江苏省南通市如东县2018年中考一模数学试卷(含答案)参考答案和评分标准
2018年江苏省南通市中考数学试卷含答案解析(word版)

2018年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的值是()A.4 B.2 C.±2 D.﹣22.(3分)下列计算中,正确的是()A.a2•a3=a5 B.(a2)3=a8C.a3+a2=a5 D.a8÷a4=a23.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥3 B.x<3 C.x≤3 D.x>34.(3分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)下列说法中,正确的是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小6.(3分)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.57.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°8.(3分)一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A.πcm2B.3πcm2C.πcm2D.5πc m29.(3分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm 的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.10.(3分)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF 分别与DE、BD相交于点M,N,则MN的长为()A.B.﹣1 C.D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.(3分)“辽宁舰“最大排水量为67500吨,将67500用科学记数法表示为.12.(3分)分解因式:a3﹣2a2b+ab2=.13.(3分)已知正n边形的每一个内角为135°,则n=.14.(3分)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是.15.(3分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为.16.(3分)下面是“作一个30°角”的尺规作图过程.请回答:该尺规作图的依据是.17.(3分)如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是.18.(3分)在平面直角坐标系xOy中,过点A(3,0)作垂直于x轴的直线AB,直线y=﹣x+b与双曲线y=交于点P(x1,y1),Q(x2,y2),与直线AB 交于点R(x3,y3),若y1>y2>y3时,则b的取值范围是.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+20130﹣(﹣)﹣1+3tan30°;(2)解方程:=﹣3.20.(8分)解不等式组,并写出x的所有整数解.21.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“了解”部分所对应扇形的圆心角为度;(2)请补全条形统计;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.22.(8分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.23.(8分)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)24.(8分)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.25.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y 与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.26.(12分)如图,△ABC中,AB=6cm,AC=4cm,BC=2cm,点P以1cm/s的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q 是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.27.(12分)已知,正方形ABCD,A(0,﹣4),B(l,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.(1)抛物线经过定点坐标是,顶点M的坐标(用m的代数式表示)是;(2)若抛物线y=x2+mx﹣2m﹣4(m为常数)与正方形ABCD的边有交点,求m的取值范围;(3)若∠ABM=45°时,求m的值.28.(14分)如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O上的两点,若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;(2)若的长为π,求“回旋角”∠CPD的度数;(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+13,直接写出AP 的长.2018年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的值是()A.4 B.2 C.±2 D.﹣2【分析】根据算术平方根解答即可.【解答】解:=2,故选:B.【点评】此题考查算术平方根问题,关键是根据4的算术平方根是2解答.2.(3分)下列计算中,正确的是()A.a2•a3=a5 B.(a2)3=a8C.a3+a2=a5 D.a8÷a4=a2【分析】根据同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法逐一计算可得.【解答】解:A、a2•a3=a5,此选项正确;B、(a2)3=a6,此选项错误;C、a3、a2不能合并,此选项错误;D、a8÷a4=a4,此选项错误;故选:A.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥3 B.x<3 C.x≤3 D.x>3【分析】根据二次根式有意义的条件;列出关于x的不等式,求出x的取值范围即可.【解答】解:∵在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选:A.【点评】本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.4.(3分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题目中的函数解析式可以求得这两个函数的交点坐标,从而可以解答本题.【解答】解:,解得,,∴函数y=﹣x的图象与函数y=x+1的图象的交点是(,),故函数y=﹣x的图象与函数y=x+1的图象的交点在第二象限,故选:B.【点评】本题考查两条直线相交或平行问题,解答本题的关键是明确题意,求出两个函数的交点坐标,利用函数的思想解答.5.(3分)下列说法中,正确的是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小【分析】根据概率的意义可判断出A的正误;根据抽样调查与全面调查意义可判断出B的正误;根据众数和中位数的定义可判断出C的正误;根据方差的意义可判断出D的正误.【解答】解:A、一个游戏中奖的概率是,做10次这样的游戏也不一定会中奖,故此选项错误;B、为了了解一批炮弹的杀伤半径,应采用抽样调查的方式,故此选项错误;C、一组数据8,8,7,10,6,8,9的众数和中位数都是8,故此选项正确;D、若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动大;故选:C.【点评】此题主要考查了概率、抽样调查与全面调查、众数和中位数、方差,关键是注意再找中位数时要把数据从小到大排列再找出位置处于中间的数.6.(3分)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【分析】设该队获胜x场,则负了(6﹣x)场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设该队获胜x场,则负了(6﹣x)场,根据题意得:3x+(6﹣x)=12,解得:x=3.答:该队获胜3场.故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【解答】解:∵AB∥CD,∠ACD=110°,∴∠CAB=70°,∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,∴AP平分∠CAB,∴∠CAM=∠BAM=35°,∵AB∥CD,∴∠CMA=∠MAB=35°.故选:B.【点评】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM 是解题关键.8.(3分)一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A.πcm2B.3πcm2C.πcm2D.5πcm2【分析】根据三视图的知识可知该几何体为一个圆锥.又已知底面半径可求出母线长以及侧面积、底面积后即可求得其表面积.【解答】解:综合主视图,俯视图,左视图可以看出这个几何体应该是圆锥,且底面圆的半径为1,母线长为2,因此侧面面积为1×π×2=2π,底面积为π×(1)2=π.表面积为2π+π=3π;故选:B.【点评】此题考查由三视图判定几何体,本题中要先确定出几何体的面积,然后根据其侧面积的计算公式进行计算.本题要注意圆锥的侧面积的计算方法是圆锥的底面半径乘以圆周率再乘以母线长.9.(3分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm 的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x 的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P 在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.10.(3分)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF 分别与DE、BD相交于点M,N,则MN的长为()A.B.﹣1 C.D.【分析】首先过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理求得AF,根据平行线分线段成比例定理求得OH,由相似三角形的性质求得AM与AF的长,根据相似三角形的性质,求得AN的长,即可得到结论.【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2,∵BF=FC,BC=AD=2,∴BF=AH=1,FC=HD=1,∴AF===,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==2,∴AN=2AF=,∴MN=AN﹣AM=﹣=.故选:C.【点评】本题考查了相似三角形的判定与性质,矩形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN与AM的长是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.(3分)“辽宁舰“最大排水量为67500吨,将67500用科学记数法表示为6.75×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)分解因式:a3﹣2a2b+ab2=a(a﹣b)2.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:a3﹣2a2b+ab2,=a(a2﹣2ab+b2),=a(a﹣b)2.【点评】本题考查提公因式法分解因式和完全平方公式分解因式,熟记公式结构是解题的关键,分解因式一定要彻底.13.(3分)已知正n边形的每一个内角为135°,则n=8.【分析】根据多边形的内角就可求得外角,根据多边形的外角和是360°,即可求得外角和中外角的个数,即多边形的边数.【解答】解:多边形的外角是:180﹣135=45°,∴n==8.【点评】任何任何多边形的外角和是360°,不随边数的变化而变化.根据这个性质把多边形的角的计算转化为外角的计算,可以使计算简化.14.(3分)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是100(1+x)2=160.【分析】设二,三月份每月平均增长率为x,根据一月份生产机器100台,三月份生产机器160台,可列出方程.【解答】解:设二,三月份每月平均增长率为x,100(1+x)2=160.故答案为:100(1+x)2=160.【点评】本题考查理解题意的能力,本题是个增长率问题,发生了两次变化,先找出一月份的产量和三月份的产量,从而可列出方程.15.(3分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为2.【分析】先利用圆周角定理得到∠ACB=90°,则可根据勾股定理计算出AC=4,再根据垂径定理得到BD=CD,则可判断OD为△ABC的中位线,然后根据三角形中位线性质求解.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD为△ABC的中位线,∴OD=AC=×4=2.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.16.(3分)下面是“作一个30°角”的尺规作图过程.请回答:该尺规作图的依据是直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【分析】连接OD、CD.只要证明△ODC是等边三角形即可解决问题;【解答】解:连接OD、CD.由作图可知:OD=OC=CD,∴△ODC是等边三角形,∴∠DCO=60°,∵AC是⊙O直径,∴∠ADC=90°,∴∠DAB=90°﹣60°=30°.∴作图的依据是:直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等,故答案为直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【点评】本题考查作图﹣复杂作图,圆的有关性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.(3分)如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是2+.【分析】连接OA,AC′,如图,易得OC=2,再利用勾股定理计算出OA=,接着利用旋转的性质得OC′=OC=2,根据三角形三边的关系得到AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),从而得到AC′的最大值.【解答】解:连接OA,AC′,如图,∵点O是BC中点,∴OC=BC=2,在Rt△AOC中,OA==,∵△ABC绕点O旋转得△A′B'C′,∴OC′=OC=2,∵AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),∴AC′的最大值为2+,即在旋转过程中点A、C′两点间的最大距离是2+.故答案为2+.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.18.(3分)在平面直角坐标系xOy中,过点A(3,0)作垂直于x轴的直线AB,直线y=﹣x+b与双曲线y=交于点P(x1,y1),Q(x2,y2),与直线AB 交于点R(x3,y3),若y1>y2>y3时,则b的取值范围是2<b<.【分析】根据y2大于y3,说明x=3时,﹣x+b<,再根据y1大于y2,说明直线l和抛物线有两个交点,即可得出结论.【解答】解:如图,当x=3时,y2=,y3=﹣3+b,∵y3<y2,∴﹣3+b<,∴b<,∵y1>y2,∴直线l:y=﹣x+b①与双曲线y=②有两个交点,联立①②化简得,x2﹣bx+1=0有两个不相等的实数根,∴△=b2﹣4>0,∴b<﹣2(舍)或b>2,∴2<b<,故答案为:2<b<.【点评】此题主要考查了反比例函数和一次函数的交点问题,一元二次方程根的判别式,熟练掌握一次函数和双曲线的性质是解本题的关键.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+20130﹣(﹣)﹣1+3tan30°;(2)解方程:=﹣3.【分析】(1)原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2﹣+1+3+=6;(2)去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)解不等式组,并写出x的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≥﹣,解不等式②,得:x<3,则不等式组的解集为﹣≤x<3,∴不等式组的整数解为:﹣1、0、1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“了解”部分所对应扇形的圆心角为90度;(2)请补全条形统计;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.【分析】(1)由基本了解的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)由(1)可求得了解很少的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【解答】解:(1)接受问卷调查的学生共有30÷50%=60人,扇形统计图中“了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60、90.(2)“了解很少”的人数为60﹣(15+30+5)=10人,补全图形如下:(3)估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数为1200×=900人.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.关键是根据列表法或树状图法求概率以及条形统计图与扇形统计图.22.(8分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.【分析】(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率;(2)列表得出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率.【解答】解:(1)因为共有4张牌,其中点数是偶数的有3张,所以这张牌的点数是偶数的概率是;(2)列表如下:恰好两张牌的点数都是偶数有6种,所以这两张牌的点数都是偶数的概率为=.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)【分析】作BH⊥AC于H,根据正弦的定义求出BH,根据余弦的定义计算即可.【解答】解:作BH⊥AC于H,由题意得,∠CBH=45°,∠BAH=60°,在Rt△BAH中,BH=AB×sin∠BAH=6,在Rt△BCH中,∠CBH=45°,∴BC==6(千米),答:B,C两地的距离为6千米.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握锐角三角函数的定义、正确标出方向角是解题的关键.24.(8分)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.【分析】(1)欲证明AB=CF,只要证明△AEB≌△FEC即可;(2)想办法证明AC=BD,BF=AC即可解决问题;【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠BAE=∠CFE∵AE=EF,∠AEB=∠CEF,∴△AEB≌△FEC,∴AB=CF.(2)连接AC.∵四边形ABCD是平行四边形,∠BCD=90°,∴四边形ABCD是矩形,∴BD=AC,∵AB=CF,AB∥CF,∴四边形ACFB是平行四边形,∴BF=AC,∴BD=BF.【点评】本题考查平行四边形的判定和性质、矩形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y 与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为80km/h,快车的速度为120km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.【分析】(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9﹣3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.【解答】解:(1)设慢车的速度为akm/h,快车的速度为bkm/h,根据题意,得,解得,故答案为80,120;(2)图中点C的实际意义是:快车到达乙地;∵快车走完全程所需时间为720÷120=6(h),∴点C的横坐标为6,纵坐标为(80+120)×(6﹣3.6)=480,即点C(6,480);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前:(80+120)x=720﹣500,解得x=1.1,相遇后:∵点C(6,480),∴慢车行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),故x=1.1 h或6.25 h,两车之间的距离为500km.【点评】本题考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.26.(12分)如图,△ABC中,AB=6cm,AC=4cm,BC=2cm,点P以1cm/s的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q 是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.【分析】(1)如图1中,作CH⊥AB于H.设BH=x,利用勾股定理构建方程求出x,当点P与H重合时,CP⊥AB,此时t=2;(2)分两种情形求解即可解决问题;(3)分两种情形:①如图4中,当0<t≤6时,S=×PQ×CH;②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.求出QM即可解决问题;【解答】解:(1)如图1中,作CH⊥AB于H.设BH=x,∵CH⊥AB,∴∠CHB=∠CHB=90°,∴AC2﹣AH2=BC2﹣BH2,∴(4)2﹣(6﹣x)2=(2)2﹣x2,解得x=2,∴当点P与H重合时,CP⊥AB,此时t=2.(2)如图2中,当点Q与H重合时,BP=2BQ=4,此时t=4.如图3中,当CP=CB=2时,CQ⊥PB,此时t=6+(4﹣2)=6+4﹣2.(3)①如图4中,当0<t≤6时,S=×PQ×CH=×t×4=t.②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.易知BG=AG=3,CG=.MQ=BG=.∴S=×PC×QM=••(6+4﹣t)=+6﹣t.综上所述,s=.【点评】本题考查三角形综合题、勾股定理、等腰三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.27.(12分)已知,正方形ABCD,A(0,﹣4),B(l,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.(1)抛物线经过定点坐标是(2,0),顶点M的坐标(用m的代数式表示)是(﹣,﹣);(2)若抛物线y=x2+mx﹣2m﹣4(m为常数)与正方形ABCD的边有交点,求m的取值范围;(3)若∠ABM=45°时,求m的值.【分析】(1)判断函数图象过定点时,可以分析代入的x值使得含m的同类项合并后为系数为零.(2)由(1)中用m表示的顶点坐标,可以得到在m变化时,抛物线顶点M 抛物线在y=﹣x2+4x﹣4上运动,分析该函数图象和正方形ABCD的顶点位置关系可以解答本题;(3)由已知点M在过点B且与AB夹角为45°角的直线与抛物线在y=﹣x2+4x﹣4的交点上,则问题可解.。
2018年江苏省南通市通州区、如东县中考数学一模试卷

上,甲、乙两队所划行的路程 y(单位:米)与时间 t(单位:分)之间的函
数关系式如图所示,根据图中提供的信息,
有下列说法:
①甲队比乙队提前 0.5 分到达终点
②当划行 1 分钟时,甲队比乙队落后 50 米
③当划行 分钟时,甲队追上乙队
④当甲队追上乙队时,两队划行的路程都是 300 米 其中错误的是( )
第7页(共8页)
2018 年江苏省南通市通州区、如东县中考数学一模试卷
参考答案
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个 选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题 卡相应位置上)
1.C; 2.B; 3.D; 4.B; 5.C; 6.A; 7.B; 8.C; 9.D; 10.B; 二、填空题(本大题共 8 小题.每小题 3 分,共计 24 分.不需写出解答过程,
于
.
16.(3 分)如图,在 Rt△ABC 中,∠C=90°,点 D 是线段 AB 的中点,点 E 是
线段 BC 上的一个动点,若 AC=6,BC=8,则 DE 长度的取值范围是
.
17.(3 分)如图,点 A(1,n)和点 B 都在反比例函数 y= (x>0)的图象上,
若∠OAB=90°,
,则 k 的值是
A.
B.
C.
D.
5.(3 分)如图,BC∥DE,若∠A=35°,∠E=60°,则∠C 等于( )
A.60°
B.35°
C.25°
6.(3 分)如图,在平面直角坐标系中,直线 y=
D.20° 与 y 轴交于点 A,与 x 轴
交于点 B,则 tan∠ABO 的值为( )
第1页(共8页)
江苏省南通市2018年中考数学真题试题(含答案)

江苏省南通市2018年中考数学真题试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上)1的值是A .4B .2C .±2D .﹣2 2.下列计算中,正确的是A .235a a a ⋅=B .238()a a =C .325a a a +=D .842a a a ÷=3x 的取值范围是A .x ≥3B .x <3C .x ≤3D .x >3 4.函数y =﹣x 的图象与函数y =x +1的图象的交点在A .第一象限B .第二象限C .第三象限D .第四象限 5.下列说法中,正确的是 A .—个游戏中奖的概率是110,则做10次这样的游戏一定会中奖 B .为了了解一批炮弹的杀伤半径,应采用全面调查的方式 C .一组数据8,8,7,10,6,8,9的众数是8D .若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小 6.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队共进行了6场比赛,得了12分,该队获胜的场数是A .2B .3C .4D .57.如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于点E 、F ,再分别以E 、F 为圆心,大于12EF 的同样长为半径作圆弧,两弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =110°,则∠CMA 的度数为A .30°B .35°C .70°D .45°8.—个空间几何体的主视图和左视图都是边长为2cm 的正三角形,俯视图是一个圆,那么这个几何体的表面积是A .32πcm 2B .3πcm 2C .52πcm 2 D .5πcm 29.如图,等边△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止,设运动时间为x(s),y =PC 2,则y 关于x 的函数的图像大致为A B C D 10.正方形ABCD 的边长AB =2,E 为AB 的中点,F 为BC 的中点,AF 分别与DE 、BD 相交于点M 、N ,则MN 的长为A .6 B .13- C .15 D .3第7题 第9题 第10题 二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 11.“辽宁舰”最大排水量为67500吨,将67500用科学记数法表示为 . 12.分解因式:3222a a b ab -+= .13.正n 边形的一个内角为135°,则n = .14.某厂一月份生产某机器100台,计划三月份生产160台,设二、三月份每月的平均增长率为x ,根据题意列出的方程是 .15.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC =3,AB =5,OD ⊥BC 于点D ,则OD 的长为 .16.下面是“作一个30︒角”的尺规作图过程.请回答:该尺规作图的依据是 .17.如图,在△ABC 中,∠C =90°,AC =3,BC =4,点O 是BC 中点,将△ABC 绕点O 旋转得△A ′B ′C ′,则在旋转过程中点A 、C ′两点间的最大距离是 .第15题 第17题18.在平面直角坐标系xOy 中,过点A(3,0)作垂直于x 轴的直线AB ,直线y =﹣x +b与双曲线1y x=交于点P(1x ,1y ),Q(2x ,2y ),与直线AB 交于点R(3x ,3y ),若1y >2y >3y 时,则b 的取值范围是 .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分10分)(101122013()3tan 303-+--+︒;(2)解方程:11322xx x-=---. 20.(本题满分8分)解不等式组3(21)4213212x x x x ⎧--≤⎪⎪⎨+⎪>-⎪⎩①②,并写出x 的所有整数解.21.(本题满分8分)“校园安全”受到全社会的广泛关注.某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“了解”部分所对应扇形的圆心角为 度;(2)请补全条形统计图;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数. 22.(本题满分8分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回‧‧‧,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.23.(本题满分8分)如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C 恰好在A地的正北方向,求B,C两地的距离(结果保留根号).24.(本题满分8分)如图,□ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.25.(本题满分8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为 km/h,快车的速度为 km/h;(2)解释图中点C的实际意义,并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500 km.26.(本题满分12分)如图,△ABC中,AB=6cm,AC=,BC=,,点P以1 cm/s的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.27.(本题满分12分)已知,正方形ABCD,A(0,﹣4),B(1,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.(1)抛物线经过定点坐标是,顶点M的坐标(用m的代数式表示)是;(2)若抛物线y=x2+mx﹣2m﹣4(m为常数)与正方形ABCD的边有交点,求m的取值范围;(3)若∠ABM=45°时,求m的值.28.(本题满分14分)如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O 上的两点.若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;(2)若CD的长为134π,求“回旋角”∠CPD的度数;(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+AP 的长.参考答案一、选择题二、填空题三、解答题19.(1)6;(2)无解.20.534x-≤<,整数解为﹣1,0,1,2.21.(1)60,90;(2)补全条形统计图,并标数据10;(3)800人. 22.(1)34;(2)12. 23..24.(1)先证△ABE ≌△FCE ,再证CF =AB ;(2)由(1)判断出C 为DF 的中点,再结合∠BCD =90°,得到BC 垂直平分DF ,从而BD =BF .25.(1)80,120;(2)C 的实际意义是快车到达乙地,点C 坐标为(6,480); (3)当x 为1110或254时,两车之间的距离为500 km . 26.(1)2;(2)4或6+﹣(3),066642t t S t ≤≤⎧⎪=⎨-++<≤+⎪⎩ 27.(1)(2,0),(2m -,21244m m ---); (2)112m ≤≤; (3)5m =5. 28.(1)是; (2)45°; (3)3或23.。
江苏省南通市2018年中考数学试题(Word版,含答案)

南通市2018年初中毕业、升学考试试卷数 学 注 意 事 项考生在答题前请认真阅读本注意事项1. 本试卷共6页,满分150分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡指定的位置。
3. 答案必须按要求填涂、书写在答题卡上,在草稿纸、试卷上答题一律无效。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的的四个选项中,恰有一项是符合题目要求的)1.6的相反数是( )A .—6B .6C .61-D .61 2.计算32x x •结果是( )A .52xB .5xC .6xD .8x3.若代数式1-x 在实数范围内有意义,则x 的取值范围是( )A .1<xB .1≤xC .1>xD .1≥x4.2017年国内生产总值达到827000亿元,稳居世界第二.将数827000用科学记数法表示为( )A .82.7×104B .8.27×105C .0.827×106D .8.27×1065.下列长度的三条线段能组成直角三角形的是( )A .3,4,5B .2,3,4C .4,6,7D .5,11,126.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,—1,0,1,2,则表示数5-2的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上7.若一个凸多边形形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .78.一个圆锥的主视图是边长为4cm 的正三角形,则这个圆锥的侧面积等于( )A .16πcm 2B .12πcm 2C .8πcm 2D .4πcm 29.如图,Rt △ABC 中,∠ACB =90°,CD 平分∠ACB 交AB 于点D ,按下列步骤作图: 步骤1:分别以点C 和点D 为圆心,大于21CD 的长为半径作弧,两弧相交于M ,N 两点; 步骤2:作直线MN ,分别交AC ,BC 于点E ,F ;步骤3:连接DE ,DF .若AC =4,BC =2,则线段DE 的长为( )A .35B .23 C .2 D .34 10.如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE=34.设AB =x ,△ABF 的面积为y ,则y 与x 的函数图像大致为( )二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程)11.计算3a 2b -a 2b = .12.某校学生来自甲、乙、丙三个地区,其人数比为2:7:3,绘制成如图所示的扇形统计图,则甲地区所在扇形的圆心角度数为 度.13.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为 cm .14.如图,∠AOB =40°,OP 平分∠AOB ,点C 为射线OP 上一点,作CD ⊥OA 于点D ,在∠POB 的内部作CE ∥OB ,则∠DCE = 度.15.古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x 天可追上慢马,则由题意,可列方程为 .16.如图,在△ABC 中,AD ,CD 分别平分∠BAC 和∠ACB ,AE ∥CD ,CE ∥AD .若从三个条件:①AB =AC ;②AB =BC ;③AC =BC 中,选择一个作为已知条件,则能使四边形ADCE为菱形的是 (填序号).17.若关于x 的一元二次方程0142212=+--m mx x 有两个相等的实数根,则)1(2)2(2---m m m 的值为 .18.在平面直角坐标系xOy 中,已知A (2t ,0),B (0,一2t ),C (2t ,4t )三点,其中t >0,函数x t y 2=的图像分别与线段BC ,AC 交于点P ,Q .若S △PAB -S △PQB =t ,则t 的值为 .三、解答题(本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(本题满分10分)计算:(1)203231)3(64)2(-⎪⎭⎫ ⎝⎛--+--; (2)aa a a a 396922-÷++-. 20.(本题满分8分)解方程13321++=+x x x x . 21.(本题满分8分)一个不透明的口袋中有三个完全相同的小球,把他们分别标号为1,2,3.随机摸取一个小球然后放回,再随机摸出一个小球.用列表或画树状图的方法,求两次取出的小球标号相同的概率.22.(本题满分8分)如图,沿AC 方向开山修路.为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B 取∠ABD =120°,BD =520m ,∠D =30・那么另一边开挖点E 离D 多远正好使A ,C ,E 三点在一直线上(3取1.732,结果取整数)?23.(本题满分9分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:17 18 16 13 24 15 28 26 18 1922 17 16 19 32 30 16 14 15 2615 32 23 17 15 15 28 28 16 19对这30个数据按组距3进行分组,并整理、描述和分析如下.请根据以上信息解答下列问题:(1)填空:a = ,b = ,c = ;(2)若将月销售额不低于25万元确定为销售目标,则有 位营业员获得奖励;(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.24.(本题满分8分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,且交⊙O 于点E .连接OC ,BE ,相交于点F .(1)求证:EF =BF ;(2)若DC =4,DE =2,求直径AB 的长.25.(本题满分9分)小明购买A ,B 两种商品,每次购买同一种商品的单价相同,具体信息如下表:根据以上信息解答下列问题(1)求A ,B 两种商品的单价;(2)若第三次购买这两种商品共12件,且A 种商品的数量不少于B 种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.26.(本题满分10分)在平面直角坐标系xOy 中,已知抛物线k k x k x y 25)1(222-+--=(k 为常数). (1)若抛物线经过点(1,2k ),求k 的值;(2)若抛物线经过点(k 2,1y )和点(2,2y ),且1y >2y ,求k 的取值范围;(3)若将抛物线向右平移1个单位长度得到新抛物线,当21≤≤x 时,新抛物线对应的函数有最小值23-,求k 的值. 27.(本题满分13分) 如图,正方形ABCD 中,AB =52,O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE ,CF .(1)求证:AE =CF ;(2)若A ,E ,O 三点共线,连接OF ,求线段OF 的长;(3)求线段OF 长的最小值.28.(本题满分13分)【定义】如图1,A ,B 为直线l 同侧的两点,过点A 作直线l 的对称点A ',连接A 'B 交直线l 于点P ,连接AP ,则称点P 为点A ,B 关于直线l 的“等角点”.【运用】如图2,在平面直坐标系xOy 中,已知A (2,3),B (-2,-3)两点.(1)⎪⎪⎭⎫ ⎝⎛23,4C ,⎪⎪⎭⎫ ⎝⎛22,4D ,⎪⎭⎫ ⎝⎛21,4E 三点中,点 是点A ,B 关于直线4=x 的等角点;(2)若直线l 垂直于x 轴,点P (m ,n )是点A ,B 关于直线l 的等角点,其中m >2,∠APB =a ,求证:22tan n a =; (3)若点P 是点A ,B 关于直线)0(≠+=a b ax y 的等角点,且点P 位于直线AB 的右下方,当∠APB =60°时,求b 的取值范围(直接写出结果).南通市2018年初中毕业、升学考试试卷数学参考答案及解析1.A 解析:本题考査了相反数的概念.6的相反数是-6,故选A .2.B 解析:本题考査了积的乘方和同底数幂的乘法.53232x x x x ==•+,故选B .3.D 解析:本题考査了二次根式有意义的条件.根据题意,得01≥-x ,解得1≥x ,故选D .4.B 解析:本题考查了科学记数法.科学记数法的表示形式为na 10⨯的形式,其中101<≤a ,n 为整数.将827000用科学记数法表示为51027.8⨯.故选B .5.A 解析:本题考查了直角三角形与勾股定理.A 选项:32+42=52,正确;B 选项:22+32≠42,错误;C 选项:42+62≠72,错误;D 选项:52+112≠122,错误,故选A .6.B 解析:本题考查了实数大小的比较和利用数轴表示数.2-3<2-5<2-2,即一1<2-5<0,所以点P 应落在线段BO 上.故选B .7.C 解析:本题考査了多边形内角和的概念.由(n -2)×180°=720°,得n =6.故选C .8.C 解析:本题考査了圆锥侧面积的计算.由题意,圆锥底面圆半径为2cm ,母线长为4cm ,圆锥侧面积=rl π=42⨯⨯π=8πcm 2,故选C .9.D 解析:本题考査了角平分线,垂直平分线,平行线分线段成比例. ∵CD 平分∠ACB .∴∠ECD =∠DCF =45°,∵MN 垂直平分CD ,∴CE =DE ,∴∠ECD =∠EDC =45°,∴∠CED =90,又∵∠ACB =90°,∴DE ∥CB ,∴△AED ∽△ACB ,CB ED AC AE =, 设ED =x ,则EC =x ,AE =x -4,∴244x x =-,解得34=x .故选D . 10.D 解析:本题考查了三角函数,相似三角形,三角形面积计算和二次函数图像等知识.∵四边形ABCD 是矩形,∴CD ∥AB ,∠ABC =90°,∵CD ∥AB ,∴∠CEB =∠DCE .∴tan ∠CEB =tan ∠DCE =34=BE CB ,∵AB =x , ∴BE =x 21,∴BC =x 32. 在Rt △CBE 中,CE =22BC BE +=x 65.由翻折知EF =EB ,BF ⊥CE , ∴∠EFB =∠EBF .∵E 是AB 中点,∴AE =BE ,又∵EF =EB ,∴AE =EF , ∴∠EAF =∠EFA ,∴∠AFB =∠EFA+∠EFB =90°,∠FAB +∠FBA =90°, 又∵BF ⊥CE ,∴∠CEB +∠FBA =90°,∴∠FAB =∠CEB ,∴△AFB ∽△EBC ,25365622=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=∆∆CE AB S S EBC AFB .261322121x x x S EBC =••=∆, ∴AFB S ∆的面积y 的图像是二次函数0>x 部分,5=x 时,6=y .故选D .11.2a 2b 解析:本题考查整式的运算,3a 2b 一a 2b =2a 2b ,故答案为2a 2b .12.60 解析:本题考查了扇形统计图的相关知识,求甲地区的圆心角度数,只需求出甲所占的百分比,再乘以360°即可,所以甲所对应的圆心角度数为︒=︒⨯6036061,故答案为60.13.22 解析:本题考査了等腰三角形的性质.根据两边之和大于第三边,所以该等腰三角形的第三边只能是9,所以周长为4+9+9=22cm ,故答案为22.14.130 解析:本题考查了相交线与平行线的相关知识,以及角平分线的性质,垂线和三角形内角和、外角和相关知识,由于CE 与OB 平行,所以∠PCE =20°,根据外角和定理可得∠DCP =110°,所以∠DCE =130°,故答案为130.15.240x =150(x +12) 解析:本题考查了一元一次方程的实际应用,根据题意可得,由于快马和慢马走的路程一样,根据这一等量关系可列方程为240x =150(x +12),故答 案为:240x =150(x +12).16.② 解析:本题考查了菱形的判定定理,根据②AB =BC ,可以推出△ABC 是等腰三角形,由角平分线可推出AD =DC ,再结合四边形ADCE 是平行四边形可证其是菱形.故答案为②.17.27 解析:本题考查了一元二次方程根的判别式以及整式的混合运算——化简求值.由题意得△=b 2-4ac =0,即()()01421422=+-⨯⨯--m m ,整理得:2122=+m m . 原式=()424222442222++-=+--=+-+-=m m m m m m m m ,将2122=+m m 代入,即原式=27421=+-,故答案为27. 18.4 解析:本题考查了待定系数法求一次函数解析式、反比例函数的图像及其性质以及三角形的面积公式.如图,设BC交x 轴于点D ,BQ 交x 轴于点G ,过P 作PE ⊥y 轴于点E ,并延长EP 交AC 于点H ,过点Q 作QD ⊥y 轴于点D .由B (0,-2t ),C (2t ,4t ),易得BC 的解析式为y =3x-2t .令y =0,得x =t 32,即F 的坐标为(t 32,0).与x t y 2= 联列,可得3x -2t =x t 2,解得x =t ,t x 31-=(舍),∴P 点坐标为(t ,t ). 由A (2t ,0),C (2t ,4t ),易得Q 点的横坐标为2t ,代入x t y 2=中,即t t t y 2122==,∴Q 点坐标为(2t ,t 21).由B (0,-2t ),Q (2t ,t 21), 易得BQ 的解析式为t x y 245-=.令y =0,得得x =t 58,即G 的的坐标为(t 58,0). 由图可知,()[]2223222121t t t t t BE AF S PAB =--⨯⎪⎭⎫ ⎝⎛-⨯=•=∆. ()()2222474721422142158222121242121212121t t t t t t t t t t t t t t PH CQ AG BD AG BD OA AC S S S S CPQ ABQ ACB PQB =--=-⨯⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⨯⎥⎦⎤⎢⎣⎡--⨯-⨯⨯=•-•-•-•=--=∆∆∆∆ ∵t S S PQB PAB =-∆∆,∴t t t =-22472,解得:t 1=4,t 2=0(舍去).∴t=4. 19.(1)本题主要考查了实数的运算.在计算时,需对零指数幂、乘方、立方根、负指数幂分别进行计算,然后根据实数的运算法则,求得计算结果;(2)本题主要考查分式的化简,分别用平方差公式和完全平方公式,除法化为乘法,化简分式.解:(1)原式=4-4+1-9=一8.(2)原式()()()333332+=-•+-+a a a a a a a . 20.本题考査了分式方程的解法,可以采用去分母的方法把分式方程转化为整式方程再求解. 解:去分母可得3x =2x +(3x +3),化简可得2x =-3,解得23-=x .经检验23-=x 是原方程的解.21.解析:本题考查了用列表法或画树状图法求概率.列表法或画树状图可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图适合两步或两步以上完成的事件.要熟练掌握:概率=事件所包含的可能结果数与全部可能结果总数的比,即:如果一个事件有n 种可能的情况,且它们们的可能性相同,其中事件A 出现了m 种结果,那么事件A 的概率()nm A P =. 解:画树状图如下:或列表如下:根据树状图或列表可知满足情况的有3种,∴P =3193=. 22.解析:本题考查了解直角三角形的应用,三角函数的定义,利用三角函数解决实际问题.本题中若要使A 、C 、E 三点共线,则三角形BDE 是以∠E 为直角的三角形,利用三角函数即可解得DE 的长.解:∵∠ABD =120°,∴∠CBD =60°,∵∠CED =90°,∴ED =BD ・sin ∠EBD =520×23=2603≈450m . 答:当开挖点E 离D450m 时正好使A ,C ,E 三点在同一直线上.23.解析:本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,根据数据整理成频数分布表,会求数据的平均数、众数、中位数.并利用中位数的意义解决实际问题.(1)根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a =3,b =4,再根据数据可得15出现了5次,出现次数最多,所以众数c =15;(2)从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8;(3)本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标.解:(1)3,4,15;(2)8;(3)根据中位数为18可得,可把营业额定在18万元,就可以让一半左右的人达到销售目标.24.解析:本题考査了切线的性质和判定、矩形判定和性质、垂径定理、解直角三角形等知识.(1)根据切线的性质,易证四边形CDEF 是一个矩形,即可推出OC 与EB 相互垂直,再根据垂径定理即可证明结论;(2)由题意易得DC =EF =FB =4,CF =DE =2,设半径为r ,则OF =r -2,在Rt △OBF 中,利用勾股定理即可得到半径的长,从而求出直径AB 的长.解:(1)由于CD 为圆的切线,可得OC ⊥CD ,∠OCD =90°,又∵AD ⊥CD ,∴∠ADC =90°,∵AB 是直径,∴∠AEB =90°,可证四边形CDEF 是矩形,∴OC ⊥EB ,EF =FB .(2)由(1)得DC =EF =FB =4,CF =DE =2,设半径为r ,则OF =r —2,在Rt △OBF中,OF 2+FB 2=OB 2,()22242r r =+-,解得得r =5,所以AB =10. 25.解析:本题考查了二元一次方程组的解法以及不等式的相关知识,解题的关键是掌握消元思想与解二元一次方程组的方法步骤.利用加减消元法解方程得出答案.(1)列二元一次方程组,用代入法或加减法解方程即可;(2)将题目转化为一元一次不等式,利用一元一次不等式解即可.解:(1)设A ,B 两种商品的价格分别为x ,y ,由题意可得⎩⎨⎧=+=+,653,552y x y x 解得⎩⎨⎧==,15,20y x 所以A ,B 两种商品的价格分别为20,15;(2)设购买的A 商品a 件,则B 商品为12-a 件,所花钱数为m .由于a≥2(12-a ),可得8≤a≤12,∵m =20a+15(12-a )=5a+180,∴当a =8时所花钱数最少,即购买A 商品8件,B 商品4件.26.解析:本题考査了二次函数的代入点求值、二次函数的最值、二次函数与一元二次不等式、方程的关系以及函数平移的问题,是二次函数的综合题,要求熟练掌握二次函数的相关知识.(1)把(1,k 2)代入抛物线解析式中并求解即可;(2)将点分别代入抛物线解析式中,由y 1>y 2列出关于k 的不等式,求解即可;(3)先求出新抛物线的解析式,然后分1≤k≤2,k >2以及k <1三种情况讨论,根据二次函数的顶点及增减性,分别确定三种情况下各自对应的最小值,然后列出方程并求出满足题意的k 值即可.解:(1)∵抛物线k k x k x y 25)1(222-+--=经过点(1,k 2), ∴k k k k 25)1(21222-+--=,解得k =32. (2)∵抛物线k k x k x y 25)1(222-+--=经过(2k ,y 1)、点(2,y 2), ∴k k k k k k k y 23252)1(242221+=-+⨯--=, 8213252)1(222222+-=-+⨯--=k k k k k y , ∵21y y >,∴82132322+->+k k k k ,解得k >1. (3)∵[]121)1(25)1(2222----=-+--=k k x k k x k x y , ∴将抛物线向右平移1个单位长度得到新抛物线为[]121)(1211)1(22---=-----=k k x k k x y , 当k <1时,1≤x≤2对应的抛物线部分位于对称轴右侧,y 随x 的增大而增大,∴x =1时,y 最小=k k k k 25121)1(22-=---,∴23252-=-k k , 解得11=k ,232=k ,都不合题意,舍去; 当1≤k≤2时y 最小=121--k ,∴23121-=--k , 解得k =1;当k >2时,1≤x ≤2对应的抛物线部分位于对称轴左侧,y 随x 的增大而减小,∴x =2时,y 最小=329121)2(22+-=---k k k k ,∴233292-=+-k k , 解得k 1=3,k 2=23(舍去),综上可知k =1或3.27.解析:本题考查了正方形的性质、几何图形旋转的性质、利用三角形全等解决问题的相关知识.(1)根据旋转的性质,对应线段、对应角相等,可证明△ADE ≌△CDF ,即可得到AE =CF .(2)先利用△AEKC ∽△AOB ,求得AK ,EK 长,再利用△AEK ≌△CFG ,求得FG ,CG 长,即可求得OF 的长;(3)本题考査了利用三角形全等转化的思想解决问题.解:(1)∵线段DE 绕点D 逆时针旋转90°得DF ,∴DE =DF ,∠EDF =90°,∴∠CDE+∠CDF =90°,在正方形ABCD 中,AD =CD ,∠ADC =90°.∴∠CDE+∠ADE =90°,∴∠ADE =∠CDF ,在△ADE 与△CDF 中,⎪⎩⎪⎨⎧===,,,DF DE CDF ∠ADE ∠CD AD∴△ADE ≌△CDF ,∴AE=CF(2)如图,过F 点作OC 的垂线,交OC 的延长线于G 点,过E 点作EK ⊥AB 于点K , 若A ,E ,O 三点共线,可得△ AEK ∽△AOB ,∴BO EK AB AK AO AE ==, 已知AB =25,BO =5,∴AO =5,AE =3,∴55253EK AK ==, AK =655,EK =553, ∵∠DAE =∠DCF ,∴∠EAK =∠FCG ,∵AE =CF ,∠AKE =∠FGC =90,∴△AEK ≌△CFG ,FG =553,CG =655, 在Rt △OGF 中,由勾股定理得OF =26.(3)如图,由于OE =2,所以E 点可以看作是在以O 为圆心,2为半径的半圆上运动, 延长BA 至P 点,使得AP =OC ,连接PE ,∵AE =CF ,∠PAE =∠OCF ,∴△PAE ≌△OCF ,PE =OF .当PE 最小时,为O ,E ,P 三点共线,OP =22PB OB +=22)53()5(+=25,∴PE =OP -OE =25-2,∴OF 最小值为25-2.28.解析:本题是一道开放性探究题,主要考查自主探究的能力,建立在直角坐标系的探究题目,里面涉及新的定义,利用了一次函数,三角函数的相关知识,要求我们把握定义,理解定义,严格按照定义解题.(1)根据“等角点”的定义找到A 关于x =4的对称点A ',连接A 'B ,求得与x =4的交点即可;(2)根据“等角点”的定义和三角函数的知识,再利用△APG ∽△BPH ,即可得到;(3)构造辅助圆⊙O 解题,当直线y =ax +b 与⊙O 相交的另一个交点为Q 时,利用圆周角定理以及对称性可证明△ABQ 为等边三角形,从而确定Q 为定点.再过A ,Q 分别作y 轴的垂线,构造相似三角形(Rt △AMO ∽Rt △ONQ ),利用相似三角形对应边成比例即可求出Q 的坐标,再利用待定系数法求出BQ 和AQ 的解析式,由此即可确定b 的取值范围.解:(1)C ;(2)如图,过点A 作直线l 的对称点A ',连接A 'B ,交直线l 于点P ,作BH ⊥l 于点H .∵点A 和点A '关于直线l 对称,∴∠APG =∠A 'PG .∵∠BPH =∠A 'PG ,∴∠APG =∠BPH .∵∠AGP =∠BHP =90°,∴△AGP ∽△BHP . ∴HP GP BH AG =,即3322+-=+-n n m m . ∴32=mn ,即n m 32=. ∵∠APB =α,AP =A 'P ,∴∠A =∠A '=2α. 在Rt △AGP 中,22323232tan n nn m n AG PG =--=--==α. (3)如图,当点P 位于直线AB 的右下方,∠APB =60°时,点P 在以AB 为弦,所对的圆周角为60°,且圆心在AB 下方的圆上.若直线)0(≠+=a b ax y 与圆相交,设圆与直线)0(≠+=a b ax y 的另一个交点为Q .由对称性可知:∠APQ =∠A 'PQ ,又∠APB =60°,∴∠APQ =∠A 'PQ =60°.∴∠ABQ =∠APQ =60°,∠AQB =∠APB =60°.∴∠BAQ =60°=∠AQB =∠ABQ .∴△ABQ 是等边三角形.∵线段AB 为定线段,∴点Q 为定点.若直线)0(≠+=a b ax y 与圆相切,易得点P 与Q 重合.∴直线)0(≠+=a b ax y 经过定点Q .连接OQ ,过点A ,Q 分别作AM ⊥y 轴,QN ⊥y 轴,垂足分别为M ,N .∵A (2,3),B (-2,-3),∴OA =OB =7.∵△ABQ 是等边三角形,∴∠AOQ =∠BOQ =90°,OQ =3OB =21.∴∠AOM+∠NOQ =90°,又∵∠AOM +∠MAO =90°,∠NOQ =∠MAO .又∵∠AMO =∠ONQ =90°,∴△AMO ∽△ONQ . ∴OQ AO NQ MO ON AM ==.∴21732==NQ ON . ∴ON =23,NQ =3,∴Q (3,32-).设直线BQ 的解析式为b kx y +=,将B 、Q 两点代入得⎪⎩⎪⎨⎧+=-+-=-,332,23b k b k 解得⎪⎪⎩⎪⎪⎨⎧-=-=.537,53b k ∴直线BQ 的解析式为53753--=x y . 设直线AQ 的解析式为n mx y +=,将A 、Q 两点代入得⎪⎩⎪⎨⎧+=-+=,332,23n m n m ,解得⎪⎩⎪⎨⎧=-=.37,33n m ∴直线AQ 的解析式为3733+-=x y .若点P 与B 点重合,则直线PQ 与直线BQ 重合,此时537-=b ;若点P 与点A 重合,则直线PQ 与直线AQ 重合,此时b =37;∵a≠0,∴b≠-32;又∵y =ax +b (a≠0),且点P 位于AB 的右下方,∴b <-537且b≠-23或b>73.。
2018年江苏省南通市中考数学试卷(真题解析版)

2018年南通中考数学20180801 南通市2018年初中毕业、升学考试试卷数学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡...相应位置....上)1.6的相反数是A.-6 B.6 C.-16D.162.计算x2·x3结果是A.2x5 B.x5C.x6D.x83.x的取值范围是A.x<1 B.x≤1 C.x>1 D.x≥14.2017年国内生产总量达到827 000亿元,稳居世界第二,将数827 000用科学记数法表示为A.82.7×104B.8。
27×105C.0.827×106D.8.27×1065.下列长度的三条线段能组成直角三角形的是A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,126. 如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2.则表示数2的点P 应落在A .线段AB 上B .线段BO 上C .线段OC 上D .线段CD 上7. 若一个凸多边形的内角和为720°,则这个多边形的边数为A .4B .5C .6D .78. 一个圆锥的主视图是边长为4 cm 的正三角形,则这个圆锥的侧面积等于A .16π cm 2B .12π cm 2C .8π cm 2D .4π cm 2O C D 01239. 如图,Rt △ABC 中,∠ACB =90°,CD 平分∠ACB 交AB 于点D ,按下列步骤作图.步骤1:分别以点C 和点D 为圆心,大于12CD 的长为半径作弧,两弧相交于M ,N 两点; 步骤2:作直线MN ,分别交AC ,BC 于点E ,F ; 步骤3:连接DE ,DF .若AC =4,BC =2,则线段DE 的长为A .53B .32CD .43CDM NE F AB10. 如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE =43.设AB =x ,△ABF 的面积为y ,则y 与xA .B .C .D .AE BCDF二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置.......上)11.计算3a2b-a2b=__________.12.某校学生来自甲,乙,丙三个地区,其人数比为2∶7∶3,绘制成如图所示的扇形统计图,则甲地区所在扇形的圆心角度数为________度.丙乙甲13.一个等腰三角形的两边长分别为4 cm和9 cm,则它的周长为_________cm.14.如图,∠AOB=40°,OP平分∠AOB,点C为射线OP上一点,作CD⊥OA于点D,在∠POB的内部作CE∥OB,则∠DCE=________度.OADCPBE15.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.意思是:跑得快的马平均每天能跑240里,跑得慢的马平均每天能跑150里.如果慢马先行12天,快马多少天能够追上慢马?若设快马x天可追上慢马,则由题意,可列方程为___________________.16.如图,在△ABC中,AD,CD分别平分∠BAC和∠ACB,AE∥CD,CE∥AD,若从三个条件:①AB=AC;②AB=BC;③AC=BC中,选择一个作为已知条件,则能使四边形ADCE为菱形的是_________(填序号).17.若关于x的一元二次方程12x2-2mx-4m+1=0有两个相等的实数根,则(m-2)2-2m(m-1)的值为____________.18.在平面直角坐标系xOy中,已知A(2t,0),B(0,-2t),C(2t,4t)三点,其中t>0,函数y=2tx的图象分别与线段BC,AC交于点P,Q,若S△PAB-S△PQB=t,则t的值为___________.三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)计算(1)(-2)2(-3)0-(13)—2;(2)229369a aaa a--÷++.20.(本小题满分8分)解方程21 133x xx x=+ ++21.(本小题满分8分)一个不透明的口袋中有三个完全相同的小球,把他们分别标号1,2,3.随机摸取一个小球,然后放回,再随机摸出一个小球,用列表或画树状图的方法,求两次取出的小球标号相同的概率.22.(本小题满分8分)如图,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=520 m,∠D=30°,那么另一边开挖点E离D多远正好使A,C,E三点在一直线上.取1。
江苏省南通市2018年中考数学试题(含答案)-精品

南通市2018年初中毕业、升学考试试卷数学一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上)1的值是A .4B .2C .±2D .﹣2 2.下列计算中,正确的是A .235a a a ⋅=B .238()a a =C .325a a a +=D .842a a a ÷=3在实数范围内有意义,则x 的取值范围是 A .x ≥3B.x <3C .x ≤3D .x >34.函数y =﹣x 的图象与函数y =x +1的图象的交点在A .第一象限B .第二象限C .第三象限D .第四象限 5.下列说法中,正确的是 A .—个游戏中奖的概率是110,则做10次这样的游戏一定会中奖 B .为了了解一批炮弹的杀伤半径,应采用全面调查的方式 C .一组数据8,8,7,10,6,8,9的众数是8D .若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小 6.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队共进行了6场比赛,得了12分,该队获胜的场数是 A .2 B .3 C .4 D .57.如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于点E 、F ,再分别以E 、F 为圆心,大于12EF 的同样长为半径作圆弧,两弧交于点P ,作射线AP ,交CD 于点M .若∠ACD=110°,则∠CMA 的度数为 A .30°B.35°C.70°D.45°8.—个空间几何体的主视图和左视图都是边长为2cm 的正三角形,俯视图是一个圆,那么这个几何体的表面积是A .32πcm 2B .3πcm 2C .52πcm 2D .5πcm 29.如图,等边△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止,设运动时间为x (s ),y =PC 2,则y 关于x 的函数的图像大致为A B C D10.正方形ABCD 的边长AB =2,E 为AB 的中点,F 为BC 的中点,AF 分别与DE 、BD 相交于点M 、N ,则MN 的长为A .6 B .13-C .15D .3第7题第9题第10题二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 11.“辽宁舰”最大排水量为67500吨,将67500用科学记数法表示为. 12.分解因式:3222a a b ab -+=. 13.正n 边形的一个内角为135°,则n =.14.某厂一月份生产某机器100台,计划三月份生产160台,设二、三月份每月的平均增长率为x ,根据题意列出的方程是.15.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC =3,AB =5,OD ⊥BC 于点D ,则OD 的长为.16.下面是“作一个30︒角”的尺规作图过程.请回答:该尺规作图的依据是.17.如图,在△ABC 中,∠C=90°,AC =3,BC =4,点O 是BC 中点,将△ABC 绕点O 旋转得△A′B′C′,则在旋转过程中点A 、C′两点间的最大距离是.第15题第17题18.在平面直角坐标系xOy 中,过点A(3,0)作垂直于x 轴的直线AB ,直线y =﹣x +b 与双曲线1y x=交于点P(1x ,1y ),Q(2x ,2y ),与直线AB 交于点R(3x ,3y ),若1y >2y >3y 时,则b 的取值范围是.三、解答题(本大题共10小题,共96分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分10分)(101122013()3tan 303-+--+︒;(2)解方程:11322xx x-=---.20.(本题满分8分)解不等式组3(21)4213212x x x x ⎧--≤⎪⎪⎨+⎪>-⎪⎩①②,并写出x 的所有整数解.21.(本题满分8分)“校园安全”受到全社会的广泛关注.某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.22.(本题满分8分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回‧‧‧,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.23.(本题满分8分)如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶12千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求B ,C 两地的距离(结果保留根号).24.(本题满分8分)如图,□ABCD 中,点E 是BC 的中点,连接AE 并延长交DC 延长线于点F . (1)求证:CF =AB ;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.25.(本题满分8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义,并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500 km.26.(本题满分12分)如图,△ABC中,AB=6cm,AC=,BC=,,点P以1 cm/s的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.27.(本题满分12分)已知,正方形ABCD,A(0,﹣4),B(1,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.(1)抛物线经过定点坐标是,顶点M的坐标(用m的代数式表示)是;(2)若抛物线y=x2+mx﹣2m﹣4(m为常数)与正方形ABCD的边有交点,求m的取值范围;(3)若∠ABM=45°时,求m的值.28.(本题满分14分)如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O 上的两点.若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;(2)若CD的长为134π,求“回旋角”∠CPD的度数;(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+AP 的长.参考答案一、选择题二、填空题三、解答题19.(1)6;(2)无解. 20.534x -≤<,整数解为﹣1,0,1,2. 21.(1)60,90;(2)补全条形统计图,并标数据10; (3)800人. 22.(1)34;(2)12. 23.24.(1)先证△ABE ≌△FCE ,再证CF =AB ;(2)由(1)判断出C 为DF 的中点,再结合∠BCD =90°,得到BC 垂直平分DF ,从而BD =BF . 25.(1)80,120;(2)C 的实际意义是快车到达乙地,点C 坐标为(6,480); (3)当x 为1110或254时,两车之间的距离为500 km . 26.(1)2;(2)4或6+(3),066,6642t t S t t ≤≤⎧⎪=⎨-++<≤+⎪⎩. 27.(1)(2,0),(2m -,21244m m ---); (2)112m ≤≤; (3)5m =5.28.(1)是; (2)45°;(3)3或23.。
2018年江苏省南通市如东县中考一模数学试卷(解析版)

2018年江苏省南通市如东县中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)﹣4的相反数是()A.B.﹣C.4D.﹣42.(3分)下列计算,正确的是()A.a3+2a=3a4B.a4÷a=a3C.a2•a3=a6D.(﹣a2)3=a6 3.(3分)2017年南通地区生产总值约为7700亿元,将7700亿用科学记数法表示为()A.7.7×108B.7.7×109C.7.7×1010D.7.7×1011 4.(3分)下列水平放置的几何体中,左视图是圆的是()A.B.C.D.5.(3分)如图,BC∥DE,若∠A=35°,∠E=60°,则∠C等于()A.60°B.35°C.25°D.20°6.(3分)如图,在平面直角坐标系中,直线y=与y轴交于点A,与x轴交于点B,则tan∠ABO的值为()A.B.C.D.27.(3分)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A.1B.2C.3D.68.(3分)若关于x的不等式组的解集为x<3,则k的取值范围为()A.k>1B.k<1C.k≥1D.k≤19.(3分)端午节前夕举行了南通濠河国际龙舟邀请赛,在500米直道竞速赛道上,甲、乙两队所划行的路程y(单位:米)与时间t(单位:分)之间的函数关系式如图所示,根据图中提供的信息,有下列说法:①甲队比乙队提前0.5分到达终点②当划行1分钟时,甲队比乙队落后50米③当划行分钟时,甲队追上乙队④当甲队追上乙队时,两队划行的路程都是300米其中错误的是()A.①B.②C.③D.④10.(3分)如图,AB为⊙O的直径,C为⊙O上一点,点D为半圆AB的中点,CD交AB于点E,若AC=8,BC=6,则BE的长为()A.4.25B.C.3D.4.8二、填空题(本大题共8小题.每小题3分,共计24分.不需写出解答过程,请把正确答案直接填在答题卡相应的位置上)11.(3分)若∠α=35°,则∠α的补角为度.12.(3分)分解因式:2a3b﹣8ab3=.13.(3分)在函数y=中,自变量x的取值范围是.14.(3分)▱ABCD的对角线AC、BD相交点O,△OAB是等边三角形,且AB =3,则▱ABCD的面积是.15.(3分)已知一组数据3,4,6,x,9的平均数是6,那么这组数据的方差等于.16.(3分)如图,在Rt△ABC中,∠C=90°,点D是线段AB的中点,点E 是线段BC上的一个动点,若AC=6,BC=8,则DE长度的取值范围是.17.(3分)如图,点A(1,n)和点B都在反比例函数y=(x>0)的图象上,若∠OAB=90°,,则k的值是.18.(3分)若x=﹣m和x=m﹣4时,多项式ax2+bx+4a+1的值相等,且m≠2.当﹣1<x<2时,存在x的值,使多项式ax2+bx+4a+1的值为3,则a的取值范围是.三、解答题(本大题共10小题,共计96分.请在答题卡指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)19.(10分)(1)计算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;(2)先化简,再求值:÷,其中x=﹣1.20.(8分)如图,一枚运载火箭从地面A处发射.当火箭到达B点时,从位于地面D处的雷达站测得BD的距离是4km,仰角为30°;当火箭到达C点时,测得仰角为45°,这时,C点距离雷达站D有多远(结果保留根号)?21.(9分)某校开展了为期一周的“敬老爱亲”社会活动,为了解情况,学生会随机调查了部分学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组,A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)学生会随机调查了名学生;(2)补全频数分布直方图;(3)若全校有900名学生,估计该校在这次活动中做家务的时间不少于2.5小时的学生有多少人?22.(8分)在不透明的袋子中有四张标着数字1,2,3,4的卡片.随机抽出一张卡片后不放回,再随机抽出一张卡片,求两次抽到的数字之和为奇数的概率.23.(8分)打折前,买20件A商品和30件B商品要用2200元,买50件A商品和10件B商品要用2900元.若打折后,买40件A商品和40件B商品用了3240元,比不打折少花多少钱?24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分∠DAB;(2)若BE=3,CE=3,求图中阴影部分的面积.25.(8分)如图,四边形ABCD是正方形,点E是平面内异于点A的任意一点,以线段AE为边作正方形AEFG,连接EB,GD.(1)如图1,求证EB=GD;(2)如图2,若点E在线段DG上,AB=5,AG=3,求BE的长.26.(10分)已知关于x的一元二次方程x2+mx+m﹣2=0.(1)求证:无论m取任何实数,此方程总有两个不相等的实数根;(2)设x2+mx+m﹣2=0的两个实数根为x1,x2,若y=x12+x22+4x1x2,求出y与m的函数关系式;(3)在(2)的条件下,若﹣1≤m≤2时,求y的取值范围.27.(13分)如图1,△ABC中,∠ACB=90°,AC=4cm,BC=6cm,D是BC 的中点.点E从A出发,以a cm/s(a>0)的速度沿AC匀速向点C运动,点F同时以1cm/s的速度从C出发,沿CB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,过点E作AC的垂线,交AD于点G,连接EF,FG.设它们运动的时间为t秒(t>0).(1)当t=2时,△ECF∽△BCA,求a的值;(2)当a=时,以点E、F、D、G为顶点的四边形是平行四边形,求t的值;(3)当a=2时,是否存在某个时间t,使△DFG是直角三角形?若存在,请求出t的值;若不存在,请说明理由.28.(14分)定义:形如y=|G|(G为用自变量表示的代数式)的函数叫做绝对值函数.例如,函数y=|x﹣1|,y=,y=|﹣x2+2x+3|都是绝对值函数.绝对值函数本质是分段函数,例如,可以将y=|x|写成分段函数的形式:探索并解决下列问题:(1)将函数y=|x﹣1|写成分段函数的形式;(2)如图1,函数y=|x﹣1|的图象与x轴交于点A(1,0),与函数的图象交于B,C两点,过点B作x轴的平行线分别交函数,y=|x﹣1|的图象于D,E两点.求证△ABE∽△CDE;(3)已知函数y=|﹣x2+2x+3|的图象与y轴交于F点,与x轴交于M,N两点(点M在点N的左边),点P在函数y=|﹣x2+2x+3|的图象上(点P与点F不重合),PH⊥x轴,垂足为H.若△PMH与△MOF相似,请直接写出所有符合条件的点P的坐标.2018年江苏省南通市如东县中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)﹣4的相反数是()A.B.﹣C.4D.﹣4【解答】解:﹣4的相反数是4.故选:C.2.(3分)下列计算,正确的是()A.a3+2a=3a4B.a4÷a=a3C.a2•a3=a6D.(﹣a2)3=a6【解答】解:A、a3+2a,无法计算,故此选项错误;B、a4÷a=a3,正确;C、a2•a3=a5,故此选项错误;D、(﹣a2)3=﹣a6,故此选项错误;故选:B.3.(3分)2017年南通地区生产总值约为7700亿元,将7700亿用科学记数法表示为()A.7.7×108B.7.7×109C.7.7×1010D.7.7×1011【解答】解:7700亿用科学记数法表示为7.7×1011,故选:D.4.(3分)下列水平放置的几何体中,左视图是圆的是()A.B.C.D.【解答】解:A、圆柱体的左视图是矩形,不符合题意;B、球的左视图是圆,符合题意;C、直三棱柱的左视图是矩形且中间有一条纵向的实线,不符合题意;D、圆锥的左视图是三角形,不符合题意;故选:B.5.(3分)如图,BC∥DE,若∠A=35°,∠E=60°,则∠C等于()A.60°B.35°C.25°D.20°【解答】解:∵BC∥DE,∴∠E=∠CBE=60°;∵∠A=35°,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故选:C.6.(3分)如图,在平面直角坐标系中,直线y=与y轴交于点A,与x轴交于点B,则tan∠ABO的值为()A.B.C.D.2【解答】解:当x=0时,y=x+1=1,∴点A的坐标为(0,1),∴OA=1.当y=0时,有x+1=0,解得:x=﹣2,∴点B的坐标为(﹣2,0),∴OB=2.∴tan∠ABO==.故选:A.7.(3分)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A.1B.2C.3D.6【解答】解:扇形的弧长==4π,∴圆锥的底面半径为4π÷2π=2.故选:B.8.(3分)若关于x的不等式组的解集为x<3,则k的取值范围为()A.k>1B.k<1C.k≥1D.k≤1【解答】解:不等式整理得:,由不等式组的解集为x<3,得到k的范围是k≥1,故选:C.9.(3分)端午节前夕举行了南通濠河国际龙舟邀请赛,在500米直道竞速赛道上,甲、乙两队所划行的路程y(单位:米)与时间t(单位:分)之间的函数关系式如图所示,根据图中提供的信息,有下列说法:①甲队比乙队提前0.5分到达终点②当划行1分钟时,甲队比乙队落后50米③当划行分钟时,甲队追上乙队④当甲队追上乙队时,两队划行的路程都是300米其中错误的是()A.①B.②C.③D.④【解答】解:观察图象可知:甲队比乙队提前0.5分到达终点,故①正确;由题意y甲=200x,y乙=,当x=1时,y甲=200,250﹣200=50,∴当划行1分钟时,甲队比乙队落后50米,故②正确,由,解得,∴当划行分钟时,甲队追上乙队,两队划行的路程都是米,故③正确,④错误,故选:D.10.(3分)如图,AB为⊙O的直径,C为⊙O上一点,点D为半圆AB的中点,CD交AB于点E,若AC=8,BC=6,则BE的长为()A.4.25B.C.3D.4.8【解答】解:连接OD,作CH⊥AB于H,如图,∵AB为⊙O的直径,∴∠ACB=90°,∴AB==10,∵CH•AB=AC•BC,∴CH==,在Rt△BCH中,BH==,∵点D为半圆AB的中点,∴OD⊥AB,∴OD∥CH,∴△CHE∽△DOE,∴EH:OE=CH:OD=:5=24:25,∴OE=EH,∵EH+EH+=5,∴EH=,∴BE=EH+BH=+=.故选:B.二、填空题(本大题共8小题.每小题3分,共计24分.不需写出解答过程,请把正确答案直接填在答题卡相应的位置上)11.(3分)若∠α=35°,则∠α的补角为145度.【解答】解:180°﹣35°=145°,则∠α的补角为145°,故答案为:145.12.(3分)分解因式:2a3b﹣8ab3=2ab(a+2b)(a﹣2b).【解答】解:2a3b﹣8ab3,=2ab(a2﹣4b2),=2ab(a+2b)(a﹣2b).13.(3分)在函数y=中,自变量x的取值范围是x≥0且x≠1.【解答】解:根据题意得:x≥0且x﹣1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1.14.(3分)▱ABCD的对角线AC、BD相交点O,△OAB是等边三角形,且AB =3,则▱ABCD的面积是9.【解答】解:如图,∵▱ABCD的对角线相交于点O,△AOB是等边三角形,∴OA=OC,OB=OD,OA=OB=AB=3,∴AC=BD,∴▱ABCD是矩形,∴∠BAD=90°,AC=BD=2OA=6,∴AD===3,∴▱ABCD的面积=AB•AD=3×3=9;故答案为:9.15.(3分)已知一组数据3,4,6,x,9的平均数是6,那么这组数据的方差等于 5.2.【解答】解:∵数据3,4,6,x,9的平均数是6,∴(3+4+6+x+9)=6,解得:x=8,s2=[(3﹣6)2+(4﹣6)2+(6﹣6)2+(8﹣6)2+(9﹣6)2]=5.2,故答案为:5.2.16.(3分)如图,在Rt△ABC中,∠C=90°,点D是线段AB的中点,点E 是线段BC上的一个动点,若AC=6,BC=8,则DE长度的取值范围是3≤DE≤5.【解答】解:当E与C或重合时,DE最长,在Rt△ABC中,AB=,∵点D是线段AB的中点,∴CD=5,当DE⊥BC时,DE最短,DE=,所以DE长度的取值范围是3≤DE≤5,故答案为:3≤DE≤517.(3分)如图,点A(1,n)和点B都在反比例函数y=(x>0)的图象上,若∠OAB=90°,,则k的值是2.【解答】解:如图,过A作AC⊥x轴,过B作BD⊥AC于D,则∠ACO=∠BDA =90°,OC=1,AC=n,∵∠BAO=90°,∴∠CAO+∠BAC=∠ABD+∠BAC=90°,∴∠CAO=∠DBA,∴△AOC∽△BAD,∴==,即,∴AD=,BD=,∴B(1+,n﹣),∵k=1×n=(1+)(n﹣),解得n=2或n=﹣0.5(舍去),∴k=1×2=2,故答案为:2.18.(3分)若x=﹣m和x=m﹣4时,多项式ax2+bx+4a+1的值相等,且m≠2.当﹣1<x<2时,存在x的值,使多项式ax2+bx+4a+1的值为3,则a的取值范围是.【解答】解:∵x=﹣m和x=m﹣4时,多项式ax2+bx+4a+1的值相等,且m≠2,∴令y=ax2+bx+4a+1时的对称轴是直线x==﹣2,∴a>0时,当x>﹣2时,y随x的增大而增大,a<0时,当x>﹣2时,y随x的增大而减小,∵当﹣1<x<2时,存在x的值,使多项式ax2+bx+4a+1的值为3,∴当a>0时,a﹣b+4a+1<3<4a+2b+4a+1,由﹣=﹣2,解得,;当a<0时,a﹣b+4a+1>3>4a+2b+4a+1,由﹣=﹣2,此时无解,故答案为:.三、解答题(本大题共10小题,共计96分.请在答题卡指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)19.(10分)(1)计算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;(2)先化简,再求值:÷,其中x=﹣1.【解答】解:(1)(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°==4﹣1+2﹣=5;(2)÷=====,当x=﹣1时,原式=.20.(8分)如图,一枚运载火箭从地面A处发射.当火箭到达B点时,从位于地面D处的雷达站测得BD的距离是4km,仰角为30°;当火箭到达C点时,测得仰角为45°,这时,C点距离雷达站D有多远(结果保留根号)?【解答】解:在Rt△ABD中,cos∠BDA=,∴AD=4×=(km);在Rt△ACD中,cos∠CDA=,∴CD==(km).∴C点距离雷达站D是km.21.(9分)某校开展了为期一周的“敬老爱亲”社会活动,为了解情况,学生会随机调查了部分学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组,A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)学生会随机调查了50名学生;(2)补全频数分布直方图;(3)若全校有900名学生,估计该校在这次活动中做家务的时间不少于2.5小时的学生有多少人?【解答】解:(1)学生会调查的学生人数为10÷20%=50(人),故答案为:50;(2)∵1.5≤x<2的人数为50×40%=20人,∴1≤x<1.5的人数为50﹣(3+20+10+4)=13人,补全图形如下:(3)900×=72(人),答:估计该校在这次活动中做家务的时间不少于2.5小时的学生有72人.22.(8分)在不透明的袋子中有四张标着数字1,2,3,4的卡片.随机抽出一张卡片后不放回,再随机抽出一张卡片,求两次抽到的数字之和为奇数的概率.【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中两次抽到的数字之和为奇数有8种,所以两次抽到的数字之和为奇数的概率为=.23.(8分)打折前,买20件A商品和30件B商品要用2200元,买50件A商品和10件B商品要用2900元.若打折后,买40件A商品和40件B商品用了3240元,比不打折少花多少钱?【解答】解:设A商品打折前的单价为x元/件,B商品打折前的单价为y元/件,根据题意得:,解得:,40x+40y﹣3240=360.答:打折后,买40件A商品和40件B商品用了3240元,比不打折少花360元.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.(1)求证:AC平分∠DAB;(2)若BE=3,CE=3,求图中阴影部分的面积.【解答】解:(1)连接OC,如图,∵CD与⊙O相切于点E,∴CO⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)设⊙O半径为r,在Rt△OEC中,∵OE2+EC2=OC2,∴r2+27=(r+3)2,解得r=3,∴OC=3,OE=6,∴cos∠COE==,∴∠COE=60°,∴S阴影=S△COE﹣S扇形COB=•3•3﹣=﹣π.25.(8分)如图,四边形ABCD是正方形,点E是平面内异于点A的任意一点,以线段AE为边作正方形AEFG,连接EB,GD.(1)如图1,求证EB=GD;(2)如图2,若点E在线段DG上,AB=5,AG=3,求BE的长.【解答】(1)证明:∵四边形ABCD和四边形BEFG都是正方形,∴AB=AD,AG=AE,∠BAD=∠GAE=90°,∴∠BAE=∠DAG,在△AGD和△AEB中∵AB=AD,AG=AE,∠BAE=∠DAG,∴△AGD≌△AEB(SAS),∴EB=GD;(2)解:作AH⊥DG于H,∵四边形ABCD和四边形BEFG都是正方形,∴AD=AB=5,AE=AG=3.∴由勾股定理得:EG==6,AH=GH=EG=3(直角三角形斜边上的中线等于斜边的一半),∴DH==4,∴BE=DG=DH+GH=3+4=7.26.(10分)已知关于x的一元二次方程x2+mx+m﹣2=0.(1)求证:无论m取任何实数,此方程总有两个不相等的实数根;(2)设x2+mx+m﹣2=0的两个实数根为x1,x2,若y=x12+x22+4x1x2,求出y与m的函数关系式;(3)在(2)的条件下,若﹣1≤m≤2时,求y的取值范围.【解答】(1)证明:∵△=m2﹣4(m﹣2)=(m﹣2)2+4>0,∴无论m取任何实数,此方程总有两个不相等的实数根.(2)解:设x2+mx+m﹣2=0的两个实数根为x1、x2,∵x1+x2=﹣m,x1x2=m﹣2,∴y=x12+x22+4x1x2=(x1+x2)2+2x1x2=(﹣m)2+2(m﹣2)=m2+2m﹣4.(3)解:∵y=m2+2m﹣4=(m+1)2﹣5,∴顶点(﹣1,﹣5).=﹣5;又∵﹣1≤m≤2,∴当x=﹣1时,y最小值当x=2时,y=4.最大值∴﹣5≤m≤4.27.(13分)如图1,△ABC中,∠ACB=90°,AC=4cm,BC=6cm,D是BC 的中点.点E从A出发,以a cm/s(a>0)的速度沿AC匀速向点C运动,点F同时以1cm/s的速度从C出发,沿CB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,过点E作AC的垂线,交AD于点G,连接EF,FG.设它们运动的时间为t秒(t>0).(1)当t=2时,△ECF∽△BCA,求a的值;(2)当a=时,以点E、F、D、G为顶点的四边形是平行四边形,求t的值;(3)当a=2时,是否存在某个时间t,使△DFG是直角三角形?若存在,请求出t的值;若不存在,请说明理由.【解答】解:(1)∵t=2,∴CF=2厘米,AE=2a厘米,∴EC=(4﹣2a)厘米,∵△ECF∽△BCA.∴.(2分)∴.∴.(4分)(2)由题意,AE=厘米,CD=3厘米,CF=t厘米.∵EG∥CD,∴△AEG∽△ACD.∴,.∴EG=.(5分)∵以点E、F、D、G为顶点的四边形是平行四边形,∴EG=DF.当0≤t<3时,,∴.(7分)当3<t≤6时,,∴.综上,或(9分)(3)∵点D是BC中点,∴CD=BC=3,在Rt△ACD中,根据勾股定理得,AD=5,由题意,AE=2t厘米,CF=t厘米,由(2)知,△AEG∽△ACD,∴==,∴∴AG=厘米,EG=,DF=3﹣t厘米,DG=5﹣(厘米).若∠GFD=90°,则EG=CF,=t.∴t=0,(舍去)(11分)若∠FGD=90°,则△ACD∽△FGD.∴,∴.∴t=.(13分)综上:t=,△DFG是直角三角形.28.(14分)定义:形如y=|G|(G为用自变量表示的代数式)的函数叫做绝对值函数.例如,函数y=|x﹣1|,y=,y=|﹣x2+2x+3|都是绝对值函数.绝对值函数本质是分段函数,例如,可以将y=|x|写成分段函数的形式:探索并解决下列问题:(1)将函数y=|x﹣1|写成分段函数的形式;(2)如图1,函数y=|x﹣1|的图象与x轴交于点A(1,0),与函数的图象交于B,C两点,过点B作x轴的平行线分别交函数,y=|x﹣1|的图象于D,E两点.求证△ABE∽△CDE;(3)已知函数y=|﹣x2+2x+3|的图象与y轴交于F点,与x轴交于M,N两点(点M在点N的左边),点P在函数y=|﹣x2+2x+3|的图象上(点P与点F不重合),PH⊥x轴,垂足为H.若△PMH与△MOF相似,请直接写出所有符合条件的点P的坐标.【解答】解:(1);(2)∵函数y=|x﹣1|与函数的图象交于B,C,过点B作x轴的平行线分别交函数,y=|x﹣1|的图象于D,E两点.∴根据条件得各点坐标为:B(3,2),C(﹣2,3),E(﹣1,2),D(﹣3,2).∴BE=3﹣(﹣1)=4,DE=﹣1﹣(﹣3)=2,AE=,CE=,∴在△AEB和△CED中,∠AEB=∠CED,,∴△PMB∽△PNA.(3)P的坐标为(6,21),(,),(,).当x=0时,y=|﹣x2+2x+3|=3,∴F(0,3).当y=0时,|﹣x2+2x+3|=0,∴x1=﹣1,x2=3,∴M(﹣1,0),N(3,0).由题意得y=|﹣x2+2x+3|=,设P的横坐标为x,当x<﹣1时,由题意得P(x,x2﹣2x﹣3),若△PMH∽△FMO,,.解得x1=﹣1(舍去),x2=0(舍去).若△PMH∽△MFO,,.解得.当﹣1<x<3时,由题意得P(x,﹣x2+2x+3),若△PMH∽△MFO,,.解得.∴P的坐标为(,).若△PMH∽△MFO,,.解得x1=﹣1(舍去),x2=0(舍去).当x>3时,由题意P(x,x2﹣2x﹣3),若△PMH∽△FMO,,.解得x1=﹣1(舍去),x2=6.∴P的坐标为(6,21).若△PMH∽△MF,,.解得.∴P的坐标为(,).综上:P的坐标为(6,21),(,),(,).。
江苏南通市2018中考数学试题及标准答案

江苏省南通市2018年中考数学试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1的值是( )A .4 B.2 C .2± D .2-2.下列计算中,正确的是( )A.235a a a ⋅= B.()328a a = C.325a a a += D .842a a a ÷=3.在实数范围内有意义,则x 的取值范围是( )A.3x ≥ B .3x < C .3x ≤ D.3x >4.函数y x =-的图象与函数1y x =+的图象的交点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下列说法中,正确的是( )A.—个游戏中奖的概率是110,则做10次这样的游戏一定会中奖 B .为了了解一批炮弹的杀伤半径,应采用全面调查的方式C . 一组数据8,8,7,10,6,8,9的众数是8D. 若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小6.篮球比赛规定:胜一场得3分,负一场得1分.某篮球队共进行了 6场比赛,得了 12分,该队获胜的场数是( )A .2B .3C .4 D.57.如图,//AB CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交,AB AC 于点E F 、,再分别以E F 、为圆心,大于12EF 的同样长为半径作圆弧,两弧交于点P ,作射线AP ,交CD 于点M .若110ACD ∠=︒,则CMA ∠的度数为( )A .30︒B .35︒C .70︒ D.45︒8.—个空间几何体的主视图和左视图都是边长为2cm 的正三角形,俯视图是一个圆,那么这个几何体的表面积是( ) A.232cm π B.23cm π C.252cm π D.25cm π 9.如图,等边ABC ∆的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A B C →→的方向运动,到达点C 时停止,设运动时间为()x s ,2y PC =,则y 关于x 的函数的图像大致为( )A. B .C. D. 10.正方形ABCD 的边长2AB =,E 为AB 的中点,F 为BC 的中点,AF 分别与DE BD 、相交于点M N 、,则MN 的长为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考模拟考试数学试题参考答案与评分标准说明:本评分标准每题给出了典型解法供参考,如果考生的解法与本解答不同....,参照本评分标准的........精神给分.....一、选择题(本大题共10小题,每小题3分,共30分)二、填空题(本大题共8小题,每小题3分,共24分)11.145 12.2ab(a+2b) (a-2b) 13.x≥0且x≠114.15.5.2 16.3≤DE≤5 17.2 18.81<a<2三、解答题(本大题共10小题,共96分)19.(本小题满分10分)(1)解:原式=4122-+ -------------------------------------------------------------------- 4分=5;------------------------------------------------------------------------------------------- 5分(2)解:原式=11()(1)1xxx x+---=21xx+.------------------------------------------------------------------------------------- 8分当x=-1时,原式=2(1)121-+=--. ----------------------------------------------------- 10分20.(本小题满分8分)解:在Rt△ABD中,cos∠BDA=ADBD,∴AD=4=km);------------------- 4分在Rt△ACD中,cos∠CDA=ADCD,∴CD km).∴C点距离雷达站D是. ------------------------------------------------------------- 8分21.(本小题满分9分)解:(1)50; ---------------------------------------------------------------------------------------------------- 2分(2)图略; ------------------------------------------------------------------------------------------------- 6分(3)900×8%=72(人),答:估计该校在这次活动中做家务的时间不少于2.5小时的学生有72人.------ 9分22.(本小题满分8分)解:画出树形图如下(表格参照给分):-------- 5分由图可以看出,可能出现的结果共有12种,并且它们出现的可能性相等.其中两次抽到的数字之和为奇数的结果有8种, ------------------------------------------------- 6分 所以P (两次抽到的数字之和为奇数)=812=23. ------------------------------------------------ 8分23.(本小题满分8分)解:设A 商品和B 商品打折前的单价分别为每件x 元和y 元. ------------------------------------- 1分根据题意,得2030220050102900x y x y +=⎧⎨+=⎩,, ------------------------------------------------------------------ 4分解得5040x y =⎧⎨=⎩; -------------------------------------------------------------------------------------------- 6分40x +40y -3240=360(元). ------------------------------------------------------------------------ 7分 答:打折后,买40件A 商品和40件B 商品用了3240元,比不打折少花360元. ---------- 8分24.(本小题满分8分)解:(1)连接OC .∵CD 与⊙O 相切于点E ,∴CO CD ⊥于点E . --------- 1分 又∵AD ⊥CD ,∴AD ∥CO .∴∠DAC =∠ACO . ------- 2分∵OA =OC ,∴∠ACO =∠CAO . ---------------------------- 3分 ∴∠DAC =∠CAO ,即AC 平分∠DAB . ------------------ 4分(2)设⊙O 半径为r .∵在Rt △OEC 中,OE 2+EC 2=OC 2,∴r 2+27=(r +3)2,解得r =3, ----------- 5分∴60COE ∠=. ------------------------------------------------------ 6分 ∴ S 阴影=S △COE -S 扇形COBD32π. ------------------------------------------------------ 8分 25.(本小题满分8分)解:(1)∵四边形ABCD 和四边形BEFG 都是正方形,∴AB =AD ,AG =AE ,∠BAD =∠GAE =90°. -------- 1分 ∴∠BAE =∠DAG . -------------------------------------------- 2分 ∵AB =AD ,AG =AE ,∠BAE =∠DAG , (第24题)第一次第二次1234213431244123∴△ABG ≌△CBE (SAS ). ---------------------------------- 3分 ∴EB =GD ; ------------------------------------------------------ 4分(2)作AH ⊥DG 于H .∵四边形ABCD 和四边形BEFG 都是正方形,∴AD =AB =5,AE =AG =.∴EG =6,AH =GH =3. ---------------------------------------------------------------------- 6分 ∴DH. ------------------------------------------------------------------------ 7分 ∴BE =DG =DH +GH =7. -------------------------------------------------------------------- 8分(其它解法参照给分)26.(本小题满分10分)解:(1)∵△=224(2)(2)4m m m --=-+>0,∴无论m 取任何实数,此方程总有两个不相等的实数根. ------------------------------- 4分 (2)∵12122x x m x x m +=-=-, ,∴y =x 12+x 22+4x 1x 221212=()2x x x x ++2()2(2)m m =-+-224m m =+-.------------------------------------------------------------------------------------- 7分 (3)∵2224(1)5y m m m =+-=+-,∴顶点(-1,-5).又∵-2≤m ≤1,∴当x =-1时,y 最小值=-5; 当x =1时,y 最小值=-1.∴-5≤m ≤-1 --------------------------------------------------------------------------------------- 10分27.(本小题满分13分)解:(1)∵t =2,∴CF =2厘米,AE =2a 厘米, ∴EC =(4-2a ) 厘米.∵△ECF ∽△BCA .∴EC CFCB AC=. ------------------------ 2分 ∴42264a -=.∴12a =. -------------------------------------4分 (2)由题意,AE =12t 厘米,CD =3厘米,CF =t 厘米.∵EG ∥CD ,∴△AEG ∽△ACD .∴EG AE CD AC =,1234tEG =. ------------------- 5分 ∵以点E 、F 、D 、G 为顶点的四边形是平行四边形,∴EG =DF .(第27题)当0≤t <3时,338t t =-,2411t =. ---------------------------------------------------------------------- 7分当3<t ≤6时,338t t =-,245t =.综上2411t =或245------------------------------------------------------------------------------------------------ 9分 (3)由题意,AE =2t 厘米,CF =t 厘米,由△AEG ∽△ACD 可得:AG =52t,DF =3-t 厘米,DG =5-52t (厘米).若∠GFD =90°,则EG =CF ,32t =t .∴t =0,舍去. ----------------------------------------- 11分若∠FGD =90°,则△ACD ∽△FGD .∴AD FD CD GD =,535352t t -=-.∴t =3219. ----------- 13分 综上:t =3219,△DFG 是直角三角形.28.(本小题满分14分)解:(1)1()11()x x y x x x -⎧=-=⎨-+⎩≥1,<1. ------------------------------------------------------------------------- 3分(2)∵函数y =1x -与函数6y x=的图象交于B ,C , 过点B 作x 轴的平行线分别交函数6y x=,y =1x -的图象于D ,E 两点. ∴根据条件得各点坐标为: B (3,2),C (-2,3),E (-1,2),D (-3,2). ----------------------------------- 4分 ∴BE =3-(-1)=4,DE =-1-(-3)=2, AECE∴在△AEB 和△CED 中,∠AEB =∠CED ,2BE AEDE CE==;∴△PMB ∽△PNA . --------8分 (3)P 的坐标为(6,21),(103,139),(83,119). ----------------------------------------- 14分图1解法参考:当x =0时,y =223x x -++=3,∴F (0,3).当y =0时,223x x -++=0,∴1213x x =-=,,∴M (-1,0),N (3,0). 由题意222223123233233x x x y x x x x x x x x ⎧-+-⎪=-++=-++⎨⎪-+⎩(<),(-1≤≤),(>).设P 的横坐标为x ,当x <-1时,由题意P (x ,223x x --),若△PMH ∽△FMO , 3PH FOMH MO ==,22331x x x --=--. ∴1210x x =-=(舍去),(舍去). 若△PMH ∽△MFO ,13PH MO MH FO ==,223113x x x --=--. ∴12813x x =-=(舍去),(舍去). 当-1<x <3时,由题意P (x ,223x x -++),若△PMH ∽△MFO ,13PH MO MH FO ==,223113x x x -++=+. ∴12813x x =-=(舍去),.∴P 的坐标为(83,119). 若△PMH ∽△MFO ,3PH MOMH FO==,22331x x x -++=+. ∴1210x x =-=(舍去),(舍去).当x >3时,由题意P (x ,223x x --),若△PMH ∽△FMO , 3PH FOMH MO ==,22331x x x --=+. ∴1216x x =-=(舍去),.∴P 的坐标为(6,21).若△PMH ∽△MF ,13PH MO MH FO ==,223113x x x --=+.∴121013x x =-=(舍去),.∴P 的坐标为(103,139). 综上:P 的坐标为(6,21),(103,139),(83,119).。