数值计算方法
《数值计算方法》习题答案

《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。
解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。
解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。
数值计算方法ppt

VIP有效期内享有搜索结果页以及文档阅读页免广告特权,清爽阅读没有阻碍。
知识影响格局,格局决定命运! 多端互通
抽奖特权
VIP有效期内可以无限制将选中的文档内容一键发送到手机,轻松实现多端同步。 开通VIP后可以在VIP福利专区不定期抽奖,千万奖池送不停!
福利特权
开通VIP后可在VI买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
Ax b 第一章 引论i 2 ,3, , n
§ 1.1 数值计算的研究对象与特点
§ 1.2 数值问题与数值方法
a11
A
a21
an
1
华长生制作
a12 a22
an2
§
aa121nn.3
误差
ann
i1
bi lij x j
xi
j1
lii
1
本章要点:
绝对误差(限)和相对误差(限) 有效数字位数及其与误差的关系
1 2!
2 f x12
*
( x1
x1* )2
2 f x1x2
*
( x1
x1* )(x2
x2* )
2 f x22
*
( x2
x2* )2
华长生制作
f (x1* , x2* )
f x1
*
E1
f x2
*
E2
22
y*的绝对误差为
E( y* )
数值计算方法教案

数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与特点引言:介绍数值计算的定义和基本概念数值计算的特点:离散化、近似解、误差分析1.2 数值计算方法分类直接方法:高斯消元法、LU分解法等迭代方法:雅可比迭代、高斯-赛德尔迭代等1.3 数值计算的应用领域科学计算:物理、化学、生物学等领域工程计算:结构分析、流体力学、电路模拟等第二章:误差与稳定性分析2.1 误差的概念与来源绝对误差、相对误差和有效数字误差来源:舍入误差、截断误差等2.2 数值方法的稳定性分析线性稳定性分析:特征值分析、李雅普诺夫方法非线性稳定性分析:李模型、指数稳定性分析2.3 提高数值计算精度的方法改进算法:雅可比法、共轭梯度法等增加计算精度:闰塞法、理查森外推法等第三章:线性方程组的数值解法3.1 高斯消元法算法原理与步骤高斯消元法的优缺点3.2 LU分解法LU分解的步骤与实现LU分解法的应用与优势3.3 迭代法雅可比迭代法与高斯-赛德尔迭代法迭代法的选择与收敛性分析第四章:非线性方程和方程组的数值解法4.1 非线性方程的迭代解法牛顿法、弦截法等收敛性条件与改进方法4.2 非线性方程组的数值解法高斯-赛德尔法、共轭梯度法等方程组解的存在性与唯一性4.3 非线性最小二乘问题的数值解法最小二乘法的原理与方法非线性最小二乘问题的算法实现第五章:插值与逼近方法5.1 插值方法拉格朗日插值、牛顿插值等插值公式的构造与性质5.2 逼近方法最佳逼近问题的定义与方法最小二乘逼近、正交逼近等5.3 数值微积分数值求导与数值积分的方法数值微积分的应用与误差分析第六章:常微分方程的数值解法6.1 初值问题的数值解法欧拉法、改进的欧拉法龙格-库塔法(包括单步和多步法)6.2 边界值问题的数值解法有限差分法、有限元法谱方法与辛普森法6.3 常微分方程组与延迟微分方程的数值解法解耦与耦合方程组的处理方法延迟微分方程的特殊考虑第七章:偏微分方程的数值解法7.1 偏微分方程的弱形式介绍偏微分方程的弱形式应用实例:拉普拉斯方程、波动方程等7.2 有限差分法显式和隐式差分格式稳定性分析与收敛性7.3 有限元法离散化过程与元素形状函数数值求解与误差估计第八章:优化问题的数值方法8.1 优化问题概述引言与基本概念常见优化问题类型8.2 梯度法与共轭梯度法梯度法的基本原理共轭梯度法的实现与特点8.3 序列二次规划法与内点法序列二次规划法的步骤内点法的原理与应用第九章:数值模拟与随机数值方法9.1 蒙特卡洛方法随机数与重要性采样应用实例:黑箱模型、金融衍生品定价等9.2 有限元模拟离散化与求解过程应用实例:结构分析、热传导问题等9.3 分子动力学模拟基本原理与算法应用实例:材料科学、生物物理学等第十章:数值计算软件与应用10.1 常用数值计算软件介绍MATLAB、Python、Mathematica等软件功能与使用方法10.2 数值计算在实际应用中的案例分析工程设计中的数值分析科学研究中的数值模拟10.3 数值计算的展望与挑战高性能计算的发展趋势复杂问题与多尺度模拟的挑战重点解析本教案涵盖了数值计算方法的基本概念、误差分析、线性方程组和非线性方程组的数值解法、插值与逼近方法、常微分方程和偏微分方程的数值解法、优化问题的数值方法、数值模拟与随机数值方法以及数值计算软件与应用等多个方面。
数值计算方法

数值计算方法的特点1.面向计算机,要根据计算特点提供实际可行的有效算法,即算法只能包括加、减、乘、除运算和逻辑运算,是计算机能直接处理的。
2.有可能的理论分析,能任意逼近并达到精度要求,对近似算法要保证收敛性和数值稳定性,还要对误差进行分析,这些都建立在相应数学理论基础上。
3.要有好的计算复杂性,时间复杂性好是指节省时间,空间复杂性好是指节省存储量,这也是建立算法要研究的问题,它关系到算法能否在计算机上实现。
4.要有数值实验,即任何一个算法除了从理论上要满足上述三点外,还要通过数值试验证明是行之有效的。
误差来源模型误差;观测误差;截断误差;舍入误差。
设计算法的注意事项1.要注意简化计算步骤,减少运算次数。
2.要避免两相近数相减。
3.要注意浮点数运算的特点,防止大数“吃掉”小数。
4.要避免除数绝对值远远小于被除数绝对值的除法。
5.要设法控制误差的传播,选取数值稳定的计算公式。
二分法局限性是只能用于求实根,不能用于求复根及偶数重根。
牛顿法X n+1=x n-[f(x1)]/[f’(x1)],n=1,2,3……例:用牛顿法求方程f(x)=x3+4x2-10=0在[1,2]内一个实根,取初始近似值x0=1.5解:f’(x)=3x2+8x所以迭代公式为X n+1=x n-(x n3+4x n2-10)/(3x n2+8x n),n=0,1,2……拉格朗日插值多项式l0(x)=(x-x1)/(x0-x1),l1(x)=(x-x0)/(x1-x0)L1(x)=y0l0(x)+y1l1(x)例:已知y=,x0=4,x1=9,用线性插值求的近似值。
解:y0=2,y1=3,基函数分别为l0(x)=(x-9)/(4-9)=…….L1(x)=(x-4)/(9-4)=……..L1(x)= y0l0(x)+y1l1(x)=……所以L1(x)=……多项式拟合解题步骤:1.由已知数据画出函数粗略的图形—散点图,确定拟合多项式的次数n。
数值计算三种算法比较

有限元法,有限差分法和有限体积法的区别作者:闫霞1. FDM 1.1概念有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
1.2差分格式(1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
(2)从差分的空间形式来考虑,可分为中心格式和逆风格式。
(3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
1.3构造差分的方法构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2. FEM 2.1概述有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
2.2原理有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
数值计算方法

数值计算方法的特点1.面向计算机,要根据计算特点提供实际可行的有效算法,即算法只能包括加、减、乘、除运算和逻辑运算,是计算机能直接处理的。
2.有可能的理论分析,能任意逼近并达到精度要求,对近似算法要保证收敛性和数值稳定性,还要对误差进行分析,这些都建立在相应数学理论基础上。
3.要有好的计算复杂性,时间复杂性好是指节省时间,空间复杂性好是指节省存储量,这也是建立算法要研究的问题,它关系到算法能否在计算机上实现。
4.要有数值实验,即任何一个算法除了从理论上要满足上述三点外,还要通过数值试验证明是行之有效的。
误差来源模型误差;观测误差;截断误差;舍入误差。
设计算法的注意事项1.要注意简化计算步骤,减少运算次数。
2.要避免两相近数相减。
3.要注意浮点数运算的特点,防止大数“吃掉”小数。
4.要避免除数绝对值远远小于被除数绝对值的除法。
5.要设法控制误差的传播,选取数值稳定的计算公式。
二分法局限性是只能用于求实根,不能用于求复根及偶数重根。
牛顿法X n+1=x n-[f(x1)]/[f’(x1)],n=1,2,3……例:用牛顿法求方程f(x)=x3+4x2-10=0在[1,2]内一个实根,取初始近似值x0=1.5解:f’(x)=3x2+8x所以迭代公式为X n+1=x n-(x n3+4x n2-10)/(3x n2+8x n),n=0,1,2……拉格朗日插值多项式l0(x)=(x-x1)/(x0-x1),l1(x)=(x-x0)/(x1-x0)L1(x)=y0l0(x)+y1l1(x)例:已知y=,x0=4,x1=9,用线性插值求的近似值。
解:y0=2,y1=3,基函数分别为l0(x)=(x-9)/(4-9)=…….L1(x)=(x-4)/(9-4)=……..L1(x)= y0l0(x)+y1l1(x)=……所以L1(x)=……多项式拟合解题步骤:1.由已知数据画出函数粗略的图形—散点图,确定拟合多项式的次数n。
《数值计算方法》课程教学大纲

A:《数值计算方法》课程教学大纲授课专业:信息与计算科学、数学与应用数学、统计学学时数:64+16学分数:5一、课程的性质和目的数值计算方法是综合性大学信息与计算科学专业的一门主要专业基础课程,同时也是许多理工科本科的专业课。
“数值计算方法”,它是以各类数学问题的数值解法作为研究对象,并结合现代计算机科学与技术为解决科学与工程中遇到的各类数学问题提供算法,它是平行于理论分析和科学实验的重要科学研究手段。
本课程的教学目的在于通过教与学,使学生系统掌握数值计算方法的基本概念和分析问题的基本方法,并通过上机实习为数值计算方法的进一步学习和解决科学与工程中的实际问题打好基础,使学生具备基本的算法分析、算法设计的能力和较强的编程能力。
二、课程教学的基本要求本课程的教学环节包括课堂讲授,实验(包括上机实验),习题课,答疑和期末考试。
通过上述基本教学步骤,要求学生理解并掌握数值计算中误差的概念、函数的数值逼近(多项式插值问题与函数的最佳逼近)、数值积分与数值微分、数值线性代数问题(线性方程组的数值解、数值求解矩阵的特征值与特征向量)、非线性方程的数值解法以及常微分方程(初、边值问题)的数值解法。
并通过上机实习,深入理解和掌握各类数学问题数值算法及了解数值计算中应注意的问题,为后续课程的学习奠定良好的基础。
本课程以课堂讲授为主(总共授课64学时),每章后配有一定数量的习题,巩固课堂所学的知识。
每一类算法应选做一定数量的实习题(全部安排16学时上机实习),以便深入理解数值算法的内容。
考核方式为闭巻考试。
三、课程教学内容第一章引论(3学时)要求理解与熟练掌握的内容有:数值计算中误差的基本概念;算法的数值稳定性问题。
一般理解与掌握的内容有:计算机中数的浮点表示。
难点:算法的数值稳定性。
第二章函数基本逼近(一)----插值逼近(10学时)要求理解与熟练掌握的内容有:代数多项式插值;差商;牛顿插值多项式;埃尔米特插值。
要求一般理解与掌握的内容有:样条函数插值;要求了解的内容有:B-样条及其性质。
数值计算方法课件

2020/8/1
4
1.1 算法
一、算法的概念 当我们用数值计算方法求解一个比较复杂的数学问题
时,常常要事先拟定一个计算方案,规划一下计算的步骤。 所谓算法,就是指在求解数学问题时,对求解方案和计算 步骤的完整而明确的描述。
描述一个算法可以采用许多方法,最常用的一个方法 是程序流程图。算法也可以用人的自然语言来描述。如果 用计算机能接受的语言来描述算法,就称为程序设计。
1 x ne x1d x
0
x ne x1
1 0
1 n x n1e x1d x
0
1 n 1 x n 1 e x 1 d x 0
2020/8/1
17
或
En 1 nEn1 ( n=2, 3, ...)
这里
1 E1 e 0.3678794412
E1
1 xe x1dx
0
1 xd e x 1 0
如
取
E
的
20
近
似
值
为
零
,
以
它
为
起
始
值
,
则
起
始
误
差
最
大
为
1。 21
此
误
差
在
求
E 1 9时
乘
了
1, 20
因
此
E
1
的9ຫໍສະໝຸດ 误差最大
为
1 20
1。 21
E
的
9
误
差
最
大
,
为
1 10
1 11
时 , 起 始 误 差 已 减 小 至 2.5 10 8。
1 20
1。 21
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a11 ... a1n A ... ... ... a ... a nn n1
求A的特征值和特征向量?
问题四
两个例子 美国的人口普查每10年举行一次,下表列出了从1940年到 1990年的人口(按千人计)
年
人口 (千 人) 能否利用这些数据合理地估计人口的数量,比如1965年的人口,
•
数值计算研究内容:对如下五类问题探索数值求解 方法及其与算法有关的理论分析 (1) 数值代数(线性方程组、非线性方程及方程组的数值解
法)
(2) 数值逼近(各种函数逼近问题的数值解、数值积 分和微分)
(3) 常微分方程数值解法 (4) 偏微分方程数值解 (5) 最优化理论和方法
数值计算的根本任务就是研究算法
科学计算的一般过程
研究求数学问题近似解的方法和过程
实际问题
应用数学
数学模型 数值计算方法的理论
程序设计 上机计算求出结果
计算数学
•一个科学计算过程主要包括如下几个环节:
1.1.1 数学建模:将工程问题数学化
应用有关学科的知识和数学理论,将实际工程问题,用精炼 准确的数学语言对其核心部分进行描述并给出数学模型,这一过 程常称为数学建模。一个好的数学模型符合下列两个方面的要求: 1.数学模型能真实准确的反映实际工程问题的本质; 2.数学模型所用的数学算法能再计算机上实现
p3 ( x ) a3 x a2 x a1 x a0
直接计算需要6次乘法,3次加法。如果作如下改变:
3
2
p3 ( x ) a3 x 3 a2 x 2 a1 x a0
((a3 x a2 ) x a1 ) x a0
只有3次乘法,3次加法。这个算法称作:秦九绍算法。
算法:从给定的已知量出发,经过有限次四则运算及 规定的运算顺序,最后求出未知量的数值解,这样构所需的乘除运算总次数
计算量是衡量一个算法好坏的重要指标!
• 研究数值算法的任务主要有:
(1) 构造计算机上可执行的算法 计算机上可执行的运算: 四则运算 逻辑运算
X=????
多项式次数一般超过5次,它的根一般已经不能用 公式表示
非线性方程呢?
e x 3x 2 0
x 2
X=???
问题二:
2 x1 x2 x3 2 ① x1 x2 2 x3 1 ② 2 x1 8 x2 6 x3 6 ③ x1 x2 2 x3 1 ① 3 x2 3 x3 0 ② 3 x2 x3 2 ③ x1 x2 2 x3 1 ① 2 x1 x2 x3 2 ② x1 4 x2 3 x3 3 ③ x1 x2 2 x3 1 3 x2 3 x3 0 2 x3 2
具有以下的性质:
1. I n 0 2. I n 单调递减 3. lim I n 0
n
n n n x x x 4. x [0,1] 时, 6 5 x 5
1 1 In 6( n 1) 5( n 1)
•
将问题可算化的手段:将问题可算化是设计一个算 法的第一步
§1.2 数值计算方法的研究内容与特点
• 数值计算:常称为数值分析或计算数学或计算方法。 主要是研究如何运用计算工具(如计算 器、计算机等)去获得数学问题的数值 解的理论和方法。
对那些在经典数学中,用解析方法在理论上已作出 解的存在,但要求出他的解析解又十分困难,甚至 是不可能的这类数学问题,数值解法就显得不可缺 少,同时又十分有效。 实践表明:计算方法正在日趋明显地成为数学 与计算机科学的交叉科学。
在建模和具体运算过程中所用的数据 往往是通过观察和测量得到的,受观 测方式、仪器精度以及外部观测条件 等多种因素限制,不可能获得精确值, 由此而来产生的误差。
观测误差
截断误差
由于计算机只能完成有限次算术运算和 逻辑运算,因此要将有些需用极限或无 穷过程进行的运算有限化,对无穷过程 进行截断,这就带来误差。
吕同富 康兆敏 方秀男
清华大学出版社
在数学发展中,理论和计算是紧密联系的。现代计算机
的出现为大规模的数值计算创造了条件,集中而系统的研究
适用于计算机的数值方法变得十分迫切和必要。数值计算方 法正是在大量的数值计算实践和理论分析工作的基础上发展
起来的,它不仅仅是一些数值方法的简单积累,而且揭示了
包含在多种多样的数值方法之间的相同的结构和统一的原理 。数值算法是进行科学计算必不可缺少的起码常识;更为重 要的是通过对它们的讨论,能够使人们掌握设计数值算法的 基本方法和一般原理,为在计算机上解决科学计算问题打下 基础。
数学分析(或微积分)
高等代数 数学软件
我们先来看看学过的一些知识和问题:
3x 5 0
2 x ^ 2 3x 8 0
如果:三次方程呢? n次方程呢?
x 5 / 3
x1,2 3 3*3 4*2*(8) 2*2
x 3x 9 x 7 x x 0
6 5 3 2
1.1.3 对数值计算方法进行程序设计
1.熟练掌握一门语言,比如c语言,c++,matlab, fortran 我们在以后用到的是matlab
将数值问题机器化
1.1.4 上机计算并分析结果
数值模拟物理过程,分析计算结果的可靠性, 必要时重复上述过程。
理论来源于实践,要应用的实践中去
其中算法设计是数值计算的核心内容。数值计算方 法针对来源于科学与工程中的数学模型问题,介绍 计算机上常用的数值方法的算法设计思想并进行算 法分析。
1 1 3 2 理论上很“漂亮”的 n n n. Cramer法 3 则 3
在计算机上并不适用!
►高斯消元法(Gauss):
运算量(乘除)
取n 20
Gauss: 3060次
Cramer: (20+1)!(20-1) 5.11019 19 30.78年(1012 次 / 秒)
1.1.2 对数学问题给出数值计算方法 例1 求解线性方程组 求解二次方程
Ax b
ax2 bx c 0
是数值问题
输入的数据是系数矩阵 A, 常数项向量 b与系数a , b, c
输出的数据是解向量 x , 和方程的解 x1 , x2
我们能给出怎样的算法?
什么样的算法才能是好算法呢? 1.算法的速度(算法的收敛速度); 2.算法所得到结果的精确度; 3.算法所占用的计算机资源;
例1.1.2
解线性方程组
Ax b,
其中,A (aij )nn , x ( x1, x2 ,..., xn )T , b (b1 , b2 ,...,bn )T .
► 克兰姆(Cramer)法则: 运算量(乘除):
xi
Ai A
, i 1, 2,
, n.
(n 1) n! (n 1) (n 1)! (n 1)
方程的个数是3个
那如果是20个呢? 用什么方法解?
一般的呢? a x a x ... a x b 11 1 12 2 1n n 1 a x a x ... a x b 21 1 22 2 2n n 2 ... ... ... an1 x1 an 2 x2 ... ann xn bn 我们在数学分析中学过:用克莱姆法则能解决
xi
Ai A
, i 1, 2,
, n.理论上很“漂亮”的Cramer法
则 在计算机上并不适用!
n=20
(20+1)!(20-1) 5.11019 19 30.78年(1012 次 / 秒)
问题三
1 2 2 A 1 0 2 0 1 1
求A的特征值和特征向量
(1) 用有限维空间代替无限维空间 (2) 用有限过程代替无限过程
(3) 用简单问题代替复杂问题
(4) 扰动分析:估计误差或精度
§1.3 计算过程中的误差及其控制
数值方法中的计算公式及参与运算的数,都和数学中的 一般情况有所不同,即
计算公式中的运算必须是在计算机上可执行的运算 参与运算的数必须是有限小数或整数
因此,数值方法中的取数和运算往往会出现误差,算得
的结果(称为计算值)一般也为近似值。
在任何科学计算中,其解的精确性
总是相对的,而误差则是绝对的。
1.3.1、误差的种类及来源 一个物理量的真实值和我们算出的值(即计算值) 往往存在差异,它们之差称为误差。 模型误差
在建立数学模型过程中,要将复杂的 现象抽象归结为数学模型,往往要忽 略一些次要因素的影响,而对问题作 一些简化,因此数学模型和实际问题 之间有一定的误差。
甚至2015年的人口。
1940 1950 1960 1970 1980 1990 13216 151326 17932 20330 22654 249633 5 3 2 2
问题5 数值积分
1
0 1
xdx ?, x dx ?
2
sin x 0 x dx ?,
1
0 1
cos xdx ?, e dx ?,
科学素质:拓宽对21世纪科学的了解; 加深对数学思想的理解; 培养用数学思考世界的习惯 数学能力:数学知识的运用能力; 对专业中问题建立数学求解方法与 实际计算能力 应用问题中数学创造性能力 计算知识:常用算法的数学理论; 在“误差、存贮、速度”之下的实 际计算方法; 对结果的数值分析方法
学习数值计算方法的准备知识
舍入误差
在数值计算过程中还会遇到无穷小数,因 计算机受到机器字长的限制,它所能表示 的数据其位数只能是有限的,如按四舍五 入规则取有限位数,由此引起的误差
3.14159265......