高一数学阶段性检测试题
黑龙江省大庆实验中学实验一部2023-2024学年高一下学期6月阶段性质量检测试题 数学(含解析)

大庆实验中学实验一部2023级高一下学期6月份阶段性质量检测数学学科试题2024.06.03—2024.06.04说明:1.请将答案填涂在答题卡的指定区域内.2.满分150分,考试时间120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分)1.若复数z满足为虚数单位,则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.用斜二测画法作一个边长为6的正方形,则其直观图的面积为()A .36B .C .D 3.已知圆台上下底面圆的半径分别为1,3,母线长为4,则该圆台的侧面积为( )A .B .C .D .4.中,设,若,则的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .无法确定5.如右图所示,正三棱锥中,D ,E ,F 分别是的中点,P 为上任意一点,则直线与所成的角的大小是()A .B .C .D .随P 点的变化而变化6.逢山开路,遇水架桥,我国摘取了一系列高速公路“世界之最”,一辆汽车在一条水平的高速公路上直线行驶,在A ,B ,C 三处测得道路一侧山顶P 的仰角分别为,,,其中,则此山的高度为()1i,i 3zz -=-z 1O O 32π26π16π8πABC △,,AB c BC a CA b === ()0c b c a ⋅-->ABC △V ABC -,,VC VA AC VB DE PF 30︒60︒90︒30︒45︒60︒(),03AB a BC b a b ==<<ABCD7.如图,四面体中,两两垂直,,点E 是的中点,若直线与平面,则点B 到平面的距离为( )AB . CD .8.在中,已知分别为角的对边.若,且,则( )A . BCD或二.多项选择题(本大题共4小题,每小题5分,共20分)9.设m ,n 是两条不同的直线,是两个不同的平面,下列命题中不正确的是( )A .若,则B .若,则C .若m ,n 是两条不同的异面直线,,则D .若,则m 与所成的角和n 与所成的角互余10.下列说法正确的是()ABCD ,,AB BC BD 2BC BD ==CD AB ACD ACD 2343ABC ,,a b c ,,A B C 3cos a bC b a+=cos()A B -=cos C =,αβ,,m m n n αβ⊥⊥∥αβ⊥,,m m n αβα⊂∥∥n β∥,,,m n m n αβαβ⊂⊂∥∥αβ∥,m n αβ⊥∥αβA .在四边形中,,则四边形是平行四边形B .若是平面内所有向量的一个基底,则也可以作为平面向量的基底C .已知O 为的外心,边长为定值,则为定值;D .已知均为单位向量.若,则在上的投影向量为11.如图,在棱长为2的正方体中,Q 为线段的中点,P 为线段上的动点(含端点),则下列结论错误的是()A .三棱锥的体积为定值B .P 为线段的中点时,过D ,P ,Q 三点的平面截正方体C .D .直线与直线所成角的取值范围为12.如图,矩形中,为边的中点,沿将折起,点A 折至处(平面),若M 为线段的中点,平面与平面所成锐二面角,直线与平面所成角为,则在折起过程中,下列说法正确的是()A .存在某个位置,使得B .面积的最大值为ABCD AB DC =ABCD {}12,e e{}1221,e e e e -- ABC △AB AC 、AO BC ⋅,a b ||1a b -=a b 12b1111ABCD A B C D -11B C 1CC 1D D PQ -1CC 1111ABCD A B C D -DP PQ +DP 1A B ,42ππ⎡⎤⎢⎥⎣⎦ABCD 4,2,AB BC E ==AB DE ADE △1A 1A ∉ABCD 1AC 1A DE DEBC α1A E DEBC βADE △1BM A D ⊥1A EC △C .D .三棱锥体积最大时,三棱锥的外接球的表面积三.填空题(本大题共4小题,每小题5分,共20分)13.已知p :向量与的夹角为锐角.则实数m 的取值范围为___________.14.已知平面平面是外一点,过P 点的两条直线分别交于A 、B ,交于C 、D ,且,则的长为___________.15.在中,角所对的边分别为,且.当取最小值时,___________.16.如图所示,直角三角形所在平面垂直于平面,一条直角边在平面内,另一条直角边长且,若平面上存在点P ,使得,则线段长度的最小值为___________.四.解答题(本大题共6小题,共70分)17.己知平面向量其中.(1)若,且,求向量的坐标;(2)若向量,若与垂直,求.18.在的内角A ,B ,C 的对边分别为a ,b ,c ,且(1)求A 的值;(2)若,求的取值范围.19.如图所示,四棱锥中,底面为平行四边形,平面.sin βα=1A EDC -1A EDC -16π(1,1)a =-(,2)b m = α∥,P βαβ、AC BD 、αβ6,9,8PA AC AB ===CD ABC ,,A B C ,,a b c 2cos a B c a =-4c ab+A =ABC αAC αBC 6BAC π∠=αABP CP (2,3),(1,)a b k ==-32k ≠-||c =c a ∥c (5,1)c =2a b + 2b c - |4|a b + ABC △cos cos()cos sin a A a B C A C +-=2a =2b c -P ABCD -ABCD 22,AB AD BD ===2,PB PD =⊥ABCD(Ⅰ)证明:平面平面;(Ⅱ)在中,点E 在上且且,求三棱锥的体积.20.如图,在四棱锥中,底面是菱形,,底面,点E 在棱上.(1)求证:平面;(2)若,点E 为的中点,求二面角的余弦值.21.如图,四棱柱的棱长均为2,点E 是棱的中点,.(1)证明:平面;(2)若求直线与底面所成角的正切值.22.如图,设中角A ,B ,C 所对的边分别为为边上的中线,已知且.(1)求的面积;(2)设点E ,F 分别为边上的动点,线段交于G ,且的面积为面积的一半,求的最小值.PBC ⊥PBD PBD △PB 3BE PE =DE PB ⊥P CDE -P ABCD -ABCD 120BAD ∠=︒2,,AB AC BD O PO ==⊥ ABCD PD AC ⊥PBD 2OP =PD P AC E --1111ABCD A B C D -1CC 11BAA DAA ∠=∠1AC ∥11B D E 1160,ABC A B AD ∠=︒==1AC ABCD ABC △,,,a b c AD BC 1c =12sin cos sin sin sin ,cos 4c A B a A b B b C BAD =-+∠=ABC △,AB AC EF AD AEF △ABC △AG EF ⋅参考答案大庆实验中学实验一部2023级高一下学期6月份阶段性质量检测数学学科试题2024.06.03—2024.06.04命题人:孟令娇审题人:彭修香说明:1.请将答案填涂在答题卡的指定区域内.2.满分150分,考试时间120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分)1.【详解】因为,所以,所以z 的共轭复数,对应的点坐标为位于第四象限.故选:D 2.【答案】C,而边长为6的正方形面积为36,所以所求的直.故选:C3.【详解】设上下底面圆半径分别为,母线长为,则圆台侧面积.故选:C .4.【详解】解:,,∴角A 为钝角,故选:A .5.【答案】C【详解】试题分析:连接与是正三角形,,则平面,即;又,所以,1i 3zz -=-13i (13i)(1i)42i 2i 1i (1i)(1i)2z ++-+====+++-2i z =-(2,1)-36=12,r r l ()12222(26)162lS r r πππππ=+=+=()0c c a b ⋅+-<()20AB AB BC CA AB AC ∴⋅+-=⋅< ,,VF BF VAC △ABC △,AC VF AC BF ∴⊥⊥AC ⊥VBF AC PF ⊥DE AC ∥DE PF ⊥即与所成的角的大小是.6.【答案】D【详解】解:如图,设点P 在地面上的正投影为点O ,则,,,设山高,则,在中,,由余弦定理可得:,整理得,.故选:D .7.【答案】D【详解】由题知面,又,点E 是的中点,,且又面,过B 作于E ,则,又面为直线与平面所DE PF 90︒30PAO ∠=︒45PBO ∠=︒060PC ∠=︒PO h =,,AO BO h CO===AOC cos cos ABO CBO ∠=-∠2222223322h b h a h h ah bh+-+-=-23()2(3)ab a b h b a +=-h ∴=AB ⊥,BCD AB CD ∴⊥BC BD =CD BE CD ∴⊥BE =,AB BE B CD =∴⊥ ABE BF AE ⊥CD BF ⊥,AE CD E BF =∴⊥ ,ACD BAF ∴∠AB ACD成角,即为B 到平面的距离.解得,利用等面积知.故选D8.【详解】因为,由余弦定理得,整理得,由正弦定理得,又因所以,解得或,而,且,BFACD tan BE BA θ∴===222224,418,BA AE AB BE AE =∴=+=+==ABE4,223AE BF BA BE BF ⨯⨯=∴==3cos a bC b a+=22232a b a b c b a ab+-+=⋅2223c a b =+2221cos 21cos 23sin sin sin 22A BC A B --=+=+111(cos 2cos 2)1[cos()cos()]22A B A B A B A B A B =-+=-++-++-+1cos()cos()1cos cos()A B A B C A B =-+-=+-cos()A B -=223sin 133cos C C C =-=-cos C =cos C =cos cos()cos()cos()2sin sin 0C A B A B A B A B +-=-++-=>cos()A B -=所以,所以.故选:C .二.多项选择题(本大题共4小题,每小题5分,共20分)9.【详解】A .,则,又,则,所以不正确,A 不正确;B .,则或,故B 不正确;C .若m ,n 是两条不同的异面直线,,则,C 正确.D .由时,m ,n 与所成的角没有关系,时,由面面平行的性质知n 与所成的角相等,m 与所成的角相等,因此m 与所成的角和n 与所成的角不一定互余,D 不正确.故选:ABD 10.答案:ACD 11.【答案】BC【详解】选项A,面面面,到面的距离等于到面的距离,,故A 正确;选项B,连接,分别为线段的中点,且,又 且且,所以过三点的截面为梯形,易知,cos C>cos C =,m n m α⊥∥n α⊥n β⊥αβ∥αβ⊥,,m m n αβα⊂∥∥n β∥n β⊂,,,m n m n αββα⊂⊂∥∥αβ∥m n ⊥ααβ∥,αβ,αβαβ111,PC DD PC ⊂/ ∥11,DD Q DD ⊂11,DD Q PC ∴1DD Q P ∴1DD Q 1C 1DD Q 11111111111122123323D D PQ P DD Q C DD Q D C D Q C D Q V V V V S DD ----∴====⋅=⨯⨯⨯⨯=△111,,A D A Q B C ,P Q 111,CC B C 1PQ B C ∴∥112PQ B C =1B C 1A D 111,B C A D PQ A D =∴∥112PQ A D =,,D P Q 1AQPD 11AQ DP PQ A D ====作,则所以梯形的面积,故B 错误;选项C:将侧面展开如图,显然当Q ,P ,D 三点共线时,取得最小值,最小值为故C 错误;选项D,连接,则 ,则直线与直线所成角即为直线与直线所成角,则当P 与C 重合时,直线与直线所成角最小为,当P 与重合时,直线与直线所成角最大为,所以直线与直线所成角的取值范围为,故D 正确.故选:BC .12.【答案】BD1PH DA ⊥DH PH ===1A QPD 1922S =+=DP PQ +==1D C 1D C 1A B DP 1A B DP 1D C DP 1D C 4π1C DP 1D C 2πDP 1A B ,42ππ⎡⎤⎢⎥⎣⎦【详解】对于A,如图1,取的中点N ,连接,显然,图1且,又,且,所以,所以四边形为平行四边形,故,又N 为的中点,则与不垂直,所以s 不垂直,故A 错误;对于B,由,所以当时,最大,最大值为正确;C 选项,如图2,取的中点的中点Q ,作平面,且点O 在平面内,连接,图2由知,,又,且,所以,所以在平面上的射影在直线上,即点O 在直线上,所以为平面与平面所成的二面角,则,所以,又在平面上的射影为,则,所以,1A D ,EN MN MN CD ∥12MN CD =BECD ∥12BE CD =,BE MN BE MN =∥MNEB BM EN ∥12,A E DE ==1A D EN 1A D 1,BM A D 12,A E EC ==11111sin 2A EC S A E EC A EC A EC =⋅∠=∠12A EC π∠=1A EC S DE ,P DC 1A O ⊥DEBC DEBC 1,,A P PQ EO 112A E A D ==1A P DE ⊥PQ EC ∥ED EC ⊥DE PQ ⊥1A P DEBC PQ PQ 1A PQ ∠1A DE DEBC 1A PQ α∠=11sin A O A P α==1A E DEBC OE 1A EO β∠=111sin 2A O A O A E β==所以,C 错误;D 选项,结合C 可知,,如图3,当点O ,P 重合时,即平面时,,因为,所以点Q 为三棱锥的外接球球心G 在平面上的投影,故,连接,过点G 作于点F ,因为平面平面,所以,则设,则,由勾股定理得,设三棱锥的外接球半径为R ,则,故,解得,图3所以其外接球半径,所以三棱锥的外接球的表面积为,D 正确.故选:BD 三.填空题(本大题共4小题,每小题5分,共20分)13.【答案】.14.【答案】20或4;【分析】由面面平行,可得线线平行,,在利用相似三角形的相似比可得的长【详解】解:如图所示,因为平面平面,所以,,sin αβ=1111423AEDC EDC V S A O A O -=⋅=1A P ⊥DEBC 1A EDC V-ED EC ⊥1A EDC -DEBC 1QG A P ∥1,GA GC 1GF A P ⊥1A P ⊥,DEBC QP ⊂DEBC 1,A P QP GF QP ⊥∥GF PQ ==QG h =1,FP h A F h ==-22222222211)2,2AG A F FG h CG GQ QC h =+=-+=+=+1A EDC -1A G CG R ==222)22h h -+=+0h =2R ==1A EDC -2416R ππ=(,2)(2,2)-∞-- AB CD ∥CD α∥βAB CD ∥PAB PCD ∴△∽△.当P 在平面与平面之间时,.故答案为:20或4.15.【答案】【详解】因为,由余弦定理得:,整理得,所以当且仅当,即时,等号成立,则此时,此时PA AB PC CD∴=815206CD ⨯∴==αβPA AB PC CD∴=8346CD ⨯∴==/306π︒2cos a B c a =-22222a c b a c a ac +-⋅=-2b c a a=-224343b b a a a c a b a a a b b b a b -+++===+≥=3b a a b=b =2232b a c a a a a a =-=-=222cos 2b c a A bc +-===又因为,所以.故答案为:.16.【分析】由题意,根据面面垂直的性质可得平面,利用线面垂直的性质可得,进而,由三角形的面积公式可得,即可求解.【详解】在中,,则又平面,平面平面,所以平面,连接,所以,得,设,则,,得,当即即时,取到最小值1,此时四.解答题(本大题共6小题,共70分)17.【详解】(1) 或(2)因为,所以,(0,)A π∈6A π=6π/BC ⊥ABC BC CP ⊥CP =1sin BP θ=Rt ABC △6BC BAC π=∠=AB =ABC α⊥,,ABC AC AC BC BC α=⊥⊂ ABC BC ⊥ABC ,CP CP α⊂BC CP ⊥CP ==(0)ABP θθπ∠=<<1sin 2ABP S AB BP θ=⋅1sin 2BP θ=1sin BP θ=sin 1θ=2πθ=AB BP ⊥BP CP ==(4,6)c = (4,6)c =-- (2,3),(1,),(5,1)a b k c ==-= 2(0,32),2(7,21)a b k b c k +=+-=--所以.18.【答案】(1) (2)【详解】(1)由,因,代入得,,展开整理得,,即,因,则有,由正弦定理,,又因,故得,则;(2)由(1)得,因,由正弦定理,,则,于是,,因,则,故,即的范围是.19.试题解析:(Ⅰ)证明:在中,由已知,,又平面,,又,平面平面,∴平面平面.(Ⅱ)解:由已知得,,又平面平面,|4|a b += 3π(4,2)-cos cos()cos sin a A a B C A C +-=cos cos[()]cos()A B C B C π=-+=-+cos()cos()sin a B C a B C A C --+=2sin sin cos sin 0a B C A C -=sin (sin cos )0C a B A =sin 0C >sin cos 0a B A =sin sin cos 0A B B A -=sin 0B >tan A =0A π<<3A π=3A π=2a =2sin sin sin 3b c B Cπ===,2cos 3b B c C B B B π⎛⎫===+=+ ⎪⎝⎭222cos 4cos b c B B B B ⎫-=-+=-⎪⎪⎭203B π<<1cos 12B -<<422b c -<-<2b c -(4,2)-BCD △1,2,BC CD BD ===222CD BC BD ∴=+BC BD ∴⊥PD ⊥ABCD PD BC ∴⊥BD PD D = BC ∴⊥,PBD BC ⊂PBC PBC ⊥PBD 32BE =DE PB ∴⊥PBC ⊥PBD平面,故是三棱锥的高.又,而,.20.【详解】证明:(1)因为平面,所以,因为为菱形,所以,又平面平面,所以平面,(2)如图,连接,则平面,由,故即为二面角的平面角,在菱形中,,所以,又,所以由点E 为的中点,易得,所以为等腰三角形,在内过点E 作高,垂足为H ,则,所以,即二面角.DE ∴⊥PBC DE D PCE -Rt 1112122PBC S CB BP =⋅=⨯⨯=△Rt 1144CEP PBC S S ==△△1134P CDE V -∴=⨯=PO ⊥ABCD PO AC ⊥ABCD AC BD ⊥,BD PO O BD =⊂ ,PBD PO ⊂PBD AC ⊥PBD OE OE ⊂ACE ,AC OE AC OP ⊥⊥POE ∠P AC E --ABCD 2,120AB AD BAD ==∠=︒BD OD ==2PO =PB PD ===PD 1122OE PD PE PD ====POE △POE △1HO =cos cos HO POE HOE OE ∠=∠===P AC E --21.【详解】(1)连接交于点F ,连接.由题意知四边形是菱形,故点F 是的中点.又点E 是棱的中点,所以.又平面平面,所以平面.(2)连接,设,连接,由,可得,则.由题意知四边形是菱形,故点O 是的中点,得.在中,易得,故,得.又,所以.易知,且,所以平面,又平面,所以平面平面.又,所以平面.故是直线与底面所成的角.又,所以,所以,11A C 11B D EF 1111A B C D 11A C 1CC 1EF A C ∥EF ⊂111,B D E A C ⊂/11B D E 1AC ∥11B D E ,AC BD AC BD O = 111,,A O A D BA 111,BAA DAA AA AB AD ∠=∠==11BAA DAA △≌△11BA DA =ABCD BD 1A O BD ⊥11BA C △112A C =2221111BC BA A C =+111A B A C ⊥11AC A C ∥1A B AC ⊥AC BD ⊥1A B BD B = AC ⊥1A BD AC ⊂ABCD 1A BD ⊥ABCD 1A O BD ⊥1A O ⊥ABCD 1A CO ∠1AC ABCD 2AC =1AO CO ==1AO =所以即直线与底面.22.【详解】(1) ,由正弦定理:,由余弦定理:.因为D 为中点,所以,设的夹角为,又,,即,解得或,又,所以,易得的面积为(2)设的面积为面积的一半,设,则,又共线,所以设,则,,解得:.,又,,又,化简得,11tan A O A CO CO∠==1AC ABCD 12sin cos sin sin sin 4c A B a A b B b C =-+ 2212cos 4ca B a b bc =-+2222221124,1,4244c a b ca a b bc c bc b c c b ac +-⋅=-+⇒=⇒==∴= 1()2AD AB AC =+ ,AB AC θ||AD ∴=== ()2211cos 14cos ()2222c cb AB AD AB AB AC AB AB AC θθ++⋅=⋅+=+⋅== cos ||||AB AD BAD AB AD ⋅=∠== 228cos 8cos 110θθ+-=1cos 2θ=11cos 14θ=-14cos 0θ+>1cos 2θ=sin θ=ABC ∴△141sin 2θ⨯⨯⨯=||,,||AE x AF y AEF == △ABC △2xy ∴=AG AD λ= 22AG AD AB AC λλλ==+ ,,E G F (1)AG AE AF μμ=+- (1)(1)4y AG AE AF x AB AC μμμμ-=+-=+ 2(1)42x y λμμλ⎧=⎪⎪∴⎨-⎪=⎪⎩4y x y μ=+2244AG AB AC x y x y ∴=+++ 4y EF EA AF AC xAB =+=- 22444y AG EF AB AC AC xAB x y x y ⎛⎫⎛⎫∴⋅=+⋅- ⎪ ⎪++⎝⎭⎝⎭ 222964444y y y x AC xAB x AC AB x y x y ⎡⎤-⎛⎫=-+-⋅= ⎪⎢⎥++⎝⎭⎣⎦2xy =2296186442y x x AG EF x y x --⋅==++又,则,则时,的最小值为2.4y ≤112x ≤≤1x =22218621342422x AG EF x x -⋅==-++。
山东省济宁市兖州第一中学2024-2025学年高一上学期10月阶段性检测数学试题

山东省济宁市兖州第一中学2024-2025学年高一上学期10月阶段性检测数学试题一、单选题1.已知集合{04M xx =≤≤∣,且},{2,0,2}x N ∈=-Z ,则( ) A .N M ⊆B .M N M ⋃=C .{2}M N =ID .{0,2}M N =I2.“()2,x ∀∈+∞,220x x ->”的否定是.A .()0,2x ∃∈-∞,2020x x -≤ B .()2,x ∀∈+∞,220x x -≤ C .()02,x ∃∈+∞,2020x x -≤ D .(),2x ∀∈-∞,220x x ->3.下列说法正确的是( ) A .若a b >,则22ac bc > B .若a b >,c d >,则ac bd >C .若23a -<<,12b <<,则31a b -<-<D .若0a b >>,0m >,则m ma b< 4.下列各式中:①{}{}00,1,2∈;②{}{}0,1,22,1,0⊆;③{}0,1,2∅⊆;④{}0∅=;⑤{}(){}0,10,1=;⑥{}00=.正确的个数是( )A .1B .2C .3D .45.已知2:1,:1p x q x ==,则p 为q 的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要6.已知1x >,则41x x +-的最小值为( ) A .3B .4C .5D .67.若关于x 的不等式2420x x a ---≤有解,则实数a 的取值范围是( ) A .{}2a a ≥-B .{}2a a ≤-C .{}6a a ≥-D .{}6a a ≤-8.已知集合{}{}221,,A xx x B x x a ==∈=≥R ∣∣,若A B A =I ,则a 的值为( )A .{1}aa <∣ B .{}1aa >∣ C .{}1aa ≤∣ D .{}1aa ≥∣二、多选题9.图中阴影部分所表示的集合是( )A .U N M I ðB .U M N I ðC .()U M N N ⋂⋂⎡⎤⎣⎦ðD .()()U UM N I 痧10.下列不等式的解集为R 的是( )A .24410x x -+≥B .2220x x -+-<C .2320x x -+>D .210x x -+>11.设U 为全集,下面三个命题中为真命题的是( )A .若AB =∅I ,则()()U U A B U ⋃=痧; B .若A B U ⋃=,则()()U U A B ⋂=∅痧;C .若A B =∅I ,则A B ==∅;D .若A B =∅U ,则A B ==∅.三、填空题12.2540x x -+->的解集是.13.若“2x =”是“()22340m x m x -++=”的充分条件,则实数m 的值为.14.已知0,0x y >>,且4x y +=,则2241x y x y+++的最小值为.四、解答题15.已知全集{}{}27,|14,4,|02U A x x B xx P x x x ⎧⎫==-≤≤=≤=≤≥⎨⎬⎩⎭R ∣或. (1)求,A B A B ⋃⋂; (2)求()U B P ⋂ð.16.(1)比较213a +与63a +的大小;(2)已知实数,a b 满足13,325a b a b <+<<+<,求2a b -的取值范围.17.(1)已知一元二次不等式20x px q ++<的解集为1123x x ⎧⎫-<<⎨⎬⎩⎭,求p q +;(2)若不等式()270x mx m -++>在实数集R 上恒成立,求m 的取值范围.18.解关于x 的不等式()22120ax a x -++≤.19.某学校要建造一个长方体形的体育馆,其地面面积为2240m ,体育馆高5m ,如果甲工程队报价为:馆顶每平方米的造价为100元,体育馆前后两侧墙壁平均造价为每平方米150元,左右两侧墙壁平均造价为每平方米250元,设体育馆前墙长为x 米. (1)当前墙的长度为多少时,甲工程队报价最低?(2)现有乙工程队也参与该校的体育馆建造竞标,其给出的整体报价为115212000500a a x +⎛⎫++ ⎪⎝⎭元(0)a >,若无论前墙的长度为多少米,乙工程队都能竞标成功,试求a 的取值范围.。
山东省名校考试联盟2023-2024学年高一上学期12月阶段性检测数学答案

2023—2024学年第一学期考试高一数学试题本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}=⋂==B A B A 则,7,6,5,3,2,8,7,5,4{}.2,3,4,5,6,7,8A {}.5,7B {}.5,7,8C {}.6,7,8D 答案:B.解析:{}5,7A B ⋂=2.命题x N N ∃∈“”的否定是.A x N N ∀∉.B x N N∀∈.C x N N∃∈.D x N N∀∈答案:D.解析:命题x N N ∃∈“”的否定是“x N N ∀∈”.3.已知集合{}{}()=⋂≥--=>+=N C M x x x N x x M R ,则082|,012|21.|42A xx ⎧⎫-<<⎨⎬⎩⎭{}.|4B x x ≥1.|42C x x ⎧⎫-<≤⎨⎬⎩⎭1.|22D x x ⎧⎫-≤≤-⎨⎬⎩⎭答案:A解析:1{|},{|24},{|24}2R M x x N x x x C N x x =>-=≤-≥=-<<或,()1|42R M C N x x ⎧⎫∴⋂=-<<⎨⎬⎩⎭4.在同一直角坐标系中,函数()()()的图象可能是0,≥==x x x g a x f a x AB C D答案:C解析:()()()().2)0(,101)0(,1正确所示,故的图象如图时,函数的答案;当所示,此时无满足要求的图象如图时,函数当C x x x g a x f a x x x g a x f a a x a x ≥==<<≥==>图1图2故选C.5.()124y f x =已知幂函数的图象经过点(,),则()()()().....A f x R B f x C f x D f x 定义域为是偶函数.是减函数.的图象关于原点中心对称.答案:B解析:()()22111,222,.44a a f x x a f x x x-⎛⎫=∴=∴=-∴== ⎪⎝⎭幂函数图象过点,,()()00A -∞⋃+∞定义域是,,,错误;函数f(x)在(0,+∞)单调递减,在(-∞,0)单调递增,C 错误;()()()()2211,f x f x f x B D x x -===∴-是偶函数,正确,错误.6.设函数()[)的取值范围是上为减函数,则,在a x f ax x ∞+⎪⎭⎫ ⎝⎛=-23122[).8,A +∞[).4,B +∞(].,4C -∞(].,8D -∞答案:D 解析:令212,3t t x ax y ⎛⎫=-= ⎪⎝⎭在定义域内为减函数,()[)22123x ax f x -⎛⎫=+∞ ⎪⎝⎭函数在,上为减函数,[)222t x ax =-+∞则在,上为增函数,284a a ≤≤则,.7.已知a,b∈N,则“a 2-b 2为偶数”是“a-b 为偶数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:C解析;a,b∈N,分四种情况①a 为偶数,b 为偶数,则a 2-b 2为偶数且a-b 为偶数;②a 为偶数,b 为奇数,则a 2-b 2为奇数且a-b 为奇数;③a 为奇数,b 为偶数,则a 2-b 2为奇数且a-b 为奇数;④a 为奇数,b 为奇数,则a 2-b 2为偶数且a-b 为偶数.所以“a 2-b 2为偶数”是“a-b”为偶数”的充要条件。
东北师范大学附属中学2024年高一上学期9月阶段性考试数学试题(解析版)

2024-2025学年东北师大附中 高一年级数学科试卷上学期阶段性考试考试时长:90分钟 试卷总分:120分一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.)1. 下列元素的全体可以组成集合的是( ) A. 人口密度大的国家 B. 所有美丽的城市 C. 地球上四大洋 D. 优秀的高中生【答案】C 【解析】【分析】根据集合的确定性,互异性和无序性即可得出结论.详解】由题意,选项ABD ,都不满足集合元素的确定性,选项C 的元素是确定的,可以组成集合. 故选:C.2. 若全集R U =,集合{}0,1,2,3,4,5,6A =,{|3}B x x =<,则图中阴影部分表示的集合为( )A. {3,4,5,6}B. {0,1,2}C. {0,1,2,3}D. {4,5,6}【答案】A 【解析】【分析】根据图中阴影部分表示()U A B 求解即可. 【详解】由题知:图中阴影部分表示()U A B ,{}|3U Bx x =≥ ,则(){}3,4,5,6U B A = .故选:A3. 命题“[1,3]x ∀∈−,2320x x −+<”的否定为( )的【A. []1,3x ∃∈−,2320x x −+≥B. []1,3x ∃∈−,2320x x −+>C. []1,3x ∀∈−,2320x x −+≥D. []1,3x ∃∉−,2320x x −+≥【答案】A 【解析】【分析】根据给定条件,利用全称量词命题的否定直接写出结论即可.【详解】命题“[1,3]x ∀∈−,2320x x −+<”是全称量词命题,其否定是存在量词命题, 因此命题“[1,3]x ∀∈−,2320x x −+<”的否定是[]1,3x ∃∈−,2320x x −+≥. 故选:A4. 已知集合{}240A x x=−>,{}2430B x xx =−+<,则A B = ( )A. {}21x x −<< B. {}12x x <<C. {}23x x −<<D. {}23x x <<【答案】D 【解析】【分析】解出集合,A B ,再利用交集含义即可.【详解】{}{2402A x xx x =−>=或}2x <−,{}{}2430|13B x xx x x =−+<=<<,则{}23A Bx x ∩=<<.故选:D.5. 若,,a b c ∈R ,0a b >>,则下列不等式正确的是( ) A.11a b> B. a c b c >C. 2ab b >D. ()()2211a c b c −>−【答案】C 【解析】【分析】对BD 举反例即可,对AC 根据不等式性质即可判断. 【详解】对A ,因为0a b >>,则11a b<,故A 错误; 对B ,当0c =时,则a c b c =,故B 错误;对C ,因为0a b >>,则2ab b >,故C 正确; 对D ,当1c =时,则()()2211a c b c −=−,故D 错误. 故选:C.6. “2a <−”是“24a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】解出不等式24a >,根据充分不必要条件的判定即可得到答案. 【详解】24a >,解得2a >或2a <−,则“2a <−”可以推出“24a >”,但“24a >”无法推出“2a <−”, 则“2a <−”是“24a >”的充分不必要条件. 故选:A .7. 关于x 的一元二次方程(1)(4)x x a −−=有实数根12,x x ,且12x x <,则下列结论中错误的说法是( ) A. 当0a =时,11x =,24x = B. 当0a >时,1214x x << C. 当0a >时,1214x x <<< D. 当904a −<<时,122544x x <<【答案】B 【解析】【分析】根据给定条件,借助二次函数的图象,逐项分析判断即可.【详解】对于A ,当0a =时,方程(1)(4)0x x −−=的二实根为121,4x x ==,A 正确; 对于B ,方程(1)(4)x x a −−=,即2540x x a −+−=,254(4)0a ∆=−−>,解得94a >−, 当0a >时,1244x x a =−<,B 错误;对于C ,令()(1)(4)f x x x =−−,依题意,12,x x 是函数()y f x =的图象与直线y a =交点的横坐标, 在同一坐标系内作出函数()y f x =的图象与直线y a =,如图,观察图象知,当0a >时,1214x x <<<,C 正确; 对于D ,当904a −<<时,12254(4,)4x x a =−∈,D 正确.故选:B8. 已知[]x 表示不超过x 的最大整数,集合[]{}03A x x =∈<<Z ,()(){}2220Bx xax x x b =+++=,且 R A B ∩=∅ ,则集合B 的子集个数为( ).A. 4B. 8C. 16D. 32【答案】C 【解析】【分析】由新定义及集合的概念可化简集合{}1,2A =,再由()A B ∩=∅R 可知A B ⊆,分类讨论1,2的归属,从而得到集合B 的元素个数,由此利用子集个数公式即可求得集合B 的子集的个数. 【详解】由题设可知,[]{}{}Z |31,2A x x =∈<<=,又因为()A B ∩=∅R ,所以A B ⊆, 而()(){}22|20B x xax x x b =+++=,因为20x ax 的解为=0x 或x a =−,220x x b ++=的两根12,x x 满足122x x +=−, 所以1,2分属方程20x ax 与220x x b ++=的根,若1是20x ax 的根,2是220x x b ++=的根,则有221+1=02+22+=0a b × × ,解得=1=8a b −− , 代入20x ax 与220x x b ++=,解得=0x 或=1x 与=2x 或4x =−,故{}0,1,2,4B=−;若2是20x ax 的根,1是220x x b ++=的根,则有222+2=01+21+=0a b × × ,解得=2=3a b −− ,代入20x ax 与220x x b ++=,解得=0x 或=2x 与=1x 或3x =−,故{}0,1,2,3B=−;所以不管1,2如何归属方程20x ax 与220x x b ++=,集合B 总是有4个元素, 故由子集个数公式可得集合B 的子集的个数为42=16. 故选:C二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 已知关于x 的不等式20ax bx c ++<的解集为(1,6)−,则( ) A. 0a < B. 不等式0ax c +>的解集是{|6}x x > C. 0a b c ++< D. 不等式20cx bx a −−<的解集为11(,)32【答案】BC 【解析】【分析】利用一元二次不等式的解集用a 表示,b c ,再逐项分析判断即得.【详解】对于A ,由不等式20ax bx c ++<的解集为(1,6)−,得1,6−是方程20ax bx c ++=的两个根,且0a >,A 错误;对于B ,16,16b ca a−+=−−×=,则5,6b a c a =−=−, 不等式0ax c +>,即60ax a −>,解得6x >,B 正确; 对于C ,56100a b c a a a a ++=−−=−<,C 正确;对于D ,不等式20cx bx a −−<,即2650ax ax a −+−<,整理得()()31210x x −−>,解得13x <或12x >,D 错误. 故选:BC10. 已知x y 、都是正数,且满足2x y +=,则下列说法正确的是( )A. xy 的最大值为1B.+的最小值为2C. 11x y+的最小值为2D. 2211x y x y +++的最小值为1【答案】ACD【解析】【分析】根据给定条件,借助基本不等式及“1”的妙用逐项计算判断即得.【详解】对于A ,由0,0x y >>,2x y +=,得2()12x y xy +≤=,当且仅当1xy ==时取等号,A 正确;对于B2+≤,当且仅当1xy ==时取等号,B 错误; 对于C,1111111()()(2)(22222y x x y x y x y x y +=++=++≥+=, 当且仅当1xy ==时取等号,C 正确; 对于D ,222211111111111111x y x y x y x y x y x y −+−++=+=−++−+++++++ 11111111[(1)(1)]()(2)11411411y x x y x y x y x y ++=+=++++=++++++++1(214≥+=,当且仅当1111y x x y ++=++,即1x y ==时取等号,D 正确. 故选:ACD11. 用()C A 表示非空集合A 中元素的个数,定义()()()()()()()(),,C A C B C A C B A B C B C A C A C B −≥ ∗=−< ,已知集合222{0},{R |()(1)0}A x x x B x x ax x ax =+==∈+++=|,则下面正确结论正确的是( )A. a ∃∈R ,()3C B =B. a ∀∈R ,()2C B ≥C. “0a =”是“1A B ∗=”的充分不必要条件D 若{}R1S a A B =∈∗=∣,则()4C S = 【答案】AC 【解析】【分析】根据集合新定义,结合一元二次方程,逐项分析判断即可. 【详解】对于A ,当2a =时,{}0,2,1B =−−,此时()3C B =,A 正确;对于B ,当0a =时,{}0B =,此时()1C B =,B 错误;.对于C ,当0a =时,{}0B =,则()1C B =,而{}0,1A =−,()2C A =,因此1A B ∗=;当1A B ∗=时,而()2C A =,则()1C B =或3,若()1C B =,满足2Δ40a a ==−< ,解得0a =; 若()3C B =,则方程20x ax 的两个根120,x x a ==−都不是方程210x ax ++=的根,且20Δ40a a ≠ =−=,解得2a =±,因此“0a =”是“1A B ∗=”的充分不必要条件,C 正确; 对于D ,由1A B ∗=,而()2C A =,得()1C B =或3,由C 知:0a =或2a =±,因此{}0,2,2S =−, 3C S ,D 错误.故选:AC三、填空题(本题共3小题,每小题5分,共15分.)12. 已知集合{}A x x a =<,{}13B x x =<<,若A B B = ,则实数a 的取值范围是______.【答案】3a ≥ 【解析】【分析】根据给定条件,利用交集的定义,结合集合的包含关系求解即得.【详解】由A B B = ,得B A ⊆,而{}A x x a =<,{}13B x x =<<,则3a ≥,所以实数a 的取值范围是3a ≥. 故答案:3a ≥13.若一个直角三角形的斜边长等于,当这个直角三角形周长取最大值时,其面积为______. 【答案】18 【解析】【分析】由题意画出图形,结合勾股定理并通过分析得知当()2722AB AC AB AC +=+⋅最大值,这个直角三角形周长取最大值,根据基本不等式的取等条件即可求解. 【详解】如图所示:为在Rt ABC △中,90,A BC ==而直角三角形周长l AB BC CA AB CA =++=++,由勾股定理可知(222272AB CA BC +===,若要使l 最大,只需+AB AC 即()2222722AB AC AB AC AB AC AB AC +=++⋅=+⋅最大即可, 又22272AB AC AB AC ⋅≤+=,等号成立当且仅当6AB AC ==, 所以()2722144AB AC AB AC +=+⋅≤,12AB AC +≤,12l ≤+, 等号成立当且仅当6AB AC ==, 此时,其面积为11661822S AB AC =⋅=××=. 故答案为:18.14. 若不等式22x x a ax +−>+对(]0,1a ∀∈恒成立,则实数x 取值范围是______. 【答案】(]),2∞∞−−∪+【解析】【分析】根据主元法得()2120x a x x +−−+<对(]0,1a ∀∈恒成立,再利用一次函数性质即可得到答案.【详解】由不等式22x x a ax +−>+对(]0,1a ∀∈恒成立, 得()2120x a x x +−−+<对(]0,1a ∀∈恒成立,令()()212g a x a x x =+−−+,得22(0)20(1)120g x x g x x x =−−+≤ =+−−+< , 解得(]),2x ∈−∞−+∞,∴实数x的取值范围是(.故答案为:(]),2∞∞−−∪+.四、解答题(本题共3小题,共47分)15. 设集合U =R ,{}05Ax x =≤≤,{}13B x m x m =−≤≤. (1)3m =,求()U A B ∪ ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求m 的取值范围.的【答案】(1){|5x x ≤或}9x > (2)12m <−或513m ≤≤. 【解析】【分析】(1)根据 集合的补集定义以及集合的交集运算,即可求得答案;(2)依题意可得B A ,讨论集合B 是否为空集,列出相应的不等式,即可求得结果. 【小问1详解】当3m =时,可得{}|29B x x =≤≤,故可得{|2U B x x =< 或}9x >,而{}|05A x x =≤≤, 所以(){|5U A B x x ∪=≤ 或}9x >. 【小问2详解】由“x B ∈”是“x A ∈”的充分不必要条件可得B A ; 当B =∅时,13m m −>,解得12m <−,符合题意; 当B ≠∅时,需满足131035m m m m −≤−≥ ≤,且10m −≥和35m ≤中的等号不能同时取得,解得513m ≤≤; 综上可得,m 的取值范围为12m <−或513m ≤≤. 16. (1)已知03x <<,求y =的最大值; (2)已知0x >,0y >,且5x y xy ++=,求x y +的最小值; (3)解关于x 的不等式()2330ax a x −++<(其中0a ≥). 【答案】(1)92;(2)2+;(3)答案见解析 【解析】【分析】(1)化简得y,再利用基本不等式即可;(2)利用基本不等式构造出252x y x y + ++≤,解出即可;(3)因式分解为(3)(1)0ax x −−<,再对a 进行分类讨论即可.【详解】(1)()229922x x y +−=≤=,当且仅当229x x =−,即229x x =−,即x =时等号成立.则y =的最大值为92. (2)因为 0,0x y >>, 且 5x y xy ++=, 则252x y x y xy + ++≤,解得2x y +≥ 或 2x y +≤−(舍去),当且仅当1x y ==时等号成立,则x y +的最小值为2+.(3)不等式()2330ax a x −++<化为(3)(1)0ax x −−<,(其中0a ≥), 当0a =时,解得1x >;当0a >时,不等式化为3()(1)0x x a−−<,若0<<3a ,即31a>,解得31x a <<;若3a =,x 无实数解; 若3a >,即31a <,解得31x a<<, 所以当0a =时,原不等式的解集为{|1}x x >; 当0<<3a 时,原不等式的解集为3{|1}x x a<<; 当3a =时,原不等式的解集为∅; 当3a >时,原不等式的解集为3{|1}x x a<<. 17. 已知方程()220,x mx n m n −+−=∈R(1)若1m =,0n =,求方程220x mx n −+−=的解;(2)若对任意实数m ,方程22x mx n x −+−=恒有两个不相等的实数解,求实数n 的取值范围;(3)若方程()2203x mx n m −+−=≥有两个不相等的实数解12,x x ,且()2121248x x x x +−=,求221221128x x x x x x +−+的最小值. 【答案】(1)2x =或1−;(2)2n <(3)【解析】【分析】(1)由题意得到220x x −−=,求出方程的根;(2)由根的判别式大于0得到()21124n m <++,求出()211224m ++≥,从而得到2n <; (3)由韦达定理得到1212,2x x m x x n +==−,代入()2121248x x x x +−=中得到24m n =,结合立方和公式化简得到2212211288328x x m x x x x m m m+−=−++−,令8t m m =−,由单调性得到81333t −=≥,结合基本不等式求出22122112832x x t x x x x t +−=+≥+,得到答案. 【小问1详解】1m =,0n =时,220x x −−=,解得2x =或1−;【小问2详解】()222120x mx n x x m x n −+−=⇒−++−=,故()()2Δ1420m n =+−−>,所以()21124n m <++, 其中()211224m ++≥,当且仅当1m =−时,等号成立, 故2n <;【小问3详解】()2203x mx n m −+−=≥有两个不相等的实数解12,x x ,()2Δ420m n =−−>,由韦达定理得1212,2x x m x x n +==−,故()2212124488x x x x m n +−=−+=,所以24m n =,此时80∆=>, 所以()()2222331211221212211212121212888x x x x x x x x x x x x x x x x x x x x x x +−+++−=−=−+++ ()()()221212121212336882x x x x x x m m n x x x x n m ++−−+ −=−+−,因为24m n =, 所以2222122221126284488883282244m m m m x x m m m x x x x m m m m m +−+ +−=−=−=−++−−−, 令8t m m =−,其在3m ≥上单调递增,故81333t −=≥,故22122112832x x t x x x x t +−=+≥+ 当且仅当32t t=,即=t 时,等号成立, 故221221128x x x x x x +−+的最小值为【点睛】关键点点睛:变形得到2212211288328x x m x x x x m m m+−=−++−,换元后,由函数单调性和基本不等式求最值.。
浙江省嘉兴市2024-2025学年高一上学期10月月考数学试题含答案

嘉兴2024学年第一学期10月阶段性测试高一年级数学试卷(答案在最后)命题人:高一数学组审核人:高一数学组本试题卷共6页,满分150分,考试时间120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸上规定的位置.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸上的相应位置规范作答,在本试题卷上的作答一律无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{13}A x x =-<≤∣,{}24B x x =<,那么集合A B = ()A.{22}xx -<<∣ B.{12}x x -<<∣ C.{23}x x -<≤∣ D.{13}xx -<<∣【答案】C 【解析】【分析】解出集合B ,再利用交集含义即可得到答案.【详解】{}{}2422B x x x x =<=-<<,则{12}A B xx =-<< ∣.故选:C.2.已知命题():1,p x ∀∈+∞,20x x ->,则()A.命题p 的否定为“()1,x ∃∈+∞,20x x ->”B.命题p 的否定为“(],1x ∃∈-∞,20x x -≤”C.命题p 的否定为“()1,x ∃∈+∞,20x x -≤”D.命题p 的否定为“(],1x ∀∈-∞,20x x ->”【答案】C 【解析】【分析】根据全称命题的否定即可得到答案.【详解】根据全称命题的否定得命题p 的否定为“()1,x ∃∈+∞,20x x -≤”.故选:C .3.设命题“2x >”是命题“240x -≤”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】解出不等式,再根据充分不必要条件判断即可.【详解】∵240x -≤,∴2x ≤-或2x ≥,∴命题“2x >”是命题“240x -≤”的充分不必要条件.故选:A .4.设函数()221,036,0x x x f x x x ⎧++<=⎨+≥⎩,则不等式()()1f x f >的解集是()A.()(),41,-∞-+∞U B.()(),21,-∞-+∞ C.()(),42,-∞-+∞ D.()(),22,∞∞--⋃+【答案】A 【解析】【分析】根据题意,分段建立方程,可得临界点,作图,可得答案.【详解】由题意()1369f =+=,令2219x x ++=,解得4x =-或2,3691x x +=⇒=,则作图如下:由图可得不等式()()1f x f >的解集是()(),41,∞∞--⋃+.故选:A.5.设a ,b ,R c ∈,则下列命题正确的是()A.若a b >,则a b> B.若0a b c >>>,则a a cb b c+<+C.若a b >,则11a b< D.若0a b c >>>,则b ca b a c>--【答案】D 【解析】【分析】举例说明判断AC ;作差比较大小判断B ;利用不等式性质判断D.【详解】对于AC ,取1,1a b ==-,满足a b >,而11||1||,11a b a b===>-=,AC 错误;对于B ,0a b c >>>,则()()()0()()a a c abc b a c a b cb bc b b c b b c ++-+--==>+++,B 错误;对于D ,由0a b c >>>,得0a c a b ->->,则110a b a c >>--,b ca b a c>--,D 正确.故选:D 6.不等式1122x x x x --->-++的解集为()A.{2x x <-或>1B.{|2}x x <- C.{}1x x > D.{}21x x -<<【答案】D 【解析】【分析】根据题意结合绝对值性质可得102x x -<+,再结合分式不等式运算求解.【详解】因为1122x x x x --->-++,即1122x x x x -->++,可得102x x -<+,等价于()()120x x -+<,解得21x -<<,所以不等式的解集为{}21x x -<<.故选:D .7.设0m >,若2420mx x -+=有两个不相等的根1x ,2x ,则12x x +的取值范围是()A.()0,2 B.(]0,2 C.()2,+∞ D.[)2,+∞【答案】C 【解析】【分析】根据判别式得到02m <<,再根据韦达定理即可得到答案.【详解】 关于x 的方程2420mx x -+=有两个不相等的实数根,20Δ(4)420m m >⎧∴⎨=--⨯>⎩,解得:02m <<,则()1242,x x m=∈++∞.故选:C.8.对于实数a 和b 定义运算“⋅”:⋅a b =22,,a ab a bb ab a b ⎧-≤⎨->⎩,设()(21)(2)f x x x =-⋅-,如果关于x 的方程()()f x m m R =∈恰有三个互不相等的实数根123x x x ,,,则m 的取值范围()A.9,4⎛⎤-∞ ⎥⎝⎦B.90,4⎡⎤⎢⎥⎣⎦C.9(0,4D.φ【答案】C 【解析】【分析】由定义的运算求出()f x 的解析式,然后利用数形结合的方法知当()()f x m m R =∈恰有三个互不相等的实数根123x x x ,,时,y m =与()y f x =图像恰有三个不同的交点,即可得出答案.【详解】解:由已知a •b =22,,a ab a b b ab a b ⎧-≤⎨->⎩得2221,1()(21)(2)2,1x x x f x x x x x x ⎧+-≤-=-⋅-=⎨-++>-⎩,其图象如下:因为()f x m =恰有三个互不相等实根,则y m =与()y f x =图像恰有三个不同的交点,所以904m <<,故选:C .【点睛】本题主要考查一次函数和二次函数和函数的表示方法,考查数形结合和运算求解能力,属于基础题型.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错得0分.9.下列各组函数是同一个函数的是()A.()221f x x x =--与()221g s s s =--B.()f x =与()g x =-.C.()xf x x=与()g x =D.()f x x =与()g x =【答案】ABC 【解析】【分析】分别求出函数的定义域,化简其对应关系,判断其定义域和对应关系是否相同即可.【详解】对于选项A :()221f x x x =--的定义域为R ,()221g s s s =--的定义域为R ,定义域相同,对应关系也相同,是同一个函数,故A 正确;对于选项B :()f x ==-{}|0≤x x ,()g x =-的定义域为{}|0≤x x ,定义域相同对应关系相同,是同一个函数,故B 正确;对于选项C :()1xf x x==的定义域{}|0x x ≠,()1g x ==的定义域{}|0x x ≠,定义域相同,对应关系也相同,是同一个函数,故C 正确;对于选项D :()f x x =的定义域为R ,()g x x ==的定义域为R ,定义域相同对应关系不同,不是同一个函数,故D 错误.故选:ABC.10.已知集合{}22M y y x ==-,{N x y ==,则()A.M N M ⋂=B.M N M ⋃=C.()N M ⋂=∅Rð D.()M N ⋂=∅Rð【答案】AC 【解析】【分析】求出集合,M N ,得到两者的包含关系,再根据集合的交并补即可.【详解】{{}5N xy x x ===≤∣∣,222y x =-≤,则{}|2M y y =≤,M N ∴⊆,则M N M ⋂=,M N N ⋃=,选项A 正确,B 错误;∁R =U >5,则()N M ⋂=∅R ð,选项C 正确;∁R =b >2,∁R ∩=b2<≤5,选项D 错误.故选:AC11.已知2()2f x x x a =-+.若方程()0f x =有两个根12,x x ,且12x x <,则下列说法正确的有()A.1>0x ,20x >B.1a <C.若120x x ≠,则121211x x x x ++的最小值为D.,R m n ∀∈,都有()()()22f m f n m nf ++≥【答案】BD 【解析】【分析】举例说明判断AC ;利用一元二次方程判别式判断B ;作差变形比较大小判断D.【详解】对于AC ,取3a =-,由2230x x --=,解得1210,3x x =-<=,1212110113x x x x =-+<+,AC 错误;对于B ,方程()0f x =有两个不等实根,则440a ∆=->,解得1a <,B 正确;对于D ,222()()22()()()2222f m f n m n m m a n n a m n f m n a++-++-++-=-++-2222()()0244m n m n m n ++-=-=≥,()()(22f m f n m n f ++≥恒成立,D 正确.故选:BD三、填空题:本题共3小题,每小题5分,共15分.12.设集合{}21,,45A t t t =-+,若2A ∈,则实数t 的值为______.【答案】3【解析】【分析】由题意分情况讨论,建立方程,可得答案.【详解】当2t =时,则2454851t t -+=-+=,故不符合题意;当2452t t -+=时,则2430t t -+=,化简可得()()310t t --=,3t =(1不合题意舍去);故答案为:3.13.已知不等式()()22240a x a x -+--≥解集是∅,则实数a 的取值范围是______.【答案】(2,2]-【解析】【分析】利用命题的否定去判断.分情况讨论当,2a =时不等式即为40-<,对一切恒成立,当2a ≠时利用二次函数的性质列出a 满足的条件并计算,最后两部分的合并即为所求范围.【详解】解:不等式()()22240a x a x -+--≥解集是∅等价于:不等式()()22240a x a x -+--<解集是R ,①当20,2a a -==时,不等式即为40-<,对一切x R ∈恒成立,②当2a ≠时,则须2204(2)16(2)0a a a -<⎧⎨∆=-+-<⎩,即222a a <⎧⎨-<<⎩,22a -<<,由①②得实数a 的取值范围是(2,2]-.故答案为(2,2]-【点睛】本题考查不等式恒成立的参数取值范围,考查二次函数的性质.注意对二次项系数是否为0进行讨论.14.已知a ,b ,0c >满足4a b c ++=,则11ab bc+的最小值为________.【答案】1【解析】【分析】根据给定条件,利用基本不等式“1”的妙用求出最小值.【详解】正数,,a b c ,4a b c ++=,则1111111121112()()()()444c a a b c ab bc ab bc a c b ab bc a c b +=+++=++++≥+++1141141144()()())161614b a c a b c a b c a c b a b c a b a c c b ++=++++=++++=1(6116≥+=,当且仅当222b a c ===时取等号,所以11ab bc+的最小值为1.故答案为:1【点睛】思路点睛:在运用基本不等式时,要特别注意“拆”、“拼”、“凑”等技巧,使用其满足基本不等式的“一正”、“二定”、“三相等”的条件.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知全集为R ,集合{}22A x x x =+<,{124}B xx a =-<+<∣.(1)当1a =时,求R ()A B ⋃ð;(2)若A B B = ,求实数a 的取值范围.【答案】(1)3{|1}2x x x <≥或;(2)23a ≤≤.【解析】【分析】(1)解不等式化简集合,A B ,再利用补集、并集的定义求解即得.(2)根据给定条件,利用交集的结果,结合集合的包含关系求出a 的范围【小问1详解】解不等式22x x +<,即220x x +-<,得2<<1x -,则{|21}A x x =-<<,当1a =时,3{1214}{|1}2B xx x x =-<+<=-<<∣,R 3{|1}2B x x x =≤-≥或ð,所以R 3(){|1}2A B x x x =<≥ ð或.【小问2详解】依题意,14{|}22a aB x x ---=<<,B ≠∅,由A B B = ,得B A ⊆,因此122412aa --⎧≥-⎪⎪⎨-⎪≤⎪⎩,解得23a ≤≤,所以实数a 的取值范围是23a ≤≤.16.设函数2()(1)2(R)f x ax a x a a =+-+-∈(1)若不等式()2f x ≥-对一切实数x 恒成立,求a 的取值范围;(2)解关于x 的不等式:()1f x a <-.【答案】(1)1[,)3+∞(2)答案见解析【解析】【分析】(1)对a 是否为零进行讨论,再结合二次函数的性质即可求解.(2)不等式化简为2(1)10ax a x +--<,根据一元二次不等式的解法,分类讨论即可求解.【小问1详解】()2f x ≥-对一切实数x 恒成立,等价于2R,(1)0x ax a x a ∀∈+-+≥恒成立.当0a =时,不等式可化为0x ≥,不满足题意.当0a ≠,有0Δ0a >⎧⎨≤⎩,即203210a a a >⎧⎨+-≥⎩,解得13a ≥所以a 的取值范围是1[,)3+∞.【小问2详解】依题意,()1f x a <-等价于2(1)10ax a x +--<,当0a =时,不等式可化为1x <,所以不等式的解集为{|1}<x x .当0a >时,不等式化为(1)(1)0ax x +-<,此时11a-<,所以不等式的解集为1{|1}x x a -<<.当0a <时,不等式化为(1)(1)0ax x +-<,①当1a =-时,11a -=,不等式的解集为{|1}x x ≠;②当10a -<<时,11a->,不等式的解集为1{|1}x x x a >-<或;③当1a <-时,11a-<,不等式的解集为1{|1}x x x a ><-或;综上,当1a <-时,原不等式的解集为1{|1}x x x a><-或;当1a =-时,原不等式的解集为{|1}x x ≠;当10a -<<时,原不等式的解集为1{|1}x x x a>-<或;当0a =时,原不等式的解集为{|1}<x x ;当0a >时,原不等式的解集为1{|1}x x a-<<.17.设a 为实数,函数()f x =.(1)求函数()f x 的定义域;(2)设t =()f x 表示为t 的函数()h t ,并写出定义域;(3)若0a <,求()f x 的最大值【答案】(1)[]1,1-;(2)()212h t at t a =+-,定义域为2⎤⎦;(3)答案见解析【解析】【分析】(1)根据函数特征得到不等式,求出定义域;(2)0t =两边平方得到[]2110,12t =-∈2t ≤≤,得到函数解析式和定义域;(3)在(2)的基础上结合对称轴,分10a <-<和12a ≤-≤和12a->三种情况,得到函数最大值.【小问1详解】由题意得2101010x x x ⎧-≥⎪+≥⎨⎪-≥⎩,解得11x -≤≤,故定义域为[]1,1-;【小问2详解】0t =两边平方得22t =+,[]2110,12t =-∈2t ≤≤,故()212h t at t a =+-,定义域为2⎤⎦;【小问3详解】由(2)知,()()221111222f x h t at t a a t a a a⎛⎫==+-=+-- ⎪⎝⎭,定义域为2⎤⎦,0a <,若10a <-<,即2a <-时,当t =时,()()f x h t =取得最大值,最大值为h=;12a ≤-≤,即122a -≤≤-时,()()f x h t =在对称轴处取得最大值,最大值为12a a --;若12a ->,即102a -<<时,当2t =时,()()f x h t =取得最大值,最大值为()222h a t a a =+-=+;综上,当22a <-当2122a -≤≤-时,最大值为12a a --,当102a -<<时,最大值为2a +.18.已知x ,0y >满足6x y +=.(1)求22x y +的最小值;(2)求3y x y+的最小值;(3)若()2244x y m x y +≥+恒成立,求m 的取值范围.【答案】(1)18;(2)12+;(3)83m ≤.【解析】【分析】(1)配方变形求出最小值.(2)根据给定条件,利用基本不等式“1”的妙用求出最小值.(3)对给定不等式分离参数,消元配凑变形,再利用基本不等式求出最小值即可.【小问1详解】由0,0x y >>,6x y +=,得22222()()1()1822x y x y x y x y ++-+=≥+=,当且仅当3x y ==时取等号,所以当3x y ==时,22x y +取得最小值18.【小问2详解】23321121113(1()(1(3)122y y x y x x y x y x y x y x y x y++=+-=+-=++-=++-11(3122≥+-=+2y x x y =,即x =时取等号,由6x x y ⎧=⎪⎨+=⎪⎩,得6(21)x y =-=,所以当6(21)x y ==-时,3y x y +取得最小值12+.【小问3详解】由0,0x y >>,6x y +=,得6,06x y y =-<<,不等式224(4)x y m x y +≥+恒成立,即2244x y m x y +≤+恒成立,2222224(6)4512365(2)32(2)804363(2)3(2)x y y y y y y y x y y y y +-+-++-++===++++516325328[(2)]323333y y =++-≥⋅=+,当且仅当1622y y +=+,即2y =时取等号,因此当4,2x y ==时,2244x y x y++取得最小值83,则83m ≤,所以m 的取值范围83m ≤.19.已知二次函数()()1f x ax x =-,()0,4a ∈,()0,1x ∈.若有()00f x x =,我们就称0x 为函数()f x 的一阶不动点;若有()()00f f x x =,我们就称0x 为函数()f x 的二阶不动点.(1)求证:()01f x <<;(2)若函数()f x 具有一阶不动点,求a 的取值范围;(3)若函数()f x 具有二阶不动点,求a 的取值范围.【答案】(1)证明见解析(2)14a <<(3)14a <<【解析】【分析】(1)利用基本不等式以及不等式的性质证明即可;(2)利用不动点的性质求解即可;(3)根据(2)可知当14a <<时,符合题意,再对(]0,1a ∈分析判断即可.【小问1详解】由题可知()0,4a ∈,()0,1x ∈,所以()()()211010101124x x x x x x ax x +-⎛⎫<-≤⇒<-≤⇒<-< ⎪⎝⎭故()01f x <<.【小问2详解】由题可知()0000111ax x x a x -=⇒=-因为()00,1x ∈,()0,4a ∈所以14a <<.【小问3详解】若14a <<,由(2)可知:函数()f x 具有一阶不动点,即存在()00,1x ∈,使得()00f x x =,则()()()000ff x f x x ==,所以函数()f x 具有二阶不动点,若(]0,1a ∈,由(2)可知函数()f x 不具有一阶不动点,可知对任意()0,1x ∈,且()f x 连续不断,可知()f x x >或()f x x <恒成立,若()f x x >,则()()()ff x f x x >>,此时函数()f x 不具有二阶不动点;若()f x x <,则()()()f f x f x x <<,此时函数()f x 不具有二阶不动点;即(]0,1a ∈时,函数()f x 不具有二阶不动点;综上所述:a 的取值范围为14a <<.【点睛】关键点点睛:对于复合函数我们经常令某一个函数()f x t =,然后换元计算.。
高一上数学2023-2024学年度上半学期11月份阶段性测试(一)原卷答案

2023-2024学年度上半学期11月份阶段性测试(一)答案考试范围:第四章指数函数、对数函数与幂函数考试时间:100分钟����总分:120分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
未命名
一、单选题
....
则()y f x =的图像与y a =的图像交点个数不可能为即方程()(),f x a a R =∈的实根个数不可能为故选:A
【点睛】本题主要考查了数形结合求解函数零点个数的问题
二、多选题
未命名三、填空题
由二次函数的对称性可知,()2
4x m -=即438x x =-且334x <<,
()()()()
343333x x x x --=
--
四、解答题
.已知为
)可看出在
试卷第11页,共11页减.解:(Ⅰ)∵
f (x )为R 上的偶函数;∴f (﹣1)=f (1);
∴
;
∴a=0;
(Ⅱ)函数
在[0,+∞)上单调递减;证明:设x 2>x 1≥0,则:=
=
;∵x 2>x 1≥0;
∴x 1﹣x 2<0,x 1+x 2>0,,;∴
;
即f (x 2)﹣f (x 1)<0;
∴f (x 2)<f (x 1);∴函数f (x )在[0,+∞)上是单调递减函数.
考点:函数单调性的判断与证明;函数奇偶性的判断.。
新疆乌鲁木齐市第六十八中学2024-2025学年高一上学期10月份阶段性检测数学试卷(含答案)
乌市68中2024-2025学年度第一学期10月份阶段性检测高一年级数学试卷时间:120分钟 总分: 150分一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集,,,则( )A .B .C .D .2.中文“函数”一词,最早是由清代数学家李善兰翻译而得,之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,下列选项中是同一个函数的是( )A .B .,C .,D .,3.已知a ,b 为非零实数,且,则下列结论正确的是( )A .B .C .D .4.若集合,则满足的实数a 的个数为( )A .2B .3C .4D .55.已知函数,则 ( )A .B .C .1D .6.对于任意的,定义运算:.若不等式对任意实数恒成立,则( )A .B .C .D .7.在中,角的对边分别为,已知周长为3,则的最小值为( )A .B .C .3D .8.在整数集中,被除所得余数为的所有整数组成一个“类”,记为,即,则下面选项正确的为( )A .B .C .D .整数属于同一“类”的充分不必要条件是“”{}1,2,3,4,5U ={}2,3A ={}1,3,5B =()U A B = ð{}2,3,4{}2{}1,5{}1,3,4,5()f x =()g x x=()1f x x =+()1,11,1x x g x x x +≥-⎧=⎨--<-⎩()242x f x x -=+()2g x x =-()f x x =()2x g x x=a b >22ac bc >22a b >2211ab a b >22b a a b<{}21,9,,{9,3}A a B a ==A B B = ()2(2),023,0f x x f x x x x -≥⎧=⎨-<⎩()()1f f =1451-,x y ∈R ()1x y x y =+e ()10x x a ++>e x 13a -<<02a <<31a -<<22a -<<ABC V ,,A B C ,,abc ABC V 41a b c ++3294103Z 5k []k []{}5Z ,0,1,2,3,4k n k n k =+∈=[]20253∈[]22-∈][][][][Z 01234⎡⎤=⋃⋃⋃⋃⎣⎦a b 、[]0a b -∈二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.下列说法正确的是( )A .的一个必要条件是B .若集合中只有一个元素,则C .“”是“一元二次方程有一正一负根”的充要条件D .已知集合,则满足条件的集合的个数为410.下列说法正确的是( )A .已知,则;B .命题“,”的否定是“,或”C .若,则函数D .当x ∈R 时,不等式恒成立,则的取值范围是11.若关于的不等式恰有4个整数解,则( )A .的值可以是B .的值不可能是C .的最大值是8D .的最小值是7三、填空题(本题共3小题,每小题5分,共15分)12.已知的定义域是 .13.如图所示,为宣传某运动会,某公益广告公司拟在一张矩形海报纸上设计大小相等的左右两个矩形宣传栏,宣传栏的面积之和为,为了美观,要求海报上四周空白的宽度均为,两个宣传栏之间的空隙的宽度为,设海报纸的长和宽分别为.为节约成本,选择海报纸的长 dm ,可使用纸是最少;14.对于一个由整数组成的集合,中所有元素之和称为的“小和数”,的所有非空子集的“小和数”之和称为的“大和数”.已知集合,则的“小和数”为 ,的“大和数”为 .四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知集合;(1)若,求的取值范围;(2)若,求的取值范围;a b >1a b->{}210|A x ax x =++=4a =0ac <20ax bx c ++={0,1}M =M N M ⋃=N 11,13x y x y -≤+≤≤-≤2328x y ≤-≤R x ∃∈1()2f x <≤R x ∀∈()1f x ≤()2f x >R x ∈y =2210kx kx -+>k [)0,4x ()2330x a x a -++<a 152a 2-a a ()12f x x =+-2700dm 2dm 3dm dm,dm x y x =A A A A A {}7,3,1,1,2,3,4,5,6,7,13B =---B B {|234}(),{|812}A x a x a a R B x x =+≤≤-∈=≤≤R A C B R ⋃=a A B ⋂=∅a16.(15分)已知集合,B ={x |−2≤x ≤4},全集.(1)当时,求;(2)若是成立的充分不必要条件,求实数的取值范围.17.(15分)(1)设,求函数(2)当时,求函数的最大值;18.(17分)已知函数.(1)若,解关于的不等式;(2)若不等式在上有解,求实数的取值范围.19.(17分)对于二次函数,若存在,使得成立,则称为二次函数的不动点.(1)求二次函数的不动点;(2)若二次函数有两个不相等的不动点,且,求的取值范围以及的最小值;(3)若对任意实数,二次函数恒有不动点,求的取值范围.{}123A x a x a =-≤≤+R U =2a =()()U U A B ⋃ððx A ∈x B ∈a 02x <<y =32x <823y x x =+-()()()2212R f x mx m x m =-++∈0m >x ()0f x <()4f x x ≤-x R ∈m ()20y mx nx t m =++≠0x ∈R 2000mx nx t x ++=0x ()20y mx nx t m =++≠23y x x =--()2213y x x a a -+=+-12,x x 120,0x x >>a 1221x x x x +b ()()()2110y ax b x b a =+++-≠a参考答案:1.A2.B3.C4.A5.B6.C7.C8.C9.ACD10.ACD11.AC12.13.4214. 15.(1),当时,;当时,;当时,; (2); (3).16.(1)或(2)或17.(1(2)18.(1)当时,;当时,;当时,;(2)19.(1)和(2);[)()1,22,⋃+∞3030720{}|46A x x =-<≤0a =B =∅0a >{|2}B x a x a =<<0a <{|2}B x a x a =<<(,4]{0}[6,)-∞-+∞ [2,3]-{2x x <-7}x >4a <-112a -≤≤52-102m <<12,x m ⎛⎫∈ ⎪⎝⎭12m =x ∈∅12m >1,2x m ⎛⎫∈ ⎪⎝⎭(,2-∞1-31a >8(3)(]0,1。
安徽省安庆市第一中学2023-2024学年高一上学期第一次阶段性检测数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若关于 x 的不等式 x2 ax b 0 的解集是x | x 2 或 x 3 ,则 a b ( )
7 2
三、填空题
13.已知 f x 4 x 8 x ,则 f x
.
14.若 f x 的定义域为0,9 ,则函数 g x f 3x 3x 的定义域为
.
3x
15.设 a,b > 0, a + b = 5,则 a +1+ b+3 的最大值为
.
16.若规定 E= a1,a2...a10 的子集 ak1ak2 ...,akn 为 E 的第 k 个子集,其中
0 ,则关于
a
的不等式
f
a2 2a 3
4 3
的解集为( )
试卷第 1页,共 4页
A. ,1 5 1 5,
C. 1 5,1 5
B. 1 5, 1 3,1 5
D. 1 5, 1 3,1 5
二、多选题
9.已知 a,b, c R ,则( )
A.若 a
b
0 ,则 1 1 ab
C.若a b 0 ,则 a ab b
4.命题“ a 2 , f x x2 ax 是奇函数”的否定是( )
A. a 2 , f x x2 ax 是偶函数
B. a 2 , f x x2 ax 不是奇函数
C. a 2 , f x x2 ax 是偶函数
D. a 2 , f x x2 ax 不是奇函数
5.已知1 a b 2 , 2 a b 4 ,则 3a 2b 的取值范围是( )
湖南省长沙市2024-2025学年高一上学期第一阶段性测试(10月)数学试题含答案
长沙市2024年下学期高一年级第一阶段性测试数学试卷(答案在最后)分量:150分时量:150分钟命题人:一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各图中,不能表示y是x的函数的是()A. B.C. D.【答案】B【解析】【分析】利用函数的定义,对各个选项逐一分析判断,即可求出结果.【详解】由函数的定义知,每一个x的取值,有且仅有一个y值与之对应,由选项A,C和D的图象可知,每一个x的取值,有且仅有一个y值与之对应,所以选项A,C和D错误,由选项B的图象知,存在x的取值,一个x的取值,有两个y值与之对应,所以不能表示y是x的函数,故选:B.2.已知:11(a ba b>∈R,,且0)ab≠,下列不等关系一定成立的是()A.a b>B.a b<C.a b ab+> D.22ab a b>【答案】D【解析】【分析】通过赋值法举反例排除A,B,C项,对于D项,则可寻找条件成立的充要条件,再用作差法判断即得.【详解】对于A ,可取2,1a b =-=-,满足11a b>,但得不到a b >,故A 错误;对于B ,可取1,1a b ==-,满足11a b >,但不满足a b <,故B 错误;对于C ,可取2,1a b =-=-,满足11a b>,但32a b ab +=-<=,故C 错误;对于D ,因110()0b aab b a a b ab->⇔>⇔->,而22()ab a b ab b a -=-,故必有22ab a b >成立,即D 正确.故选:D.3.已知集合{}3,N A x x x =≤∈,{}221,,B m m m =-,{}3,,32C m m =-,若B C =,则A B ⋂的子集个数为()A.2B.4C.7D.8【答案】B 【解析】【分析】本题根据B 、C 两集合相等,则元素相同,然后分类讨论求出参数m ,进而求出两个集合,再求集合A 、B 的交集,然后可求子集的个数.【详解】由题意得,{}0,1,2,3A =,又集合B C =,若213m -=,则2m =,此时{}2,3,4B =,则{}2,3A B =I ,故A B ⋂子集个数为224=;若21m m -=,则1m =,此时显然,B C 集合不成立,舍去;若2132m m -=-,1m =,同理舍去.综上得:2m =时,A B ⋂子集个数为4个;故选:B.4.已知函数()y f x =的定义域为[]1,4-,则21y +=)A.[]5,5- B.31,2⎛⎤ ⎥⎝⎦C.(]1,5 D.35,2⎡⎤-⎢⎥⎣⎦【答案】B 【解析】【分析】根据抽象函数定义域和具体函数定义域求法直接构造不等式求解即可.【详解】()y f x = 的定义域为[]1,4-,121410x x -≤+≤⎧∴⎨->⎩,解得:312x <≤,21y +∴=的定义域为31,2⎛⎤ ⎥⎝⎦.故选:B.5.已知(31)4,1(),1a x a x f x ax x -+<⎧=⎨-≥⎩是定义在R 上的减函数,则实数a 的取值范围是()A.11,83⎡⎫⎪⎢⎣⎭B.11,83⎡⎤⎢⎥⎣⎦C.10,3⎡⎤⎢⎥⎣⎦D.10,3⎛⎤ ⎥⎝⎦【答案】A 【解析】【分析】由函数()f x 是R 上的减函数,可得3100314a a a a a -<⎧⎪-<⎨⎪-+≥-⎩,求解即可.【详解】∵函数()f x 是R 上的减函数,∴3100314a a a a a-<⎧⎪-<⎨⎪-+≥-⎩,解得1183a ≤<.故选:A.6.为了加强家校联系,王老师组建了一个由学生、家长和教师组成的QQ 群.已知该群中男学生人数多于女学生人数,女学生人数多于家长人数,家长人数多于教师人数,教师人数的两倍多于男学生人数.则该QQ 群人数的最小值为()A.20B.22C.26D.28【答案】B 【解析】【分析】设教师人数为,家长人数为y ,女学生人数为z ,男学生人数为t ,由题意得到46x y z t x +++≥+,再由教师人数的两倍多于男学生人数得到x 的范围求解.【详解】设教师人数为,家长人数为y ,女学生人数为z ,男学生人数为t ,x 、y 、z 、t ∈Z ,则1,12y x z y x ≥+≥+≥+,123t z y x ≥+≥+≥+,则46x y z t x +++≥+,又教师人数的两倍多于男学生人数,23x x ∴>+,解得3x >,当=4x 时,22x y z t +++≥,此时总人数最少为22.故选:B.7.若a b >,且2ab =,则22(1)(1)a b a b-++-的最小值为()A.2B.4-C.4-D.2-【答案】D 【解析】【分析】首先利用条件等式将表达式变形,然后利用基本不等式求最小值,一定要注意取等条件是否成立.【详解】因为2ab =,所以由题意222222(1)(1)2222a b a b a b a b aba b a b a b-++++-+++==----()()23622a b aba b a ba b-+=-=-+---,因为a b >,所以0a b ->,所以由基本不等式可得()22(1)(1)622a b a b a b a b-++=-+-≥---,当且仅当2ab a b a b=⎧⎪-=⎨⎪>⎩时等号成立,即当且仅当22a b ⎧=⎪⎪⎨⎪=⎪⎩或22a b ⎧=⎪⎪⎨+⎪=⎪⎩时等号成立,综上所述,22(1)(1)a b a b-++-的最小值为2-.故选:D.【点睛】关键点点睛,解决本题的关键是要利用条件等式对已知表达式变形,利用基本不等式后要注意到取等条件的成立与否.8.关于函数()()1xf x x x=∈+R 的性质,①等式()()0f x f x -+=对x ∈R 恒成立;②函数()f x 的值域为()1,1-;③若12x x ≠,则一定有()()12f x f x ≠;④存在无数个0x ,满足()0011f x f x ⎛⎫+=- ⎪⎝⎭其中正确结论个数为()A.1B.2C.3D.4【答案】D 【解析】【分析】根据函数的解析式先判断函数奇偶性得①正确;再将定义域分段去掉绝对值,化简函数式后利用不等式性质分析判断②;利用函数的奇偶性和局部单调性得出函数为R 上的增函数即可判断③;分析发现函数在0x <时即满足条件,故可判断④正确.【详解】对于①,由()()11x xf x f x x x--==-=-+-+可得()()0f x f x -+=对R x ∈恒成立,故①正确;对于②,当0x >时,()()1111111x x f x x x x+-===-+++,因为0x >,所以11x +>,所以1011x <<+,所以1011x >->-+,所以11101x >->+,所以()01f x <<,当0x <时,()()1111111x x f x x x x--+===-+---,因为0x <,则11x ->,则1011x<<-,故得11101x-<-+<-,即()10f x -<<,当0x =时,()0f x =,综上,()f x 的值域为−1,1,所以②正确;对于③,当0x >时,()111f x x=-+为增函数,由①知()f x 为奇函数,因为()f x 的图象在R 上连续,所以()f x 在R 上为增函数,所以当12x x ≠,则一定有()()12f x f x ≠,所以③正确;对于④,当0x <时,10x<,()1x f x x =-,111111()x f x x x==--则()111(1111x x f x f x x x x-+=+==----,所以存在无数个00x <,满足()001()1f x f x +=-,所以④正确,即正确的结论共有4个,故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.命题:p x ∃∈R ,210x x -+=.命题q :任意两个等边三角形都相似.关于这两个命题,下列判断正确的是()A.p 是真命题B.:p x ⌝∀∈R ,210x x -+≠C.q 是真命题 D.q ⌝:存在两个等边三角形,它们不相似【答案】BCD 【解析】【分析】根据根的判别式可判断命题p 的真假,根据等边三角形的性质判断命题q 的真假,从而判断AC ,根据命题的否定可判断BD.【详解】对于方程210x x -+=,()2141130∆=--⨯⨯=-<,所以x ∀∈R ,210x x -+=无解,故p 是假命题,故A 错误;:p x ⌝∀∈R ,210x x -+≠,故B 正确;任意两个等边三角形都相似,故q 是真命题,故C 正确;q ⌝:存在两个等边三角形,它们不相似,故D 正确.故选:BCD.10.已知集合{}222|80A x x a x a =++-=,{}2|(2)0B x x =+=,且A B A B = .集合D 为a 的取值组成的集合,则下列关系中正确的是()A.2D -∈B.2D ∉C.D ∅⊆D.0D∉【答案】ACD 【解析】【分析】根据已知条件得出A B =,再得出集合D ,最后结合元素和集合的关系判断各个选项.【详解】因为A B A B = ,所以A B =,因为{}2B =-,所以{}{}222802A xx a x a =++-==-∣,所以()()2224180a a ∆=-⨯⨯-=且224280a a -⨯+-=,所以24a =,{}2,2D =-,所以2,2,0,D D D D -∈∈∉∅⊆.故选:ACD.11.德国著名数学家狄利克雷在数学领域成就显著,以其命名的函数R 1,Q()0,Q x f x x ∈⎧=⎨∈⎩ð,被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则以下关于狄利克雷函数()f x 的结论中,正确的是()A.函数()f x 满足:()()f x f x -=B.函数()f x 的值域是[]0,1C.对于任意的x ∈R ,都有()()1ff x =D.在()f x 图象上不存在不同的三个点、、A B C ,使得ABC V 为等边三角形【答案】AC 【解析】【分析】利用R 1,Q()0,Q x f x x ∈⎧=⎨∈⎩ð,对选项A ,B 和C 逐一分析判断,即可得出选项A ,B 和C 的正误,选项D ,通过取特殊点()0,1,,,033A B C ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,此时ABC V 为等边三角形,即可求解.【详解】由于R 1,Q()0,Q x f x x ∈⎧=⎨∈⎩ð,对于选项A ,设任意x ∈Q ,则()(),1x f x f x -∈-==Q ;设任意Q x ∈R ð,则()()Q,0x f x f x -∈-==R ð,总之,对于任意实数()(),x f x f x -=恒成立,所以选项A 正确,对于选项B ,()f x 的值域为{}0,1,又{}[]0,10,1≠,所以选项B 错误,对于选项C ,当x ∈Q ,则()()()()1,11f x ff x f ===,当Q x ∈R ð,则()()()()0,01f x f f x f ===,所以选项C 正确,对于选项D ,取()330,1,,0,,033A B C ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭,此时3AB AC BC ===,得到ABC V 为等边三角形,所以选项D 错误,故选:AC .三、填空题:本题共3小题,每小题5分,共15分.12.已知14,263x y x y -≤-≤-≤+≤,则8z x y =-的取值范围是__________.【答案】510z -≤≤【解析】【分析】利用不等式的性质可求z 的取值范围.【详解】设()()()()866x y m x y n x y m n x n m y -=-++=++-,则168m n n m +=⎧⎨-=-⎩,故12n m =-⎧⎨=⎩,因为14,263x y x y -≤-≤-≤+≤,则()()228,362x y x y -≤-≤-≤-+≤,故()()52610x y x y -≤--+≤即510z -≤≤,故答案为:510z -≤≤.13.在22{|1}1x A x x -=<+,22{|0}B x x x a a =++-<,设全集U =R ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是_____【答案】4a ≥或3a ≤-【解析】【分析】根据充分必要条件的定义,对a 进行分类讨论,可得答案.【详解】解不等式2211x x -<+,即301x x -<+,得13x -<<,得(1,3)A =-,{|()(1)0}B x x a x a =++-<,“x A ∈”是“x B ∈”的充分不必要条件,∴A 为B 的真子集,分类讨论如下:①1a a -=-,即12a =时,B =∅,不符题意;②1a a -<-,即12a >时,{|1}B x a x a =-<<-,此时需满足113a a -≤-⎧⎨-≥⎩,(等号不同时成立),解得4a ≥,满足题意,③1a a ->-,即12a <时,{|1}B x a x a =-<<-,此时,113a a -≤-⎧⎨-≥⎩,(等号不同时成立),解得3a ≤-,满足题意,综上,4a ≥或3a ≤-时,满足“x A ∈”是“x B ∈”的充分不必要条件.故答案为:4a ≥或3a ≤-14.设函数()f x 的定义域为R ,满足1(1)()2f x f x +=,且当(0,1]x ∈时,()(1)f x x x =--.若对任意[,)x m ∈+∞,都有8()9f x ≤,则m 的取值范围是___________.【答案】43m ≥-【解析】【分析】求得()f x 在区间(](]1,0,2,1---上的解析式,画出()f x 的图象,结合图象列不等式,由此求得m 的取值范围.【详解】(]1,0x ∈-时,(]10,1x +∈,而(]0,1x ∈时,()()1,f x x x =--所以()()()()11111f x x x x x ⎡⎤+=-++-=-+⎣⎦,又()()21f x f x +=,所以当(]1,0x ∈-时,()()()2121f x f x x x =+=-+,当(]2,1x ∈--时,()()()()()()2122111412f x f x x x x x ⎡⎤=+=-⨯+++=-++⎣⎦,作出示意图如下图所示:要使()89f x ≤,则需1x x ≥,结合上图,由()()84129x x -++=,解得143x =-,所以43m ≥-.【点睛】关键点点睛:所给的抽象函数关系式,如本题中的1(1)()2f x f x +=,然后要关注题目所给的已知区间的函数解析式,结合这两个条件来求得其它区间的函数解析式.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知集合{}|()(2)0A x x m x =-+<,{}|0B x x m =+<.(1)当1m =时,求A B ⋂;(2)若A B B = ,求实数m 的取值范围.【答案】(1)()2,1A B ⋂=--(2)(],0-∞【解析】【分析】(1)根据条件,得到{}21A x x =-<<,{}1B x x =<-,即可求出结果;(2)根据条件得到A B ⊆,再分2m =-、2m >-和2m <-三种情况进行讨论,即可求出结果.【小问1详解】当1m =时,()(){}{}12021A x x x x x =-+<=-<<,{}{}101B x x x x =+<=<-,所以()2,1A B ⋂=--.【小问2详解】)因为A B B = ,则A B ⊆,当2m =-时,A =∅,有A B ⊆,符合题意,当2m >-时,{}{}2,A x x m B x x m =-<<=<-,由A B ⊆,则m m -≥,解得0m ≤,所以(]2,0m ∈-,当2m <-时,{}{}2,A x m x B x x m =<<-=<-,由A B ⊆,则2m -≥-,解得2m ≤,所以(),2m ∞∈--,综上所述,实数m 的取值范围是(],0-∞.16.已知函数()()2,0af x x x x x=+∈≠R .(1)若1a =,求()f x 在{10x x ∈-≤<R 或01}x <≤上的值域;(2)证明:当0a >时,函数()f x 在区间,2∞⎛-- ⎝⎦上单调递增.【答案】(1)(),⎡-∞-⋃+∞⎣(2)证明见解析【解析】【分析】(1)直接利用基本不等式计算即可求解;(2)直接利用定义法即可判断函数()f x 的单调性.【小问1详解】当()11,2a f x x x==+,若(]0,1x ∈,则()12f x x x =+≥22x =时成立;若[)1,0x ∈-,则()112[(2)()]f x x x x x =+=--+-≤--,等号当且仅当22x =-时成立.所以()f x 在{10x x ∈-≤<R 或01}x <≤上的值域为:(),⎡-∞-⋃+∞⎣.【小问2详解】12,,2x x ⎛∀∈-∞- ⎝⎦,且12x x <,有()()()12121212122222a a a a f x f x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()211212121212222a x x x x x x x x a x x x x --=-+=-.由122,,2a x x ⎛∈-∞- ⎝⎦得:1222,22a a x x <-≤-.所以12120,202a x x x x a >>->,又由12x x <,得120x x -<.于是:()12121220x x x x a x x --<,即()()12f x f x <.所以,函数()2a f x x x =+在区间,2⎛-∞- ⎝⎦上单调递增.17.已知()y f x =在()0,∞+上有意义,单调递增且满足()()()()21,f f xy f x f y ==+.(1)求证:()()22f x f x =;(2)求不等式的()()32f x f x ++≤的解集.【答案】(1)证明见解析(2){}|01x x <≤【解析】【分析】(1)根据条件,通过令y x =,即可证明结果;(2)根据条件得到()()()34f x x f +≤,再利用()f x 在区间()0,∞+上的单调性,即可求出结果.【小问1详解】因为()()()f xy f x f y =+,令y x =,得到()()()()22f x f x f x f x =+=,所以()()22f x f x =.【小问2详解】()()()()()()332224f x f x f x x f f ++=+≤== ,又函数()f x 在区间()0,∞+上单调递增,所以()03034x x x x ⎧>⎪+>⎨⎪+≤⎩,解得01x <≤,所以不等式的()()32f x f x ++≤的解集为{}|01x x <≤.18.我们知道,当0a b ≥>时,如果把2,,112a b a b a b++话,一个美丽、大方、优雅的均值不等式链2__________11a b a b ≥≥≥≥≥+便款款的、含情脉脉的降临在我们面前.这个均值不等式链神通巨大,可以解决很多很多的由定值求最值问题.(1)填空写出补充完整的该均值不等式链;2__________11a b a b≥≥≥≥≥+(2)如果定义:当0a b ≥>时,a b -为,a b 间的“缝隙”.2a b +间的“缝隙”为M ,2a b +与间的缝隙为N ,请问M 、N 谁大?给出你的结论并证明.【答案】(1)2112a b a b a b+≥≥≥≥≥+(2)M N ≤,见解析【解析】【分析】(1)由题得2112a b a b a b+≥≥≥≥≥+;(2)M N ≤(当且仅当a b =时取等号),再利用作差比较法证明即可.【详解】(1)2112a b a b a b+≥≥≥≥≥+(2)M N ≤(当且仅当a b =时取等号)证明:∵()22a b a b M N a b ⎫⎛++⎛-=--=-+⎪ ⎪ ⎝⎭⎝⎭又∵()222222()22a b a b ab a b ab ⎫⎛⎫++-+=+-++⎪ ⎪⎪ ⎪⎭⎝⎭222a b ab ⎛⎫+=-- ⎪ ⎪⎝⎭20=--≤⎭(当且仅当a b =时取=号).∴22()a b +≤+⎭a b +≤+∴M N ≤(当且仅当a b =时取=号).【点睛】本题主要考查基本不等式的应用,考查作差比较法证明不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.对于函数()f x ,若存在0x ∈R ,使()00f x x =成立,则称0x 为()f x 的不动点.(1)已知函数()23f x x x =--,求函数()f x 的不动点;(2)若对于任意的b ∈R ,二次函数()()218f x ax b x b =+-+-(0a ≠)恒有两个相异的不动点,求实数a 的取值范围;(3)若函数()()211f x mx m x m =-+++在区间()0,2上有唯一的不动点,求实数m 的取值范围.【答案】(1)1,3-(2)()0,6(3)11m -<≤或3m =【解析】【分析】(1)求函数()f x 的不动点,即求方程()00f x x =的根,即求方程20003x x x --=的解;(2)二次函数()()218f x ax b x b =+-+-(0a ≠)恒有两个相异的不动点,等价于方程()2280ax b x b +-+-=有两个不等实根,对于任意的b ∈R 恒成立,只需要不等式()()2414810b a b a -+++>恒成立,求实数a 的取值范围即可;(3)在区间0,2上,函数()()221g x mx m x m =-+++有唯一零点,应用零点存在性定理即可,同时还要关注区间边界函数值为零和判别式为零的情形.【小问1详解】设0x 为不动点,因此()00f x x =,即20003x x x --=,解得01x =-或03x =,所以1,3-为函数()f x 的不动点.【小问2详解】方程()f x x =,即()218ax b x b x +-+-=,有()2280ax b x b +-+-=,因为0a ≠,于是得一元二次方程()2280ax b x b +-+-=有两个不等实根,即判别式()()()22Δ(2)480414810b a b b a b a =--->⇔-+++>,依题意,对于任意的b ∈R ,不等式()()2414810b a b a -+++>恒成立,只需关于未知数b 的方程()()2414810b a b a -+++=无实数根,则判别式()()2Δ16116810a a =+-+<,整理得260a a -<,解得06a <<,所以实数a 的取值范围是()0,6.【小问3详解】由()()211f x mx m x m x =-+++=,得()2210mx m x m -+++=,由于函数()f x 在0,2上有且只有一个不动点,即()2210mx m x m -+++=在0,2上有且只有一个解令()()221g x mx m x m =-+++①()()020g g ⋅<,则()()110m m +-<,解得11m -<<;②()00g =,即1m =-时,方程可化为20x x --=,另一个根为1-,不符合题意,舍去;③()20g =,即1m =时,方程可化为2320x x -+=,另一个根为1,满足;④0∆=,即()()22410m m m +-+=,解得233m =±,(i )当233m =时,方程的根为()221222m m x m m -++=-==,满足;(ii )当3m =-时,方程的根为()221222m m x m m -++-=-==,不符合题意,舍去;综上,m 的取值范围是11m -<≤或3m =.。
2023-2024学年湖南省长沙市第一中学高一下学期第一次阶段性检测数学试题+答案解析(附后)
一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求2023-2024学年湖南省长沙市第一中学高一下学期第一次阶段性检测数学试题的。
1.已知集合,,则( )A. B.C.D.2.已知,则( )A.B. C.D.3.下列四个函数中,以为最小正周期,且在区间上单调递减的是( )A. B.C.D.4.函数的图象与直线为常数的交点最多有( )A. 1个B. 2个C. 3个D. 4个5.已知向量,不共线,且,,若与共线,则实数x 的值为A. 1B.C. 1或D.或6.下列命题:①若,则②若,,则③的充要条件是且④若,,则⑤若A 、B 、C 、D 是不共线的四点,则是四边形ABCD 为平行四边形的充要条件.其中真命题的个数是( )A. 2B. 3C. 4D. 57.如图所示,已知正方形ABCD 的边长为1,,,,则向量的模为( )A. B. 2 C. D. 48.设函数,则的最小正周期( )A. 与a有关,且与b有关B. 与a有关,但与b无关C. 与a无关,且与b无关D. 与a无关,但与b有关二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知函数,,且,下列结论正确的是( )A. B.C. D. 的最小值为810.要得到函数的图象,可以将函数的图象得到( )A. 先将各点横坐标变为原来的倍,再向左平移个单位B. 先将各点横坐标变为原来的2倍,再向左平移个单位C. 先将各点横坐标变为原来的倍,再向右平移个单位D. 先向左平移个单位,再将各点横坐标变为原来的倍11.已知,下列关系可能成立的有( )A. B. C. D.12.下列论断中,正确的有( )A. 中,若A为钝角,则B. 若奇函数对定义域内任意x都有,则为周期函数C. 若函数与的图象关于直线对称,则函数与的图象也关于直线对称D. 向量,,满足,则或三、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学阶段性检测试题
一、选择题(本大题共10小题,每小题5分,共50分)
1. 设全集U={1,2,3,4,5,6},集合A={2,4,6},B={1,2,3,5},则 A C U B 等于
A .{1,3,5}
B .{1,2,3,5}
C .Φ
D .{1,3,4,5,6}
2.下列表示①②
③ ④中,正确的个数为( )
(A )1 (B )2 (C )3 (D )4
3.下列集合中,表示方程组{
3
1=++-y x y x 的解集的是( ) (A ) (B ) (C ) (D )
4. 函数 ]5,2[,142∈+-=x x x y 的值域是 ( )
A ]61[,
B ]13[,-
C ]63[,-
D ),3[+∞-
5. 函数|3|-=x y 的单调递减区间为 ( )
A. ),(+∞-∞
B. ),3[+∞
C. ]3,(-∞
D. ),0[+∞
6. 满足条件{a,b}M ⊆≠
⊂{a,b,c,d,e}的所有集合M 的个数是 ( ) A.3个 B.7个 C.8个 D.32个
7. 下面的图象可表示函数y=f(x)的只可能是 ( )
8. 如图所示,,,是的三个子集,则阴影部分所表示的集合是( )
(A ) (B )
(C ) (D )
9.已知集合},1|{2R x x y y M ∈-==,}2|{2x y x N -==,则=N M ( )
A .),1[+∞-
B .]2,1[-
C .),2[+∞
D .φ
10.在整数集Z 中,被5除所得的余数为k 的所有整数组成的一个“类”,记为
[]{5,}k n k n Z =+∈,0,1,2,3,4k =,给出下列四个结论:①2012[2]∈;②3[3]-∈;③[0][1][2][3][4]Z =;④“整数,a b 属于同一‘类’
”的条件是“()[0]a b -∈”其中正确结论的个数是( )
A .1个
B .2个
C .3个
D .4个
二、填空题 (本大题共5个小题,每小题5分,共25分,)
11. 有15人进了家电超市,其中有9人买了电视机,有7人买了电脑,两种均买了的有
3人,则这两种均没买的有 人.
12. 已知0(0)()(0)1(0)x f x x x x π<⎧⎪==⎨⎪+>⎩
,则{[(1)]}f f f -=
13. 若}63|{<<-=x x A ,}|{a x x B ≤=且B A ⊆,则a 的取值范围是_________.
14.设全集,,,则的值为
15.若集合只有一个元素,则实数的值为
三、解答题(共计75分)
16.( 12分)若
,求实数的值。
17.(12分)设全集合,,,求
,, ,
18. ( 12分) 证明函数f ()x = x +x
1,在区间[)0,1-上是减函数.
19.(12分)已知集合,,
,求实数的取值范围
20( 13分).已知集合}2|{a x x A ≤≤-=,},32|{A x x y y B ∈+==,},|{2A x x z z C ∈==,且B C ⊆,求a 的取值范围。
21.( 14分)已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )
<0,f (1)=-23
. (1)求证:f (x )在R 上是减函数;
(2)求f (x )在[-3,3]上的最大值和最小值.
高一数学阶段性检测试题答案
一、选择题:AACCC BDCBC
二、填空题
11.2 12.1+π 13.6≥a , 14。
2或8。
15。
16解:或
16. 解: ,
17. 解:,
当时,,;
当为单元素集时,,
此时; 当为二元素集时,,
, 的取值范围为
19. 解:,
当时,,;
当为单元素集时,,
此时;当为二元素集时,,
,的取值范围为
20.因为}2|{a x x A ≤≤-=,所以}321|}{321|{+≤≤-+≤≤-=a x x a y y B 。
(1)当02<≤-a 时,}4|{}4|{22≤≤=≤≤=x a x z a z C ,
若B C ⊆,则⎩⎨⎧≥+<≤-43202a a ,即⎪⎩⎪⎨⎧≥<≤-2102a a ,所以φ∈a 。
(2)当20≤≤a 时,}40|{}40|{≤≤=≤≤=x x z z C ,
若B C ⊆,则⎩⎨⎧≥+≤≤43220a a ,所以221≤≤a 。
(3)当2>a 时,}0|{}0|{22a x x a z z C ≤≤=≤≤=,
若B C ⊆,则⎩⎨⎧≥+>2322a a a ,即⎩⎨⎧≤-->0
3222a a a , 化简得⎩⎨⎧≤≤->3
12a a ,所以32≤<a 。
综上所述,a 的取值范围为221|{≤≤a a 或}32≤<a }32
1|{≤≤=a a 。
21.(1)证明 设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2)
=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0, ∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上为减函数.
(2)解 ∵f (x )在R 上是减函数,
∴f (x )在[-3,3]上也是减函数,
∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3).
而f (3)=3f (1)=-2,f (-3)=-f (3)=2.
∴f (x )在[-3,3]上的最大值为2,最小值为-2.。