材料力学B试题7应力状态_强度理论

材料力学B试题7应力状态_强度理论
材料力学B试题7应力状态_强度理论

(2) 主应力大小及主平面位置,并将主平面标在单元体上。 解:(1) MPa

6.762sin 2cos 2

2

=--+

+=

ατασσσσσα

x y

x y

x

MPa 7.322cos 2sin 2

-=+-=ατασστα

x y

x

(2)

2

2min max )2

(2xy y x y x τσσσσσσ+-±+=98.12198.81-=MPa 98.811=σMPa ,02

=σ,98.1213-=σ

MPa

35.3940

200

arctan 21)2arctan(

2

10==

--=y

x xy

σστα

2. 解:取合适坐标轴令25=x σ MPa ,9.129-=x τ由02cos 2sin 2

120

=+-=

ατασστxy y

x

得125-=y σMPa

所以2

2m in m ax )2

(2xy y x y x τσσσσσσ+-±

+=

200

100

15050)9.129(755022-=

±-=-+±

-= MPa

1001=σ MPa ,02=σ,2003-=σ MPa

3. 一点处两个互成 45平面上的应力如图所示,其中σ未知,求该点主应力。 解:150=y

σ MPa ,120-=x τ MPa

由 ατασστ2cos 2sin 2

45

xy y

x +-=

802

150

-=-=

x σ

得 10-=x σ MPa

所以 2

2min max )2

(2xy y x y x τσσσσσσ+-±+=

22

.7422.214-=

MPa

22.2141=σ MPa ,02=σ,22.743-=σ

4. 图示封闭薄壁圆筒,内径100=d mm ,壁厚2=t mm ,承受内压4=p MPa ,外力偶矩192.0=e M kN ·m 。求靠圆筒内壁任一

点处的主应力。

解:75.505.032

)

1.0104.0(π1019

2.0443

=?-?=

x τ MPa 504==t pd x σ MPa

1002==t

pd y σ MPa

35.497.100)2

(22

2min max =+-±+=xy y x y x τσσσσσσ MPa

7.1001=σ MPa ,35.492=σ MPa ,43-=σ MPa

5. 受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使100=x

σMPa ,20=x τ

α

τασσσσσα2sin 2cos 2

2

x y

x y

x --+

+=

'

45-M e

40120sin 20120cos 2

1002

100=--+

+= y

y

σσ

得1.43=y

σMPa

2

2min max )2

(2xy y x y x τσσσσσσ+-±+=77.3633.106=MPa 33.1061=σMPa ,77.362=σMPa ,03=σ

6.

解:

2

2min max )2

(2xy

y x y x τσσσσσσ+-±+=

16

.4216

.5216.47540252

203022-=

±=+±

-=MPa 所以2.521=σMPa ,102=σMPa ,16.423-=σMPa

2.472

3

1max =-=

σστMPa

7. 图示工字形截面梁AB ,截面的惯性矩61056.72-?=z I m 4,求固定端截面翼缘和腹板交界处点a 的主应力和主方向。

解:17.3610

56.7207

.075.010506

3=????=-σ MPa (压应力) 8.81056.7203.010853015010506

93=???????=--τ MPa

2

2min max )2

(2xy y x y x τσσσσσσ+-±+=2.3803.2-= MPa 03.21=σ MPa ,02=σ,2.383-=σ MPa

05.7717

.368

.82arctan 21)2arctan(210=?-=--=y x xy σστα

50kN A

B

0.75m

σ3

05.77τa

σa

σ1

8. 图示矩形截面拉杆受轴向拉力F ,若截面尺寸b 、h 和材料的弹性模量E ,泊松比ν均已知,试求杆表面 45方向线段AB 的改变量=?AB L ? 解:bh

F

x

=

σ,0=y σ,0=xy τ bh F

2=

ασ,bh F 22

=+απσ( 45=α

所以)1(2)22

(145

v Ebh

F bh F bh F E -=-=

νε

Eb

F Ebh F

h AB L AB 2)

1(2)1(2245

ννε-=-?

==?

9. 一边长为50 mm 的正方形硬铝板处于纯剪切状态,若切应力80=τ MPa ,并已知材料的弹性模量72=E GPa ,泊松比34.0=ν。试求对角线AC 的伸长量。 解:8045=

σMPa ,80135-=

σMPa 3

9

451048.1)8034.080(10

721-?=

?+?=

ε 25=AC L

00105.01048.1253=??=?-AC L mm

10. 一变形体A 四周和底边均与刚性边界光滑接触,上边受均布压力0σ。已知材料的的弹性模量E ,

水平方向上的应变和应力。 解:0σσ-=y

,z x σσ=,0==z x εε

0)]([1

=+-=

z y x x E

σσνσε,得到10-=

=ννσσσz x )121()]12([1)]([12

000ν

νσννσνσσσνσε---=---=+-=E E E z x y y

11. 设地层由石灰岩组成,其密度3105.2?=ρ kg/m 3,泊松比

2.0=ν。计算离地面

200m 深处的地压应力。

解: 9.42008.9105.23-=???-=y σ MPa

z x

σσ=,0=

=z x εε

0)]9.4(2.0[1=+-?-=z x x E

σσε

得到22.1-==z x

σσ MPa

12. 一体积为101010?? mm 3的立方铝块,将其放入宽为10 mm 的刚性槽中。 已知铝的泊松比ν

33.0=解: 6001

.001.01063

3-=??-

=σMPa, 01=σ 由 0)6033.0(1

22=?+

=

σεE

得 8.192-=σ13. 直径为D 的实心圆轴,受外力偶e M 作用如图。测得轴表面点A 与轴线成 45方向的线应变为ε,试导出用e M 、D 、ε表示的切变弹性模量G 的表达式。 解:τ

σ=-

45

, τ

σ-=

45

τνε)1(1

45+=

E

,所以ετG 2= 又3

16D M e πτ=

,所以E

D M G e

3

8π=

14. 直径100=d mm 的圆轴,受轴向拉力F 和力偶矩e M 作用。材料的弹性模量200=E GPa ,泊松比3.0=ν。现测得圆轴表面

200m

σx

σz

σy

的轴向线应变6010500-?=ε, 45方向的线应变64510400-?=

ε,

求F 和e M 。

解:7850=?=A E F ε kN 设力偶矩引起的切应力为τ

τ

σ+=-5045

,τ

σ-=5045

)(1

454545 νσσε-=

-E ]10)50(3.010)50[(10

2001669

?-?-?+?=ττ 6

10400-?=

6.34=τ MPa ,又3

)1.0(π16?=

M τ

8.6=e M kN ·m

15. 直径100=d mm 的实心钢球,受静水压力42=p MPa 作用。求直径和体积的缩减量。设钢球的弹性模量210=E GPa ,泊松比3.0=ν。

解:因为42321-=-===q σσσ MPa

所以33

3211024.042310

210)

3.021()(21-?-=????--=++-=σσσνθE

5

3

321110810

2108.16)]([1-?-=?-=+-=

σσνσεE 得 23310257.1100)6

(1024.0--?-=???-==?πθV V mm 3

351108100108--?-=??-==?d d ε mm

16. 边长10=a 0 mm 的立方体,已知弹性模量200=E GPa ,泊

松比3.0=ν。如将立方体沉入100 m 深的水中,求其体积变化。 解:因为1321-=-===gh ρσσσMPa

)(21321σσσνθ++-=

E 6

3

106)3(10

2006.01-?-=-??-= 61.01.01.01066-=????--==?-V V θ mm 3

τ

τ

17. 图示拉杆,F ,b ,h 及材料的弹性常数E 、ν均为已知。试求线段AB 的正应变和转角。 解:bh

F x =σ,bh

F 213545==

σσ

所以)1(2)(!13545ννσσε-=-=

bhE

F E AB 又因为bhE F x =ε,bhE

Fv y -=ε

所以bhE

v F bhE vF bhE F AB )1()(45+-=+-== γ?

18. 图示曲拐ABC 在水平面内,悬臂

端C 处作用铅垂集中力F 。在上表面E 处,沿与母线成 45方向贴一应变片,已测得线应变

45ε,求载荷F 值。已知长度l 、a 、直径d 及材料的常数E 、v 。

解:应力状态如图示,332d Fl πσ

=

3

16d Fa

πτ= τσ

σ+=

2

45

,τσ

σ-=

-2

45

所以)(!

454545

--=

σσεv E

所以)

1(16)1(163

45v a v l d

E F ++-=

πε

19. 三个弹性常数之间的关系:)]1(2/[ν+=E G 适用于

(A)任何材料在任何变形阶段; (B)各向同性材料在任何变形阶段;

(C)各向同性材料应力在比例极限范围内; (D)任何材料在弹性变形范围内。 答:C

20. 一实心均质钢球,当其外表面处迅速均匀加热,则球心O 点处的应力状态。

(A)单向拉伸应力状态; (B)二向拉伸应力状态; (C)三向等值拉伸应力状态; (D)三向压缩应力状态。 答:C

/2σ

τ

σ/2

σ

21. 混凝土立方体试样作单向压缩试验时,若在其上、下压板面上涂有润滑剂,则试样破坏时将沿纵向剖面裂开的主要原因。

(A)最大压应力; (B)最大切应力; (C)最大伸长线应变; (D)存在横向拉应力。 答:C

22. 已知单元体的主应力为1σ,2σ,推证两相互垂直的截面上的正应力之和为常数 。 证:ασσσσσα

2cos 2

22

12

1-+

+=

)90(2cos 2

2

2

12

1?+-+

+=

ασσσσσβ

=+=+21σσσσβα常数 得证。

23. 受内压的薄壁圆筒,已知内压为p ,平均直径为D ,壁厚为t ,弹性常数为E 、ν。试确定圆筒薄壁上任一点的主应力、主应变及第三、第四强度理论的相当应力。

解:t

pD 21=σ,t

pD 42=σ,03=σ

)2(4)42(1)(1211νννσσε-=-=-=tE pD t pD t pD E E

)21(4)24(1)(1122νννσσε-=-=-=tE pD t pD t pD E E

tE

pD t pD E E 43]430[1)](0[1213ν

νσσνε-=

-=+-= t

pD

231r3=-=σσσ ])()()[(21

213232221r4σσσσσσσ-+-+-=

t

pD

43=

24. 图示正方形截面棱柱体,弹性常数E 、ν均为已知。试比较在下列两种情况下的相当应力r3σ。 (a) 棱柱体自由受压;

(b) 棱柱体在刚性方模内受压。 解:(a) 021==σσ,σσ-=3

σ

σσσ=-=31r3

(b) σσ-=3, 021==εε

所以 )

1(21v --

==νσ

σσ

所以 )

1()21()1(31r3νσ

νσννσσσσ--=+--

=-=

25. 图示重1800=W N 的信号牌,受最大水平

风力400=F N ,立柱直径60=d mm 。试用第三强度理论计算立柱危险点处的相当应力。 解:68.102-=--

=z

W M

A W σ

MPa 43.9=τ MPa

4.10444

2

2222

31r3=+=+=-=τστσ

σσσ MPa

26. 纯剪切状态的单元体如图,则其第三强度

理论相当应力为 。 答:τσ23=r

27. 图示单元体所示的应力状态按第四强度理论,其相当应力4

r σ为:

(A)2/3σ; (B)2/σ;

(a)

(b)

σ=/2

(C)2/7σ; (D)2/5σ。

答:C

28. 第三强度理论和第四强度理论的相当应力分别为3r σ和

4r σ,对于纯剪切状态,恒有=43/r r σσ 。

答:3/2

29. 按第三强度理论计算图示单元体

=3r σ 。

答:60 MPa

30. 图示单元体,第三、四强度理论的相当应力分别为

=

r3σ ,

=r4σ 。

答:224τσ+, 223τσ+

31. 图示为承受气体压力p 的封闭薄壁圆筒,平均直径为D ,壁厚为t ,气体压强p 均为已知,用第三强度理论校核筒壁强度的相当应力为=r3σ 。 答:t

pD 2r3=σ

32. 铸铁轴向受压时,沿图示斜面破坏,试用莫尔强度理论解释该破坏面与竖直线夹角?应大于 45还是小于 45? 证:利用莫尔理论作极限莫尔圆、包络线和应力圆与单元体间的对应关系来解释。单元体上的O O -面对应于应力圆上的点O ,以此为基准面及基准点。根据莫尔理论由极限莫尔圆得到的包络线与单向受压极限莫尔圆的交点G

(即破坏点)可以观出OG 圆弧对应的圆心角

2/π2

破裂面与竖直线间的夹角4/π

33. 试用强度理论证明铸铁在单向压缩时的强度条件为

][-≤σσ。

证:01=σ,σσ-=3

所以 ][]

[][]

[][31+-+

-+

≤=-σσσσσσσσ

所以 ][-≤σσ

?45

材料力学强度理论

9 强度理论 1、 脆性断裂和塑性屈服 脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。 塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。 2、四种强度理论 (1)最大拉应力理论(第一强度理论) 材料发生脆性断裂的主要因素是最大拉应力达到极限值,即:0 1σσ= (2)最大伸长拉应变理论(第二强度理论): 无论材料处于什么应力状态,只要发生脆性断裂,都是由于最大拉应变(线变形)达 到极限值导致的,即: 0 1εε= (3)最大切应力理论(第三强度理论) 无论材料处于什么应力状态,只要发生屈服,都是由于最大切应力达到了某一极限 值, 即: 0 max ττ=

(4)形状改变比能理论(第四强度理论) 无论材料处于什么应力状态,只要发生屈服,都是由于单元体的最大形状改变比能达到一个极限值,即: u u0 d d = 强度准则的统一形式[]σ σ≤ * 其相当应力: r11 σ=σ r2123 () σ=σ-μσ+σ r313 σ=σ-σ 222 r4122331 1 ()()() 2 ?? σ=σ-σ+σ-σ+σ-σ ?? 3、摩尔强度理论的概念与应用; 4、双剪强度理论概念与应用。 9.1图9.1所示的两个单元体,已知正应力σ=165MPa,切应力τ=110MPa。试求两个单元体的第三、第四强度理论表达式。 图9.1 [解](1)图9.1(a)所示单元体的为空间应力状态。注意到外法线为y及-y的两个界面上没有切应力,因而y方向是一个主方向,σ是主应力。显然,主应力σ对与y轴平行的斜截面上的应力没有影响,因此在xoz坐标平面内可以按照平面应力状态问题对待。外法线为x、z轴两对平面上只有切应力τ,为纯剪切状态,可知其最大和最小正应力绝对值均为τ,则图9.1(a)所示单元体的三个主应力为: τ σ τ σ σ σ- = = = 3 2 1 、 、 , 第三强度理论的相当应力为 解题范例r4σ=

材料力学试卷及答案7套

材料力学试卷1 一、绘制该梁的剪力、弯矩图。 (15分) 二、梁的受力如图,截面为T 字型,材料的许用拉应力[σ+]=40MPa ,许用压应力[σ-]=100MPa 。试按正应力强度条件校核梁的强度。(20分) m 8 m 2m 230 170 30 200 2m 3m 1m M

三、求图示单元体的主应力及其方位,画出主单元体和应力圆。(15分) 30 四、图示偏心受压柱,已知截面为矩形,荷载的作用位置在A点,试计算截面上的最大压应 力并标出其在截面上的位置,画出截面核心的形状。(15分)

五、结构用低碳钢A 3制成,A 端固定,B 、C 为球型铰支,求:允许荷载[P]。已知:E=205GPa ,σs =275MPa ,σcr =338-1.12λ,,λp =90,λs =50,强度安全系数n=2,稳定安全系数n st =3,AB 梁为N 016工字钢,I z =1130cm 4,W z =141cm 3,BC 杆为圆形截面,直径d=60mm 。 (20分) 六、结构如图所示。已知各杆的EI 相同,不考虑剪力和轴力的影响,试求:D 截面的线位移和角位移。

(15分) 材料力学2 一、回答下列各题(共4题,每题4分,共16分) 1、已知低碳钢拉伸试件,标距mm l 1000=,直径mm d 10=,拉断后标距的长度变为mm l 1251=, 断口处的直径为mm d 0.61 =,试计算其延伸率和断面收缩率。 2、试画出图示截面弯曲中心的位置。 3、梁弯曲剪应力的计算公式z z QS = τ,若要计算图示矩形截面A 点的剪应力,试计算z S 。 a a 4/h

第7章-应力状态和强度理论03.

西南交it 大学应用力*与工程系材#^力学教研i 图示拉伸甄压缩的单向应力状态,材料的破 坏有两种形式: 塑性屈服;极限应力为0■力=<5;或bpO2 腌性斷裂;极限应力为O ■必= CJ\ 此时,4 O>2和偽可由实验测得.由此可建 互如下S 度余件: ^mai 其中n 为安全系数? 2)纯剪应力状态: 图示纯剪应力狀态,材料的破 坏有两 种形式: 塑性屈服:极限应力为 腌性斯裂:极限应力为5 = 5 %和昭可由实验测得.由此可建立如下 =(^■1 it §7.7强度理论及其相当应力 1、概述 1)单向应力状态: a. <亠[6 n 其中, ?度条件:

前述a 度条件对材料破坏的原因并不深究.例如 图示低碳钢拉(压)时的强度条件为: r V J - b, b|nw W — — — // n 然而,其屈服是由于 YnurJl 起的,对?示单向 应力状态,有: 「niu 依照切应力强度条件,有:

4)材料破坏的形式 常温、静栽时材料的破坏形式大致可分为: ?腌性斷裂型: 例如:铸铁:拉伸、扭转等; "钢:三向拉应力状态. -塑性屈月艮型: 例如:低碳钢:拉伸、扭转寻; 铸铁:三向压缩应力状态. 可见:材料破坏的形式不仅与材料有关,还与应力状态有关. , 5)强度理论 根据一些实验资料,针对上述两种破坏形式,分别针对它们发生破坏的原因提出假说,并认为不论材料处于何种应力状态,某种类型的破坏都是由同一因素引起,此即为强度理论. 常用的破坏判据有: 旎性断裂:5,磁可皿 ?性斷裂:V; 下面将讨论常用的-基于上述四种破坏判据的?虞理论.

材料力学试题及答案)

2010—2011材料力学试题及答案A 一、单选题(每小题2分,共10小题,20分) 1、 工程构件要正常安全的工作,必须满足一定的条件。下列除( )项,其他各项是必须满足的条件。 A 、强度条件 B 、刚度条件 C 、稳定性条件 D 、硬度条件 2、内力和应力的关系是( ) A 、内力大于应力 B 、内力等于应力的代数和 C 、内力是矢量,应力是标量 D 、应力是分布内力的集度 3、根据圆轴扭转时的平面假设,可以认为圆轴扭转时横截面( )。 A 、形状尺寸不变,直径线仍为直线。 B 、形状尺寸改变,直径线仍为直线。 C 、形状尺寸不变,直径线不保持直线。 D 、形状尺寸改变,直径线不保持直线。 4、建立平面弯曲正应力公式z I My =σ,需要考虑的关系有( )。 A 、平衡关系,物理关系,变形几何关系; B 、变形几何关系,物理关系,静力关系; C 、变形几何关系,平衡关系,静力关系; D 、平衡关系, 物理关系,静力关系; 5、利用积分法求梁的变形,不需要用到下面那类条件( )来确定积分常数。 A 、平衡条件。 B 、边界条件。 C 、连续性条件。 D 、光滑性条件。 6、图示交变应力的循环特征r 、平均应力m σ、应力幅度a σ分别为( )。 A -10、20、10; B 30、10、20; C 31- 、20、10; D 31-、10、20 。

7、一点的应力状态如下图所示,则其主应力1σ、2σ、3σ分别为()。 A 30MPa、100 MPa、50 MPa B 50 MPa、30MPa、-50MPa C 50 MPa、0、-50Mpa、 D -50 MPa、30MPa、50MPa 8、对于突加载的情形,系统的动荷系数为()。 A、2 B、3 C、4 D、5 9、压杆临界力的大小,()。 A 与压杆所承受的轴向压力大小有关; B 与压杆的柔度大小有关; C 与压杆材料无关; D 与压杆的柔度大小无关。 10、利用图乘法计算弹性梁或者刚架的位移,要求结构满足三个条件。以下那个条件不是必须的() A、EI为常量 B、结构轴线必须为直线。 C、M图必须是直线。 D、M和M至少有一个是直线。 二、按要求作图(共12分) 1、做梁的剪力、弯矩图(10分)

第7章 应力状态和强度理论 (答案)

7.1已知应力状态如图所示(单位:MPa ),试求: ⑴指定斜截面上的应力; ⑵主应力; ⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。 解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0 30α=- (1)cos 2sin 2211.622 x y x y x ασσσσ σατα+-= + -=sin 2cos 293.32 x y x MPa ασστατα-=+= (2)max 261.82 x y MPa σσσ+= = min 38.22x y MPa σσσ+== MPa 8.2611=σ MPa 2.382=σ 03=σ (3)13 max 130.92 MPa σστ-== 7.2扭矩m kN T ?=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成 30=α方向上的正应变。设E=200GPa, 0.3υ=。 解:表面上任一点处切应力为: max 59P T MPa W τ= = 表面上任一点处单元体应力状态如图 30sin 251MPa στα=-=- 120sin 251MPa στα=-= () 00430301201 3.310E εσυσ-= -=? 2 στ τ

7.3用电阻应变仪测得空心钢轴表面某点与母线成 45方向上的正应变4 100.2-?=ε,已知转速min /120r ,G=80GPa ,试求轴所传 递的功率。 解:表面任一点处应力为 max 9550P P P T n W W τ== max 9550 P W n P τ∴= 纯剪切应力状态下,0 45斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()113 1 1E E υ εσυστ+= -= 又()21E G υ= +V 2G τε∴= 代入max 9550 P W n P τ= ,得109.4P KW = 7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成 60 方向上的正应变4 60101.4-?= ε,E=200GPa ,0.3υ=, 试求荷载P 。 解:0P A σ= 204D P πσ=? 斜截面上 02 060cos 4 σσσα== 2001503cos 4 σσσα== 由广义胡克定律 () 0006015060134E E υεσυσσ-= -= 将060043E εσυ = -代入2 04 D P πσ=? 解得P=36.2KN

材料力学试题及答案

一、回答下列各题(共4题,每题4分,共16分) 1、已知低碳钢拉伸试件,标距mm l 1000=,直径mm d 10=,拉断后标距的长度变为mm l 1251=,断口处的直 径为mm d 0.61 =,试计算其延伸率和断面收缩率。 答:延伸率%25%100100 100 125%100001=?-=?-= l l l δ 断面收缩率%64%100))(1(%100211=?-=?-= d d A A A δ 2、试画出图示截面弯曲中心的位置。 3、梁弯曲剪应力的计算公式z z QS = τ,若要计算图示矩形截面 A 点的剪应力,试计算 z S 。 232 3 )84(41bh h h hb S z =+= 4、试定性画出图示截面截面核心的形状(不用计算)。 二、绘制该梁的剪力、弯矩图。(15分) 矩形 圆形 矩形截面中间 挖掉圆形 圆形截面中间 挖掉正方形 4

三、图示木梁的右端由钢拉杆支承。已知梁的横截面为边长等于 的正方形,q=4OKN/m,弹性模量E 1= 10GPa ;钢拉杆的横截面面积A 2=250mm 2 ,弹性模量E 2=210GPa 。试求拉杆的伸长l ?及梁中点沿铅垂方向的位移?。(14分) 解:杆受到的拉力kN q F N 402 2== m EA l F l N 00228.010 25010210310406 93=?????==?- 梁中点的挠度: m I E ql A E l F w l N c 00739.012 2 .0101038421040500114.0384521214 94 314122=? ?????+ =+=+?=?四、砖砌烟窗高m h 30=,底截面m m -的外径m d 31=,内径m d 22=,自重kN P 20001=,受 m kN q /1=的风力作用。试求:(1)烟窗底截面m m -的最大压应力;(2)若烟窗的基础埋深m h 40=, 基础及填土自重按kN P 10002=计算,土壤的许用压应力MPa 3.0][=σ,圆形基础的直径D 应为多大?(20分) 注:计算风力时,可略去烟窗直径的变化,把它看成是等截面的。 F s M m kN q /20=kN 20m kN ?160A B C m 10m 2112kN 88kN 20kN 40kNm 160kNm

材料力学B试题7应力状态_强度理论.docx

40 MPa .word 可编辑 . 应力状态强度理论 1. 图示单元体,试求60100 MPa (1)指定斜截面上的应力; (2)主应力大小及主平面位置,并将主平面标在单元体上。 解: (1) x y x y cos 2x sin 276.6 MPa 22 x y sin 2x cos232.7 MPa 2 3 1 (2)max xy( x y) 2xy281.98MPa39.35 min22121.98 181.98MPa,2 ,3121.98MPa 12 xy1200 0arctan()arctan39.35 2x y240 200 6060 2. 某点应力状态如图示。试求该点的主应力。129.9129.9解:取合适坐标轴令x25 MPa,x 由 120xy sin 2xy cos20 得 y 2 所以m ax x y ( xy ) 2xy 2 m in 22 129.9 MPa 2525 (MPa) 125MPa 50752( 129.9)250 150100 MPa 200 1 100 MPa,20 ,3200MPa 3. 一点处两个互成45 平面上的应力如图所示,其中未知,求该点主应力。 解:y150 MPa,x120 MPa

.word 可编辑 . 由得45x y sin 2xy cos 2x 15080 22 x10 MPa 所以max xy(x y) 22 22xy min y x 45 45 45 214.22 MPa 74.22 1214.22 MPa,20 , 45 374.22 MPa 4.图示封闭薄壁圆筒,内径 d 100 mm,壁厚 t 2 mm,承受内压 p 4 MPa,外力偶矩 M e 0.192 kN·m。求靠圆筒内壁任一点处的主应力。 0.19210 3 解: xπ(0.104 40.14)0.05 5.75MPa t 32 x y pd MPa 50 4t pd MPa 100 2t M e p M e max x y(x y ) 2 xy2 min22100.7 MPa 49.35 1100.7 MPa,249.35 MPa,3 4 MPa 5.受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使 x 100 MPa,x 20MPa40 MPa100 MPa xy x y 12020 MPa 22cos2x sin 2

材料力学试题及答案完整版

材料力学试题及答案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

材料力学-模拟试题 一、单项选择题 1. 截面上的全应力的方向( ) A 、平行于截面 B 、垂直于截面 C 、可以与截面任意夹角 D 、与截面无关 2. 脆性材料的延伸率( ) A 、小于5% B 、小于等于5% C 、大于5% D 、大于等于5% 3. 如图所示简支梁,已知C 点转角为θ。在其它条件不变的情况下,若将荷载F 减小一半,则C 点的转角为( ) A 、θ B 、θ C 、θ D 、2θ 4.危险截面是()所在的截面。 A 、最大面积 B 、最小面积 C 、最大应力 D 、最大内力 5. 图示单元体应力状态,沿x 方向的线应变εx 可表示为( ) A 、E y σ B 、)(1 y x E μσσ- C 、)(1x y E μσσ- D 、G τ 6. A 、线位移 B 、转角 C 、线应变 D 7. 塑性材料的名义屈服应力使用( ) A 、σS 表示 B 、σb 表示 C 、σp 表示 D 、σ表示 8.拉(压)杆应力公式A F N =σ的应用条件是() A 、应力在比例极限内 B 、应力在屈服极限内 C 、外力合力作用线必须沿着杆的轴线 D 、杆件必须为矩形截面杆 9.下列截面中,弯曲中心与其形心重合者是() A 、Z 字形型钢 B 、槽钢 C 、T 字形型钢 D 、等边角钢 10. 如图所示简支梁,已知C 点转角为θ。在其它条件不变的情况下,若将杆长增加一倍,则C 点的转角为( ) A 、2θ B 、4θ C 、8θ D 、16θ x

材料力学四个强度理论

四大强度准则理论: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。 按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 τmax=τ0。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。 所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 发生塑性破坏的条件为: 所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]

材料力学试题及答案

材料力学试题及答案Revised on November 25, 2020

1.轴的扭转剪应力公式τρ=T I P ρ适用于如下截面轴( C ) A.矩形截面轴 B.椭圆截面轴 C.圆形截面轴 D.任意形状截面轴 2.用同一材料制成的实心圆轴和空心圆轴,若长度和横截面面积均相同,则抗扭刚度较大的是哪个( C ) A. 实心圆轴 B.空心圆轴 C.两者一样 D.无法判断 3.矩形截面梁当横截面的高度增加一倍、宽度减小一半时,从正应力强度考虑,该梁的承载能力的变化为( B ) A.不变 B.增大一倍 C.减小一半 D.增大三倍 4.图示悬臂梁自由端B 的挠度为( B ) A.ma a EI ()l -2 B. ma a EI 32()l - C.ma EI D. ma a EI 22()l - 5.图示微元体的最大剪应力τmax 为多大( A ) A. τmax =100MPa B. τmax =0 C. τmax =50MPa D. τmax =200MPa 6.用第三强度理论校核图示圆轴的强度时,所采用的 强度条件为( D ) A. P A M W T W Z P ++()()242≤[σ] B.P A M W T W Z P ++≤[σ] C. ()()P A M W T W Z P ++22≤[σ] D. ( )()P A M W T W Z P ++242≤[σ] 7.图示四根压杆的材料、截面均相同,它 们在纸面内失稳的先后次序为( A ) A. (a),(b),(c),(d) B. (d),(a),(b),(c) C. (c),(d),(a),(b) D. (b),(c),(d),(a) 8.图示杆件的拉压刚度为EA ,在图示外 力作用下 其变形能U 的下列表达式哪个是正确的 ( A ) A. U=P a EA 22 B. U=P EA P b EA 2222l + C. U=P EA P b EA 2222l - D. U=P EA P b EA 2222a +

材料力学试卷及答案(B卷)

.应力在屈服极限内

7.用积分法求图示梁的挠曲线方程时,确定积分常数的四个条件,除0ω=A ,0θ=A 之外, 另外两个条件是( )。 A.,ωωθθ+-+-==c c c c B.,0ωωω+-==c c B C.0,0ωω==c B D.0,0ωθ==c B 8.建立平面弯曲正应力公式 z I My =σ,需要考虑的关系有( )。 A.变形几何关系、物理关系、静力关系 B.平衡关系、物理关系、变形几何关系 C.变形几何关系、平衡关系、静力关系 D.平衡关系,、物理关系、静力关系 9.图示微元体的最大剪应力max τ为多大?( ) A. max τ =100MPa B. max τ =0 C. max τ=50MPaD. max τ =200MPa 10.空心圆轴的外径为 D ,内径为 d ,D d /=α。其抗弯截面系数为( )。 A . 3 (1)32 t D W πα= - B. 3 2(1)32 t D W πα= - C .3 3 (1)32 t D W πα= - D. 3 4(1)32 t D W πα= - 11.右图示二向应力状态,用第三强度理论校核时,其相当应力为( )。 A. 30 B. 30MPa C. 3050 MPa D. 30MPa 题11 12. 空心圆轴扭转时,横截面上切应力分布为图 ( )所示。 A B C D τ

13.一点的应力状态如下图所示,则其主应力1σ、2σ、3 σ分别为( )。 A.30MPa 、100 MPa 、50 MPa B.50 MPa 、30MPa 、-50MPa C.50 MPa 、0、-50Mpa D.0 MPa 、30MPa 、-50MPa 14.压杆临界力的大小( )。 A.与压杆所承受的轴向压力大小有关 B.与压杆材料无关 C.与压杆的柔度大小无关 D.与压杆的柔度大小有关 15.临界应力的经验公式公式只适用于( ) A. 大柔度杆 B. 中柔度杆 C. 小柔度杆 D. 二力杆 二、填空题(每题3分,共15分) 1. 阶梯轴尺寸及受力如图1所示,AB 段与BC 段材料相同,d 2=2d 1,BC 段的与AB 段的最大切应力之比为 _______ 。 2、图示为某构件内危险点的应力状态,若用第三强度理论校核其强度,则相当应力 3σ=r _______。 题1 题2 3、一端固定、另一端有弹簧侧向支承的细长压杆,已知杆件弹性模量为E ,比例极限为P σ, 可采用欧拉公式 ()22 πμ=cr EI F L 计算,压杆的长度系数λ的正确取值范围是_______ 。 4、低碳钢拉伸试件的应力-应变曲线大致可分为四个阶段,这四个阶段是 ___________、屈服阶段、强化阶段、___________。 5、材料在使用过程中提出三个方面的性能要求,即强度要求、刚度要求、___________。 3050MPa

材料力学试题及答案

1、图示刚性梁AB 由杆1和杆2支承,已知两杆的材料相同,长度不等,横截面积分别为A 1和A 2,若载荷P 使刚梁平行下移,则其横截面面积()。 A 、A 1〈A 2B 、A 1 〉A 2 C 、A 1=A 2D 、A 1、A 2为任意 2、建立圆周的扭转应力公式τρ =M ρρ/I ρ时需考虑下列因素中的哪几个?答:( ) (1) 扭矩M T 与剪应力τ ρ 的关系M T =∫A τρ ρdA (2) 变形的几何关系(即变形协调条件) (3) 剪切虎克定律 (4) 极惯性矩的关系式I T =∫A ρ2dA A 、(1) B 、(1)(2) C 、(1)(2)(3) D 、全部 3、二向应力状态如图所示,其最大主应力σ1=() A 、σ B 、2σ C 、3σ D 、4σ 4、高度等于宽度两倍(h=2b)的矩形截面梁,承受垂直方向的载荷,若仅将竖放截面改为平放截面,其它条件都不变,则梁的强度 A 、提高到原来的2倍 B 、提高到原来的4倍 C 、降低到原来的1/2倍 D 、降低到原来的1/4倍 5. 已知图示二梁的抗弯截面刚度EI 相同,若二者自由端的挠度相等,则P 1/P 2=() A 、2 B 、4C 、8 D 、16 6、下列结论中正确的是 ( ) A 、材料力学主要研究各种材料的力学问题 B 、材料力学主要研究各种材料的力学性质 C 、材料力学主要研究杆件受力后变形与破坏的规律 D 、材料力学主要研究各种材料中力与材料的关系 7、有两根圆轴,一根为实心轴,直径为D 1,另一根为空心轴,内外径比为d 2/D 2=0.8。若两轴的长度、材料、轴内扭矩和产生的扭转角均相同,则它们的重量之比W 2/W 1为( ) A 、0.74 B 、0.62 C 、0.55 D 、0.47 8、材料的失效模式 B 。 A 只与材料本身有关,而与应力状态无关; B 与材料本身、应力状态均有关; C 只与应力状态有关,而与材料本身无关; 题一、3图 题一、5图 题一、 4 题一、1

材料力学试题及答案

一、判断题(正确打“√,”错误打“X,”本题满分为10 分) 1、拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。( ) 2、圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。( ) 3、两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同,因而两梁的剪力图和弯 矩图不一定相同。( ) 4、交变应力是指构件内的应力,它随时间作周期性变化,而作用在构件上的载荷可能是动 载荷,也可能是静载荷。( ) 5、弹性体的应变能与加载次序无关,只与载荷的最终值有关。() 6、单元体上最大切应力作用面上必无正应力。( ) 7、平行移轴公式表示图形对任意两个相互平行轴的惯性矩和惯性积之间的关系。() 8、动载荷作用下,构件内的动应力与材料的弹性模量有关。( ) 9、构件由突加载荷所引起的应力,是由相应的静载荷所引起应力的两倍。( ) 10、包围一个点一定有一个单元体,该单元体各个面上只有正应力而无切应力。( ) 二、选择题(每个 2 分,本题满分16 分) 1.应用拉压正应力公式F N A 的条件是()。 A、应力小于比例极限; B、外力的合力沿杆轴线; C、应力小于弹性极限; D、应力小于屈服极限。 2.梁拟用图示两种方式搁置,则两种情况下的最大弯曲正应力之比(a) max (b) max 为()。 A、1/4 ; B 、1/16 ; C 、1/64 ; D 、16。 4h h 4h h (a) (b) 3、关于弹性体受力后某一方向的应力与应变关系有如下论述:正确的是。 A、有应力一定有应变,有应变不一定有应力; B、有应力不一定有应变,有应变不一定有应力; C、有应力不一定有应变,有应变一定有应力; D、有应力一定有应变,有应变一定有应力。 4、火车运动时,其轮轴横截面边缘上危险点的应力有四种说法,正确的是。 A:脉动循环应力:B:非对称的循环应力; C:不变的弯曲应力;D:对称循环应力

材料力学B试题7应力状态_强度理论

(2) 主应力大小及主平面位置,并将主平面标在单元体上。 解:(1) MPa 6.762sin 2cos 2 2 =--+ += ατασσσσσα x y x y x MPa 7.322cos 2sin 2 -=+-=ατασστα x y x (2) 2 2min max )2 (2xy y x y x τσσσσσσ+-±+=98.12198.81-=MPa 98.811=σMPa ,02 =σ,98.1213-=σ MPa 35.3940 200 arctan 21)2arctan( 2 10== --=y x xy σστα 2. 解:取合适坐标轴令25=x σ MPa ,9.129-=x τ由02cos 2sin 2 120 =+-= ατασστxy y x 得125-=y σMPa 所以2 2m in m ax )2 (2xy y x y x τσσσσσσ+-± += 200 100 15050)9.129(755022-= ±-=-+± -= MPa 1001=σ MPa ,02=σ,2003-=σ MPa 3. 一点处两个互成 45平面上的应力如图所示,其中σ未知,求该点主应力。 解:150=y σ MPa ,120-=x τ MPa

由 ατασστ2cos 2sin 2 45 xy y x +-= 802 150 -=-= x σ 得 10-=x σ MPa 所以 2 2min max )2 (2xy y x y x τσσσσσσ+-±+= 22 .7422.214-= MPa 22.2141=σ MPa ,02=σ,22.743-=σ 4. 图示封闭薄壁圆筒,内径100=d mm ,壁厚2=t mm ,承受内压4=p MPa ,外力偶矩192.0=e M kN ·m 。求靠圆筒内壁任一 点处的主应力。 解:75.505.032 ) 1.0104.0(π1019 2.0443 =?-?= x τ MPa 504==t pd x σ MPa 1002==t pd y σ MPa 35.497.100)2 (22 2min max =+-±+=xy y x y x τσσσσσσ MPa 7.1001=σ MPa ,35.492=σ MPa ,43-=σ MPa 5. 受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使100=x σMPa ,20=x τ α τασσσσσα2sin 2cos 2 2 x y x y x --+ += ' 45-M e

材料力学强度理论

9 强度理论 1、 脆性断裂与塑性屈服 脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。 塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。 2、四种强度理论 (1)最大拉应力理论(第一强度理论) 材料发生脆性断裂的主要因素就是最大拉应力达到极限值,即:0 1σσ= (2)最大伸长拉应变理论(第二强度理论): 无论材料处于什么应力状态,只要发生脆性断裂,都就是由于最大拉应变(线变形)达 到极限值导致的,即: 01εε= (3)最大切应力理论(第三强度理论) 无论材料处于什么应力状态,只要发生屈服,都就是由于最大切应力达到了某一极限 值, 即: 0max ττ=

(4)形状改变比能理论(第四强度理论) 无论材料处于什么应力状态,只要发生屈服,都就是由于单元体的最大形状改变比能达到一个极限值,即:u u 0d d = 强度准则的统一形式 [] σσ≤* 其相当应力: r11σ=σ r2123()σ=σ-μσ+σ r313σ=σ-σ 2 22r41223311()()()2 ??σ=σ-σ+σ-σ+σ-σ?? 3、摩尔强度理论的概念与应用; 4、双剪强度理论概念与应用。 9、1图9、1所示的两个单元体,已知正应力σ =165MPa,切应力τ=110MPa 。试求两个单元体的第三、第四强度理论表达式。 图9、1 [解] (1)图9、1(a)所示单元体的为空间应力状态。注意到外法线为y 及-y 的两个界面上没有切应力,因而 y 方向就是一个主方向,σ就是主应力。显然,主应力σ 对与y 轴平行的斜截面上的应力没有影响,因此在xoz 坐标平面内可以按照平面应力状态问题对待。外法线为x 、z 轴两对平面上只有切应力τ,为纯剪切状态,可知其最大与最小正应力绝对值均为τ,则图9、1(a)所示单元体的三个主应力为: τστσσσ-===321、、, 第三强度理论的相当应力为 解题范例 r4σ=

第7章应力状态和强度理论(答案)

已知应力状态如图所示(单位:MPa ),试求: ⑴指定斜截面上的应力; ⑵主应力; ⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。 解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0 30α=- (1)cos 2sin 2211.622 x y x y x MPa ασσσσσατα+-= + -= sin 2cos 293.32 x y x MPa ασστατα-=+= (2)2 2max 261.82 2x y x y x MPa σσσσστ+-??= += ??? 2 2 min 38.222x y x y x MPa σσσσστ+-??=+= ??? MPa 8.2611=σ MPa 2.382=σ 03=σ (3)13 max 130.92 MPa σστ-== 扭矩m kN T ?=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成 30=α方向上的正应变。设E=200GPa, 0.3υ=。 解:表面上任一点处切应力为: max 59P T MPa W τ= = 表面上任一点处单元体应力状态如图 30sin 251MPa στα=-=- 120sin 251MPa στα=-= () 00430301201 3.310E εσυσ-= -=? 100100 200 60T α A 2 σ1 στ τ

用电阻应变仪测得空心钢轴表面某点与母线成 45方向上的正应变 4100.2-?=ε,已知转速min /120r ,G=80GPa ,试求轴所传递 的功率。 解:表面任一点处应力为 max 9550P P P T n W W τ== max 9550 P W n P τ∴= 纯剪切应力状态下,0 45斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()11311E E υ εσυστ+= -= 又()21E G υ=+V 2G τε∴= 代入max 9550 P W n P τ= ,得109.4P KW = 图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成 60方向上的正应变460101.4-?= ε,E=200GPa ,0.3υ=,试求荷载P 。 解:0P A σ= 204D P πσ=? 斜截面上 02 060cos 4 σσσα== 2001503cos 4 σσσα== 由广义胡克定律 () 0006015060134E E υεσυσσ-= -= 将060043E εσυ = -代入2 04 D P πσ=? 解得P= 45A 80120 60 A P

材料力学带答疑

第七章应力和应变分析强度理论 1.单元体最大剪应力作用面上必无正应力 答案此说法错误(在最大、最小正应力作用面上剪应力一定为零;在最大剪应力作用面上正应力不一定为零。拉伸变形时,最大正应力发生在横截面上,在横截面上剪应力为零;最大剪应力发生在45度角的斜截面上,在此斜截面上正应力为σ/2。) 2. 单向应力状态有一个主平面,二向应力状态有两个主平面 答案此说法错误(无论几向应力状态均有三个主平面,单向应力状态中有一个主平面上的正应力不为零;二向应力状态中有两个主平面上的正应力不为零) 3. 弯曲变形时梁中最大正应力所在的点处于单向应力状态 答案此说法正确(最大正应力位于横截面的最上端和最下端,在此处剪应力为零。)4. 在受力物体中一点的应力状态,最大正应力作用面上切应力一定是零 答案此说法正确(最大正应力就是主应力,主应力所在的面剪应力一定是零) 5.应力超过材料的比例极限后,广义虎克定律不再成立 答案此说法正确(广义虎克定律的适用范围是各向同性的线弹性材料。) 6. 材料的破坏形式由材料的种类而定 答案此说法错误(材料的破坏形式由危险点所处的应力状态和材料的种类综合决定的)

7. 不同强度理论的破坏原因不同 答案此说法正确(不同的强度理论的破坏原因分别为:最大拉应力、最大线应变、最大剪应力、形状比能。) 二、选择 1.滚珠轴承中,滚珠与外圆接触点为应力状态。 A:二向;B:单向C:三向D:纯剪切 答案正确选择C(接触点在铅垂方向受压,使单元体向周围膨胀,于是引起周围材料对接触点在前后、左右方向的约束应力。) 2.厚玻璃杯因沸水倒入而发生破裂,裂纹起始于。 A:内壁B:外壁C:内外壁同时D:壁厚的中间答案正确选择:B (厚玻璃杯倒入沸水,使得内壁受热膨胀,外壁对内壁产生压应力的作用;内壁膨胀使得外壁受拉,固裂纹起始于外壁。) 3. 受内压作用的封闭薄壁圆筒,在通过其壁上任意一点的纵、横两个截面 中。 A:纵、横两截面均不是主平面;B:横截面是主平面、纵截面不是主平面;C:纵、横二截面均是主平面;D:纵截面是主平面,横截面不是主平面;

《材料力学》第章%B应力状态和强度理论%B习

第七章 应力状态和强度理论 习题解 [习题7-1] 试从图示各构件中A 点和B 点处取出单元体,并表明单元体各面上的应力。 [习题7-1(a )] 解:A 点处于单向压应力状态。 2244 12d F d F F A N A ππσ-=-== [习题7-1(b )] 解:A 点处于纯剪切应力状态。 331616 1d T d T W T P A ππτ-=== MPa mm mm N 618.798014.3108163 36=????= [习题7-1(b )] 解:A 点处于纯剪切应力状态。 0=∑A M 04.028.02.1=?--?B R )(333.1kN R B = A σ A τ

)(333.1kN R Q B A -=-= MPa mm N A Q A 417.01204013335.15.12-=??-=? =τ B 点处于平面应力状态 MPa m m m m m m N I y M z B B 083.21204012 130103.0333.1436=??????==σMPa m m m m m m N b I QS z z B 312.0401204012 145)3040(13334 33 *-=??????-== τ [习题7-1(d )] 解:A 点处于平面应力状态 MPa m m m m N W M z A A 064.502014.332 1103.39333=????==σ MPa m m m m N W T P A 064.502014.316 1106.78333 =????== τ [习题7-2] 有一拉伸试样,横截面为mm mm 540?的矩形。在与轴线成0 45=α角的面上切应力MPa 150=τ时,试样上将出现滑移线。试求试样所受的轴向拉力F 。 解:A F x = σ;0=y σ;0=x τ 004590cos 90sin 2 x y x τσστ+-= A F 20 45= τ 出现滑移线,即进入屈服阶段,此时, 15020 45≤= A F τ kN N mm mm N A F 6060000540/30030022==??== [习题7-3] 一拉杆由两段沿n m -面胶合而成。由于实用的原因,图中的α角限于0 60 ~0范围内。作为“假定计算”,对胶合缝作强度计算时,可以把其上的正应力和切应力分别与相应的许用应力比较。现设胶合缝的许用切应力][τ为许用拉应力][σ的4/3 ,且这一拉杆 A τ B τ B σA τA σ

材料力学试卷及答案

一、低碳钢试件的拉伸图分为、、、四个阶段。(10分) 二、三角架受力如图所示。已知F=20kN,拉杆BC采用Q235圆钢,[σ钢]=140MPa,压杆AB采用横截面为正方形的松木,[σ木]=10MPa,试用强度条件选择拉杆BC的直径d和压杆AB的横截面边长a。 n=180 r/min,材料的许用切 四、试绘制图示外伸梁的剪力图和弯矩图,q、a均为已知。(15分) 2

五、图示为一外伸梁,l=2m,荷载F=8kN,材料的许用应力[σ]=150MPa,试校核该梁的正应力强度。(15分) 六、单元体应力如图所示,试计算主应力,并求第四强度理论的相当应力。(10分) e=200mm。b=180mm,h=300mm。求σmax和σmin。(15分)

八、图示圆杆直径d=100mm,材料为Q235钢,E=200GPa,λp=100,试求压杆的临界力F cr。(10 1)答案及评分标准 评分标准:各2.5分。 二、d=15mm; a=34mm. 评分标准:轴力5分,d结果5分,a结果5分。 三、τ=87.5MPa, 强度足够. 评分标准:T 3分,公式4分,结果3分。

四、 评分标准:受力图、支座反力5分,剪力图5分,弯矩图5分。 五、σmax =155.8MPa >[σ]=100 MPa ,但没超过许用应力的5%,安全. 评分标准:弯矩5分,截面几何参数 3分,正应力公式5分,结果2分。 六、(1)σ1=141.42 MPa ,σ=0,σ3=141.42 MPa ;(2)σr 4=245 MPa 。 评分标准:主应力5分,相当应力5分。 七、σmax =0.64 MPa ,σmin =-6.04 MPa 。 评分标准:内力5分,公式6分,结果4分。 八、Fc r =53.39kN 评分标准:柔度3分,公式5分,结果2分。 一、什么是强度失效、刚度失效和稳定性失效? 二、如图中实线所示构件内正方形微元,受力后变形 为图中虚线的菱形,则微元的剪应变γ为 ? A 、 α B 、 α-0 90 C 、 α2900 - D 、 α2 答案:D 三、材料力学中的内力是指( )。 A 、 物体内部的力。 B 、 物体内部各质点间的相互作用力。 C 、 由外力作用引起的各质点间相互作用力的改变量。 D 、 由外力作用引起的某一截面两侧各质点间相互作用力的合力的改变量。 答案:B 四、为保证机械和工程结构的正常工作,其中各构件一般应满足 、 和 三方面的要求。 答案:强度、刚度、稳定性 1..5qa F S 图 M 图 q F S 图 —— + M 图 qa 2 qa 2/2 α α

材料力学试题及答案73241

一、判断题(正确打“√”,错误打“X ”,本题满分为10分) 1、拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。( ) 2、圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。( ) 3、两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同,因而两梁的剪力图和弯矩图不一定相同。( ) 4、交变应力是指构件内的应力,它随时间作周期性变化,而作用在构件上的载荷可能是动载荷,也可能是静载荷。( ) 5、弹性体的应变能与加载次序无关,只与载荷的最终值有关。( ) 6、单元体上最大切应力作用面上必无正应力。( ) 7、平行移轴公式表示图形对任意两个相互平行轴的惯性矩和惯性积之间的关系。( ) 8、动载荷作用下,构件内的动应力与材料的弹性模量有关。( ) 9、构件由突加载荷所引起的应力,是由相应的静载荷所引起应力的两倍。( ) 10、包围一个点一定有一个单元体,该单元体各个面上只有正应力而无切应力。( ) 二、选择题(每个2分,本题满分16分) 1.应用拉压正应力公式A F N =σ的条件是( )。 A 、应力小于比例极限; B 、外力的合力沿杆轴线; C 、应力小于弹性极限; D 、应力小于屈服极限。 2.梁拟用图示两种方式搁置,则两种情况下的最大弯曲正应力之比 ) (m ax )(m ax b a σσ 为 ( )。 A 、1/4; B 、1/16; C 、1/64; D 3 A B C 、有应力不一定有应变,有应变一定有应力; D 、有应力一定有应变,有应变一定有应力。 4、火车运动时,其轮轴横截面边缘上危险点的应力有四种说法,正确的是 。 A :脉动循环应力: B :非对称的循环应力; C :不变的弯曲应力;D :对称循环应力 5、如图所示的铸铁制悬臂梁受集中力F 作用,其合理的截面形状应为图( ) 6、对钢制圆轴作扭转校核时,发现强度和刚度均比规定的要求低了20%,若安全因数不 (a (b

相关文档
最新文档