茨、迦辽金等人的不断努力。

使得弹性力学具有了严密的理论体系并且能都求解各种复杂的问题,能够解决强度、刚度和稳定性等问题。

目前弹性力学的相关理论在土木工程、水文地质工程、石油工程、航空航天工程、矿业工程、环境工程以及农业工程等诸多领域得到了广泛的应用。

弹性力学的几个基本假设。

1 、连续体假设:假设无题是连续的,没有任何空隙。

因此,物体内的应力、应变、位移一般都是逐点变化的,它们都是坐标的单值连续函数。

2、弹性假设:假设物体是完全弹性的。

在温度不变时,物体任一瞬间的形状完全取决于在该瞬间时所受的外力。

而与它过去的受力状况无关。

当外力消除后,它能够恢复原来的形状。

弹性假设就是假设物体服从虎克定律,应力与应变成正比关系。

3、均匀性假设:假设物体是均匀的,各部分都具有相同的物理性质,其弹性模量和泊松系数是一常数。

4、各向同性假设:假设物体内每一点各个方向的物理和机械性质都相同。

2013级--弹塑性力学总结

2013级--弹塑性力学总结

1.弹塑性力学问题的研究方法:弹塑性力学问题的研究方法可分为三种类型:(1)数学方法:就是用数学分析的工具对弹塑性力学边值问题进行求解,从而得出物体的应力场和位移场等。

在分析弹塑性力学时,对从物体中截取的单元体,从静力平衡、变形几何关系和应力应变物理关系三个方面来建立弹塑性力学的基本方程,由此建立的是偏微分方程,它适用于各种构件或结构的弹性体。

根据基本方程求解各类具体问题。

另一种数学方法是数值方法。

在数值方法中,常见的有差分法、有限元法及边界元法等。

尤其是塑性力学方程是非线性的,因而人们注重应用近似计算方法。

(2)实验方法:就是利用机电方法、光学方法、声学方法等来测定结构部件在外力作用下应力和应变的分布规律,如光弹性法、云纹法等。

(3)实验与数学相结合的方法:这种方法常用于形状非常复杂的弹塑性结构。

例如对结构的特殊部位的应力状态难以确定,可以用光弹性方法测定,作为已知量,置入数值计算中,特别是当边界条件难以确定时,则需两种方法结合起来,以求得可靠的解答。

2. 载荷分类:作用于物体的外力可以分为体积力和表面力,两者分别简称为体力和面力。

所谓体力是分布在物体体积内的力。

例如重力和惯性力,物体内各点所受的体力一般是不同的。

所谓面力是分布在物体表面上的力。

如风力、流体压力、两固体间的接触力等。

物体上各点所受的面力一般也是不同的。

3. ABAQUS ANSYS NASTRAN ADINA各有什么优缺点ABAQUS是一套先进的通用有限元系统,属于高端CAE软件。

优点:1. 非线性结构方面的分析很强大。

它对于多载荷步的计算和规划,以及它的软件设计思想,非常严密而且直观。

可以分析复杂的固体力学和结构力学系统,特别是能够驾驭非常庞大的复杂问题和模拟高度非线性问题。

ABAQUS不但可以做单一零件的力学和多物理场的分析,同时还可以做系统级的分析和研究,其系统级分析的特点相对于其他分析软件来说是独一无二的。

2. 操作界面友好,不是其他CAE软件可以比拟的。

岩土塑性力学读书报告

岩土塑性力学读书报告本学期我们学习了弹塑性力学这一课程,在刘老师的讲解和自学的过程中学习到了不少弹塑性力学的基础知识。

我们是岩土工程专业的学生,弹塑性力学知识相当重要,是后续课程的基础,由于专业的实用性,我们阅读了郑颖人、孔亮编著的《岩土塑性力学》一书。

这本书将不少弹塑性力学的基础知识运用到岩土工程中,从弹塑性力学的角度来理解岩土这种特殊介质的力学性质,阅读之后让我受益匪浅。

以下是我阅读本书后的一些总结。

一、岩土材料的特点岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。

岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。

正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。

归纳起来,岩土材料有3点基本特性:1.摩擦特性。

2.多相特性。

3.双强度特性。

另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。

4.土体的塑性变形依赖于应力路径。

二、岩土塑性力学的基本假设由于塑性变形十分复杂,因此无论传统塑性力学还是岩土塑性力学都要做一些基本假设,只不过岩土塑性力学所做的假设条件比传统塑性力学少些,这是因为影响岩土材料塑性变形的因素较多,而且这些因素不能被忽视和简化。

下列两点假设不论是传统塑性力学还是广义塑性力学都必须服从:(1)忽略温度与实践影响及率相关影响的假设。

(2)连续性假设。

岩土塑性力学与传统塑性力学不同点:(1)岩土材料的压硬性决定了岩土的剪切屈服与破坏必须考虑平均应力和岩土材料的内摩擦。

(2)传统塑性力学只考虑剪切屈服,而岩土塑性力学不仅要考虑剪切屈服,还要考虑体积屈服。

(3)根据岩土的剪胀性,不仅静水压力可能引起塑性体积变化,而且偏应力也可能引起体积变化;反之,平均应力也可能引起塑性剪切变形。

(4)传统塑性力学中屈服面是对称的,而岩土材料的拉压不等,而使屈服面不对称,如岩土的三轴拉伸和三轴压缩不对称。

弹塑性力学总结

应用弹塑性力学读书报告姓名:学号:专业:结构工程指导老师:弹塑性力学读书报告弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。

研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。

它由弹性理论和塑性理论组成。

弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。

因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。

弹塑性力学也是连续介质力学的基础和一部分。

弹塑性力学包括:弹塑性静力学和弹塑性动力学。

弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。

并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。

1 基本思想及理论1.1科学的假设思想人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。

固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。

所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。

1.1.1连续性假定假设物体是连续的。

就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。

这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。

1.1.2线弹性假定(弹性力学)假设物体是线弹性的。

弹塑性力学读书报告

弹塑性力学读书报告刘刚玉1020120036同济大学交通运输工程学院道路与铁道工程摘要:弹塑性力学研究可变形固体收到外力作用或温度变化的影响而产生的应力、应变和位移及其分布变化规律,本报告介绍基本的研究思想和方法,并选取有限元计算中的实例讨论岩土材料的本构模型选择对结果的影响。

关键字:弹塑性力学本构关系1基本思想及理论1.1科学的假设思想人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。

固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。

所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。

1.1.1连续性假定整个物体的体积都被组成物体的介质充满,不留下任何空隙。

使得σ、ε、u 等量表示成坐标的连续函数。

1.1.2线弹性假定(弹性力学)假定物体完全服从虎克(Hooke)定律,应力与应变间成线性比例关系。

1.1.3均匀性假定假定整个物体是由同一种材料组成的,各部分材料性质相同。

这样弹性常数(E、μ)等不随位置坐标而变化,取微元体分析的结果就可应用于整个物体。

1.1.4各向同性假定(弹性力学)假定物体内一点的弹性性质在所有各个方向都相同,弹性常数(E、μ)不随坐标方向而变化; 1.1.5小变形假定假定位移和形变是微小的,即物体受力后物体内各点位移远远小物体的原来的尺寸。

可用变形前的尺寸代替变形后的尺寸,建立方程时,可略去高阶微量;。

1.2应力状态理论应力的概念的提出用到了数学上极限的概念,定义为微小面元上的内力矢量。

弹塑性力学读书报告

弹塑性力学读书报告绪言“光阴似箭,日月如梭”。

弹指一挥间,弹塑性力学的课程已经结束了,而我来到北京工业大学也已经有三个月了。

回顾过去,感觉时间过的很快,但回想老师第一次上课时的情景却历历在目,仿佛就在昨天。

虽然未曾与范老师见过面,但老师那雄性又带有喜感的声音让我倍感亲切,这也是我能够坚持听完网课的重要因素之一。

对于弹塑性力学,虽说大学时学过弹性力学,但却学的很浅,而且早就忘了大部分的内容,所以在研一学习是十分有必要的,而且恰到好处。

感谢范老师的精彩授课,使得我对弹塑性力学的内容有了更深刻的了解与认识。

当然我也知道,对于一个以后与力学打交道的人来说,我所学到的、掌握的弹塑性力学知识还完全不够,在今后的学习工作中仍需不断学习。

而本篇弹塑性力学读书报告我主要从对弹塑性力学部分章节的学后感,对弹塑性教学的建议以及弹塑性力学与自己所从事研究结合的展望等方面谈谈自己的理解与感悟。

一、弹塑性力学部分章节读后感学习任何一门课程都要从它最基本的定义入手,弹塑性力学是固体力学的一个分支学科,它研究可变性固体受到外荷载、温度变化及边界约束变动等作用时,弹塑性变形和应力状态的科学。

它的研究对象包括实体结构、板壳结构以及杆件。

弹塑性力学研究问题的基本方法是在受力物体内任取一点(单元体)为研究对象,通过分析单元体的受力建立应力理论、分析单元体的变形建立变形几何理论、分析单元体受力与变形间的关系建立本构理论,即通过相应的分析建立起普遍适用的理论与解法。

它的基本任务包括以下几点:(1)建立求解固体的应力、应变和位移分布规律的基本方程和理论;(2)给出初等理论无法求解的问题的理论和方法以及对初等理论可靠性与精确度的度量;(3)确定和充分发挥一般工程结构物的承载能力,提高经济效益;(4)进一步研究工程结构物的强度、刚度、振动、稳定性、断裂、疲劳和流变等力学问题,奠定必要的理论基础。

当然,为了使弹塑性力学问题得以简化,我们一般做如下基本假设:连续性假设,均匀性假设,各项同性假设,力学模型简化假设以及小变形假设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹塑性力学在土力学方面的应用
1.土的弹塑性性质
传统的弹塑性理论认为,材料的全变形过程包括弹性变形和弹塑性变形两个阶段。

在加载过程中,随着应力的增加,材料除了会出现弹性变形,还会有塑性变形,且弹性变形的应力范围不断加大,这也就是所谓的塑性硬化。

一般认为,塑性硬化的过程不会改变卸载时的弹性性质,称为弹塑性的非耦合性。

且当材料反向受力时,不会出现包辛克效应,即不会产生于正向不同的塑性变形或塑性硬化。

但是,岩土材料具有不同于金属材料的一些性质,如岩土材料有时表现出极低的弹性区,屈服极限不明显;岩土除了塑性硬化之外,还可能出现塑性软化;岩土还具有弹塑性耦合性质,会出现包辛克效应等。

以上这些性质也就要求岩土的弹塑性理论要比传统的理论考虑更多的问题,要求我们就要考虑传统弹塑性的理论基础,又要考虑岩土材料的特殊性质。

2.土的弹塑性理论
弹塑性理论都是采用增量法,建立应力增量与应变增量之间的关系,以适应和描述应力—应变发展的非线性规律。

在一定应力条件下,由应力的变化所引起的应变增量可以分解为弹性应变增量和塑性应变增量。

其表达式可以写成:
p e d d d εεε=+ (1)
式中况分别表示弹性和塑性情、p e 。

对于弹性应变部分,可以有弹性理论的应力—应变关系求出。

而对于塑性应变部分,可需要塑性理论来解决。

在应用塑性理论前,首先需要对塑性应变的标准、产生条件、应变方向、应变大小和应变发展变化的规律有一定的认识。

1)塑性判断标准。

塑性判断标准常用德鲁克公设(如图1)或依留申公设(如图2)。

德鲁克公设认为,一个盈利循环所做的功大于零才有塑性应变。

依留申公设认为,一个应变循环中所做的功大于零才有塑性应变。

图1 德鲁克公设 图2 依留申公设
2)屈服条件。

塑性应变产生的条件称为屈服条件。

它是材料所受应力增大时由弹性状态到塑性状态的过渡应力条件,也是材料开始产生塑性应变时应力或者应变必须满足的条件。

这个条件在应力空间中代表一个包括无应力状态的封闭曲面,称为屈服面。

当应力点位于屈服面以内时,产生弹性变形,当位于屈服面之上时,出现塑性变形。

岩土破坏条件的函数表达式0)(=-=K f f ij σ中,K 为决定土性的常数。

而在屈服条件和加载条件的函数式中,K 不再视为常数。

函数式
表示为:0)(=--=n ij ij a f f ασ。

式中: ij σ反应屈服面在应力空间中的位置,a 反应屈服面的大小,它们都是某种物态参数的函数。

不同条件所对应的ij α和a 值通过试验确定,它们的变化反映了屈服面发展变化的规律。

3)流动规则。

塑性应变的方向常由塑性应变增量的方向与塑性势面相正交的规则,即正交流动规则来确定。

这个规则可以表示为: ij ij g d d σλ
ε∂∂= (2) 式中:λd 为非负常数。

4)硬化规律。

(2)式中,λd 是一个确定塑性应变大小的函数,与应力状态有关。

它在塑性变形发展过程中的变化反映了屈服面随塑性应变增大而发展变化的规律,即材料的硬化规律。

硬化规律通常被假定为:
dH H f A d f A d ij ij ∂∂-=∂∂=1)1(1σσλ (3) 式中:A 为硬化参量H 的函数。

在这里引入硬化模量p K 的概念,其定义为沿屈服面外法线n 方向的盈利增量与塑性应变增量之比。

硬化模量的矢量式为:
p n
d d K εσ=p (4)
标量式为:
n nd K σεp p 1d = (5) 式中:n 为屈服面法线的单位矢量。

3.总结
鉴于上述情况,在传统弹塑性力学理论基础上,考虑岩土的特殊性质,国外学者提出了多种弹塑性模型,比较重要的有剑桥模型、拉德—邓肯模型以及帽子模型。

(注:素材和资料部分来自网络,供参考。

请预览后才下载,期待你的好评与关注!)。

相关文档
最新文档