结构力学动力学5
结构力学5平面桁架讲解课件

桁架在动力荷载作用下的响应
瞬态响应
当桁架受到突然施加的动荷载 时,它会表现出瞬态响应。这 种响应通常包括一个短暂的过 渡过程,随后达到一个稳定的 振动状态。
频域响应
在周期性动荷载作用下,桁架 会表现出频域响应。通过频域 分析,可以研究桁架在不同频 率下的振动行为,并确定其振 幅和相位响应。
阻尼效应
高效的经济性
平面桁架能以较少的材料 用量承受较大的荷载,具 有较高的经济性。
平面桁架的应用场景
桥梁工程
在桥梁工程中,平面桁架常被用 作桥面板的支撑结构,能提供稳
定的支撑和承载能力。
建筑工程
在建筑工程中,平面桁架常被用于 楼层和屋盖的承重结构,以及建筑 物的支撑体系。
机械工程
平面桁架也被广泛应用于机械工程 领域,如起重机的梁架、设备的支 架等,其优良的受力性能使其在这 些场景中发挥重要作用。
桁架内力计算:轴力、剪力与弯矩
轴力计算
轴力是杆件沿轴线方向的拉力或压力。通过截面法可以得到杆件的轴力分布情况。根据杆 件的轴力和截面积,可以进一步计算杆件的应力状态,以评估其承载能力。
剪力计算
剪力是杆件横截面上的切向力。通过截面法可以得到杆件的剪力分布情况。剪力的大小和 方向决定了杆件的剪切变形和剪切应力,对于桁架的剪切稳定性分析至关重要。
05 平面桁架的数值模拟与实验验证
基于有限元的数值模拟方法
有限元法基本原理
有限元法将连续体离散为一系列小单元,通过节点连接,利用变分 原理建立节点力与位移的关系,进而求解整个结构的响应。
线性弹性有限元法
对于线弹性材料,采用线性弹性有限元法,通过刚度矩阵和载荷向 量的组装,求解节点位移。
非线性有限元法
02 平面桁架的静力学分析
结构动力学

L
L
L
1
2l 3 3EI
M1图
1 m
1 2m 2l 3 EI
3
3 EI 4ml 3
4ml 3 T 2 3EI
2
第十章 结构动力学简介
二、单自由度体系的受迫振动
内 蒙 古 农 业 大 学
受迫振动指体系是在干扰力 FP (t )持续作用下的振动。 单自由度体系在动荷载下的振动及相应的振动模型如图示:
3、自由振动和受迫振动
自由振动 结构在没有动荷载作用时,由初速度、初位移所引起的振动。 研究结构的自由振动,可得到结构的自振频率、振型和阻尼参数。
第十章 结构动力学简介
强迫振动 结构在动荷载作用下产生得振动。研究强迫振动,可得到结构的
内 蒙 古 农 业 大 学
动力反应。
§10-2 动力自由度
一、自由度的定义
内 蒙 古 农 业 大 学
一、多自由度体系的自由振动
1 多自由度体系振动方程的建立(以两个自由度为例来说明)
(1) 柔度法
在惯性力作用下的位移等于实际的动位移。(力法)
y2
m2 y
m1 y
21
11
P 1 1
22
P2 1
y1
12
M 1图
M 2图
第十章 结构动力学简介
t
无阻尼y- t曲线
第十章 结构动力学简介
②阻尼对振幅的影响.
内 蒙 古 农 业 大 学
振幅ae- ξω t 随时间衰减,相邻两个振幅的比
y k 1 e T 常数 yk
振幅按等比级数递减.
经过一个周期后,相邻两振幅yk和yk+1的比值的对数为:
结构动力学克拉夫

结构动力学克拉夫结构动力学是一门研究结构受力、振动和变形的学科。
它是结构力学的一个重要分支,主要研究结构的静力学和动力学行为。
结构动力学的研究可以帮助工程师设计和分析结构的稳定性,预测结构的振动响应,以及提高结构的动力性能。
结构动力学的研究对象是各种类型的结构体系,包括建筑物、桥梁、塔类结构、航空航天器、汽车等。
这些结构在使用过程中会受到各种外部荷载的作用,会发生变形和振动,甚至会发生破坏。
因此,必须通过结构动力学的研究来评估结构的受力情况,以便保证结构的安全和可靠性。
结构动力学的理论基础是力学、振动学和数学分析等。
力学用来描述结构的受力情况,振动学用来描述结构的振动响应,而数学分析则是结构动力学理论的基本工具。
在结构动力学的研究中,常用的数学方法包括牛顿第二定律、拉格朗日方程、哈密顿原理等。
在结构动力学的研究中,需要对结构的质量、刚度和阻尼进行建模。
质量是指结构对外界力的响应情况,通常可以用结构的质量矩阵来描述;刚度是指结构对位移的响应情况,通常可以用结构的刚度矩阵来描述;阻尼是指结构损耗能量的能力,通常可以用结构的阻尼矩阵来描述。
通过对这些参数的建模,可以得到结构的动力学方程。
结构动力学的研究包括两个主要方面:一是结构的自由振动,即结构在没有外界荷载作用下的振动行为;二是结构的强迫振动,即结构在受到外界荷载作用下的振动行为。
通过对这两方面的研究,可以得到结构的振动特性和响应情况。
总的来说,结构动力学是一门重要的学科,它通过对结构受力、振动和变形的研究,可以帮助工程师设计和分析各种类型的结构体系。
同时,结构动力学也为其他学科的研究提供了基础和支持,促进了工程技术的发展和进步。
结构动力学

结构动力学
结构动力学是一门应用物理和数学原理研究动态可塑结构行为的
工程学科。
它不仅涉及到结构力学中的结构响应,而且还涉及到动力
学中的系统性研究。
目标是了解和计算结构受外力作用时的运动行为,预测出结构所受冲击能量,强度和变形情况。
例如,对于一艘平衡船,结构动力学可以帮助我们发现哪些部件会受到激烈的冲击力,以及船
体什么时候会趋向平衡。
为了理解结构动力学,我们需要了解力学。
力学是一种使用物理
学原理的工程学科,主要关注作用在物体上的各种力和它们之间的作用。
例如,重力和导热力是两个典型的力,它们混斗在一起影响物体
的运动。
结构动力学是将力学概念应用于特定可塑结构上,用来分析结构
随时间改变的行为特性。
其中,最常见的类型包括结构稳定性和可塑性,它们可以被应用于从最小的桥梁到最大的建筑结构。
在更深层次上,结构动力学考察不同刚度结构之间的行为,并且考察这些行为如
何通过各种力学和外力来影响复杂系统。
此外,结构动力学还可以用来检查建筑结构的设计是否正确。
它
可以检查系统中机械强度,稳定性和结构完整性,以免因结构设计不
当而出现过分的变形和破坏。
总之,结构动力学是一门复杂的工程学科,研究的内容涉及到力学,动力学,计算机技术和材料科学等多个领域。
它被广泛用于建筑,船舶,飞机,汽车,桥梁,机器人和其他复杂结构的设计与研究中。
结构动力学 结构力学分支

结构动力学结构力学分支
结构力学是应用力学原理研究多体建筑物结构动态变形、稳定性、破
坏机制等重要问题的学科。
从理论上讲,结构力学可被分为以下几个
分支:
(1)绝热动力学:研究在影响力产生热量的变形过程中,能量平衡方程,热导率温度关系等问题。
(2)动力力学:研究分析结构振动反应与模态特性,以及结构在突发
类和碰撞运动时的变形过程。
(3)刚体力学:研究力学分析旋转体的动力响应及弹性结构的变形、
局部应力分布与项势。
(4)材料力学:研究结构力学对各种材料的影响。
包括材料弹性模量、材料弹塑性行为、材料持续性及结构体之间动力相互作用。
(5)疲劳力学:研究建筑物结构产生疲劳损坏的机理,主要包括循环
加载、应力控制、结构模式和材料疲劳行为等。
(6)结构动力学:研究结构在力学和刚体作用下的运动方程和动力行为。
(7)安全可靠性工程:涉及建筑结构的可靠性,包括结构变形过程中的可靠性设计、抗震设计和生命安全设计等理论。
(8)结构优化:采用计算机技术,利用数学模型求解结构变形特性和参数最优化,实现结构设计的优化,从而得到更为有效的结构。
结构力学5三铰拱课件

根据设计要求,选用合适的材料搭设拱架;
施工流程与工艺要求
02
01
03
拱体安装
按照从两端向跨中的顺序,对称安装拱体构件;
拱顶合拢
在拱顶设置临时支撑,确保拱体稳定;
施工监测
对施工过程进行实时监测,确保施工安全和质量。
施工流程与工艺要求
工艺要求 拱架搭设应符合设计要求,确保稳定性和承载力;
拱体安装应保证构件对接准确,避免出现错位和扭曲;
施工流程与工艺要求
01
临时支撑设置应合理,确保拱体 在合拢过程中保持稳定;
02
施工监测应实时进行,及时发现 和解决施工中的问题。
安装方法与注意事项
安装方法 采用分段吊装法,将拱体分成若干段,分别吊装到位;
对接安装时,应保证对接位置准确,避免出现错位和扭曲;
安装方法与注意事项
• 合拢时,应设置临时支撑,确保拱体稳定。
结构力学5三铰拱课件
目
CONTENCT
录
• 三铰拱概述 • 三铰拱的力学分析 • 三铰拱的设计与计算 • 三铰拱的施工与安装 • 三铰拱的维护与加固
01
三铰拱概述
定义与特点
定义
三铰拱是一种静定结构,由两个 固定端和三个铰链支承构成。
特点
拱顶在竖向荷载作用下主要承受 压力,并通过铰链传递水平推力 ,保持拱的平衡。
保持三铰拱的清洁,避免 积尘、腐蚀等影响其使用 寿命的因素。
紧固与润滑
对三铰拱的连接部位进行 紧固,对活动部位进行润 滑,确保其正常运转。
常见问题与处理方法
1 2
结构损伤
如发现三铰拱出现裂纹、变形等损伤,应立即采 取措施进行修复或更换。
连接松动
结构动力学

第一章概述1.动力荷载类型:根据何在是否随时间变化,或随时间变化速率的不同,荷载分为静荷载和动荷载根据荷载是否已预先确定,动荷载可以分为两类:确定性(非随机)荷载和非确定性(随机)荷载。
确定性荷载是荷载随时间的变化规律已预先确定,是完全已知的时间过程;非确定性荷载是荷载随时间变化的规律预先不可以确定,是一种随机过程。
根据荷载随时间的变化规律,动荷载可以分为两类:周期荷载和非周期荷载。
根据结构对不同荷载的反应特点或采用的动力分析方法不同,周期荷载分为简谐荷载(机器转动引起的不平衡力)和非简谐周期荷载(螺旋桨产生的推力);非周期荷载分为冲击荷载(爆炸引起的冲击波)和一般任意荷载(地震引起的地震动)。
2.结构动力学与静力学的主要区别:惯性力的出现或者说考虑惯性力的影响3.结构动力学计算的特点:①动力反应要计算全部时间点上的一系列解,比静力问题复杂且要消耗更多的计算时间②于静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响4.结构离散化方法:将无限自由度问题转化为有限自由度问题集中质量法:是结构分析中最常用的处理方法,把连续分布的质量集中到质点,采用真实的物理量,具有直接直观的优点。
广义坐标法:广义坐标是形函数的幅值,有时没有明确的物理意义,但是比较方便快捷。
有限元法:综合了集中质量法与广义坐标法的特点,是广义坐标的一种特殊应用,形函数是针对整个结构定义的;有限元采用具有明确物理意义的参数作为广义坐标,形函数是定义在分片区域的。
①与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系(结构)上插值(即定义形函数),而是采用了分片的插值(即定义分片形函数),因此形函数的公式(形状)可以相对简单。
②与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接直观的优点。
5.结构的动力特性:自振频率、振型、阻尼第二章分析动力学基础及运动方程的建立1.广义坐标:能决定质点系几何位置的彼此独立的量;必须是相互独立的参数2.约束:对非自由系各质点的位置和速度所加的几何或运动学的限制;(从几何或运动学方面限制质点运动的设施)3.结构动力自由度,与静力自由度的区别:结构中质量位置、运动的描述动力自由度:结构体系在任意瞬间的一切可能的变形中,决定全部质量位置所需要的独立参数的数目静力自由度:是指确定体系在空间中的位置所需要的独立参数的数目为了数学处理上的简单,人为在建立体系的简化模型时忽略了一些对惯性影响不大的因素确定结构动力自由度的方法:外加约束固定各质点,使体系所有质点均被固定所必需的最少外加约束的数目就等于其自由度4.有势力的概念与性质:有势力(保守力):每一个力的大小和方向只决定于体系所有各质点的位置,体系从某一位置到另一位置所做的功只决定于质点的始末位置,而与各质点的运动路径无关。
结构动力学课件PPT

my cy ky FP (t)
§2-5 广义单自由度体系:刚体集合
➢刚体的集合(弹性变形局限于局部弹性 元件中)
➢分布弹性(弹性变形在整个结构或某些 元件上连续形成)
➢只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
x
p( x,t
)
=p
)
3
B'
M I1
E'
D'
F' G'
A
D
E
B
F
G
C
fD1
fI1
fS1
f D2
f I2
f S2
a
2a
a aa a
Z(t )
f S1
k1(EE')
3 4
k1Z (t )
f D1
d c1( dt
DD')
1 4
c1Z (t )
fS2
k1(GG')
1 3
k2
Z
(t
)
fD2 c2Z (t)
f
I1
m1
1 2
Z(t)
3. 有限单元法
—— 将有限元法的思想用于解决结构的动力计算问题。
要点:
▪ 先把结构划分成适当(任意)数量的单元;
▪ 对每个单元施行广义坐标法,通常取单元的节点位移作 为广义坐标;
▪ 对每个广义坐标取相应的位移函数 (插值函数);
▪ 由此提供了一种有效的、标准 化的、用一系列离散坐标 表示无限自由度的结构体系。
建立体系运动方程的方法
▪ 直接平衡法,又称动静法,将动力学问题转化为任一时刻 的静力学问题:根据达朗贝尔原理,把惯性力作为附加的 虚拟力,并考虑阻尼力、弹性力和作用在结构上的外荷载, 使体系处于动力平衡条件,按照静力学中建立平衡方程的 思路,直接写出运动方程。