气体动力学

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气体动力学

高温气体动力学。研究高温气体的流动规律和伴随的各种物理化学变化、能量传递和转化规律。例如在喷气发动机的燃烧室、再入大气层航天器表面的激波层和高超声速尾迹中,气体温度极高,气体比热不再是常数,完全气体的状态方程(p=ρRT,p、ρ、T为气体的压力、密度、温度,R为气体常量)不再适用。此外,气体分子内部各种能级的激发(平动、转动和振动等)处于不平衡状态,出现非平衡流动。在极高温度下,气流中还伴有离解和电离过程以及物面烧蚀现象。因此,高温气体动力学的研究,要把气体动力学与热力学、统计物理、分子物理、化学动力学和电磁学等结合起来,并要用到物理、化学和气体动力学等实验技术,光谱、激光、电子、力学等测量方法,激波管、电弧加热器等试验设备。高温气体动力学的研究对航空航天工业、激光器、等离子体技术等方面的发展,有重要意义。

稀薄气体动力学

稀薄气体动力学。研究克努曾数Kn(见流体力学相似准数)并非远小于1的稀薄气体的运动规律。对于在高空大气层飞行的航天器,Kn不是小量,气体分子离散结构显示其影响,经典的连续介质模型不再适用。在地面上研究5微米以下气溶胶粒子的运动,也须考虑稀薄气体效应。研究稀薄气体动力学,要用到玻耳兹曼气体分子运动方程和气体分子与固体表面相互作用的理论,以及低密度风洞、激波风洞、分子束装置等实验设备。稀薄气体动力学的研究对人造地球卫星、航天

飞机及某些非航天技术的发展,起着重要作用。

相关文档
最新文档