实验一,盲目搜索算法
盲目搜索

盲目搜索搜索的含义依问题的实际情况寻找可利用的知识,构造代价较少的推理路径从而解决问题的过程离散的问题通常没有统一的求解方法搜索策略的优劣涉及能否找到最好的解、计算时间、存储空间等搜索分为盲目搜索和启发式搜索盲目搜索:按预定的策略进行搜索,未用问题相关的或中间信息改进搜索。
效率不高,难求解复杂问题,但不失可用性启发式搜索:搜索中加入问题相关的信息加速问题求解,效率较高,但启发式函数不易构造盲目搜索也叫无信息搜索,只适合用于求解比较简单的问题。
我们没有指定问题的任何推理信息,例如要搜索这一部分而不是另一部分,就像到目前为止的只要发现一条到目标的路径即可。
这种过程被称为是盲目的。
盲目搜索过程只把算子应用到节点,它没有使用问题领域的任何特殊知识(除了关于什么动作是合法的知识外)。
最简单的盲目搜索过程就是广度优先搜索。
该过程把所有的算子应用到开始节点以产生一个显式的状态空间图,再把所有可能的算子应用到开始节点的所有直接后继,再到后继的后继,等等。
搜索过程一律从开始节点向外扩展。
由于每一步将所有可能的算子应用到一个节点,因此可把它们组成一个叫后继函数的函数。
当把后继函数应用到一个节点时,产生一个节点集,该节点集就是把所有能应用到那个节点的算子应用到该节点而产生的。
一个节点的后继函数的每一次应用称为节点的扩展相同代价搜索是广度优先搜索的一种变体,在该方法中,节点从开始节点顺着代价等高点向外扩展,而不是顺着相同深度等高线。
如果图中所有弧的代价相同,那么相同代价搜索就和广度优先搜索一致。
反过来,相同代价搜索可以看作是下一章要讲的启发式搜索的一个特殊情况。
广度优先和相同代价搜索方法的简要描述只给出了它们的主要思想,但是要解决其他复杂的情况则需要技术改进深度优先搜索一次对节点应用一个算子以产生该节点的一个后继。
每一个节点都留下一个标记,用来指示如果需要时所必需的附加算子。
对每一个节点,必须有一个决策来决定哪个算子先用,哪个次之等等。
盲目搜索与探索

24
3.1.3 深度优先搜索
2020/6/26
25
有界深度优先搜索
定义节点的深度如下: (1) 起始节点(即根节点)的深度为0。 (2) 任何其它节点的深度等于其父辈节点深度加上1。
• 对于许多问题,其状态空间搜索树的深度可能为无限深, 或者可能至少要比某个可接受的解答序列的已知深度上限 还要深。为了避免考虑太长的路径(防止搜索过程沿着无 益的路径扩展下去),往往给出一个节点扩展的最大深 度——深度界限。任何节点如果达到了深度界限,那么都 将把它们作为没有后继节点处理。值得说明的是,即使应 用了深度界限的规定,所求得的解答路径并不一定就是最 短的路径。
失败 成功
一、盲目搜索
盲目搜索又叫做无信息搜索,一般只适用于求解比较简 单的问题。主要包括宽度优先搜索、等深度优先搜索等。 特点:
1)搜索按规定的路线进行,不使用与问题有关的启发性 信息。
2)适用于其状态空间图是树状结构的一类问题。
13
1、 宽度优先搜索
定义:如果搜索是以接近起始节点的程度依次扩展节点的, 那么这种搜索就叫做宽度优先搜索(breadth-first search)。
2020/6/26
29
八数码难题的深度优先搜索树
2020/6/26
30
二、 启发式搜索
盲目搜索的不足:
效率低,耗费过多的计算空间与时间。 宽度优先搜索、深度优先搜索,或等代价搜索算法,是按事
先规定的路线进行搜索,或按已经付出的代价决定下一步 要搜索的节点,其主要差别是OPEN表中待扩展节点的顺 序问题。如果找到一种方法用于排列待扩展节点的顺序, 即选择最有希望的节点加以扩展,那么,搜索效率将会大 为提高。
基本思想:
人工智能ch3盲目搜索.

排序是任意的,即肓目的——盲目搜索。
排序用启发信息为依据——启发式搜索。
3.1 一般搜索过程
三、几点说明
2. 搜索图和搜索树
图搜索的一般过程中生成的明确图,被称为搜索图G 。
由图 G中所有节点及反向指针(在第⑦步形成的指向父节 点的指针)构成的集合T,是一棵树,称为搜索树。
——Open表
3.1 一般搜索过程
三、几点说明
4. 步骤⑥的说明
一个节点经一个算符操作通常指生成一个子节点。
由于适用于一个节点的算符可能有多个,此时就会 生成一组子节点。 判断子节点是否是当前扩展节点的父节点、祖父节 点等,若是,则删除。
余下的子节点记做集合M,加入图G中。
扩展节点时,生成该节点的所有后继节点。
第3章 盲目搜索
3.1 一般搜索过程
3.2 回溯策略 3.3 宽度(广度)优先搜索 3.4 代价树的宽度优先搜索 3.5 深度优先搜索
搜索、推理与人工智能
搜索是人工智能中的一个基本问题,是推理不可分 割的一部分,它直接关系到智能系统的性能与运行效率, 尼尔逊把它列为人工智能研究中的核心问题之一。
搜索的基本问题:
一般与或图搜索法、极大极小法、-剪枝法、启发式剪枝法……
第3章 盲目搜索
搜索策略选取操作算子的方式
盲目搜索
– 对特定问题不具有任何有关信息,按预定步骤(依次或随机) 进行搜索,搜索过程中获得的中间信息不用来改进控制策略。
– 特点:能快速调用操作算子。
启发式搜索
– 考虑特定问题领域可应用的启发性信息,动态确定调用操作算 子的步骤,指导搜索朝最有希望的方向前进。 – 特点:优先选取合适的操作算子,减少不必要搜索,提高效率 – 启发式一般优于盲目搜索,但不能过于追求更多甚至更完整的 启发信息。应综合考虑,尽量使搜索系统的总开销较小。
第1章盲目搜索

为了防止搜索过程沿着无益的路径扩 展下去,往往给出一个节点扩展的最大 深度——深度界限。
深度优先搜索算法是一种“后进先出” 的算法。
开始 放入OPEN表 把S放入 放入 表 S是否为目标节点? 是否为目标节点? 是否为目标节点 否 OPEN表为空表? 表为空表? 表为空表 否 把第一个节点(n)从 表移至CLOSED表 把第一个节点 从OPEN表移至 表移至 表 扩展n,把其后裔放入 扩展 ,把其后裔放入OPEN表的前头 表的前头 否 是否有后继节点 为目标节点? 为目标节点? 是 成功 是 失败 是
2 8 1 4 3 7 6 5
14
8 3 2 1 4 7 6 5
15
2 8 3 7 1 4 6 5
16
1 2 3 8 4 7 6 5
17
2 3 4 1 8 7 6 5
18
2 8 3 6 4 1 7 5
19
2 8 3 1 6 7 5 4
20
2 8 1 4 3 7 6 5
21
2 8 3 1 4 5 7 6
成功
深度优先搜索算法框图 深度优先搜索算法框图
八数码魔方的深度优先搜索树 八数码魔方的深度优先搜索树 深度优先
2. 宽度优先搜索
• 定义 以接近起始节点的程度逐层扩展节点 的搜索方法(breadth-first search),这 种盲目(无信息)搜索叫做宽度优先搜索或 横向搜索。 • 特点
一种高代价搜索,但若有解存在,则必能 找到它。 。
迷宫问题如下,F是入口,B是出口,试 采用均一代价搜索算法进行求解。
y 3 4 A 1 2 1 0 F 1 C 1 E 1 G 1 2 2 H 3 x D 2 2 B
3. 与图有关的术语
盲目搜索

3 4 5 6 7 8 9
B F C D E G I
F,C,D,E C,D,E,G,I D,E,G,I E,G,I G,I I,H H
A,B A,B,F A,B,F,C A,B,F,C,D A,B,F,C,D,E A,B,F,C,D,E,G A,B,F,C,D,E,G,I
演示
广度优先搜索
N open
第二节 盲目搜索技术
• 广度优先搜索 • 深度优先搜索 • 迭代加深搜索
2.1 广度优先搜索
• breadth-first search, BFS • ABFCDEGI
A B C D E G H
演示
F I
广度优先搜索
• ABFCEGHI
B E C A G D
A B E C D
演示
F H I
F G H I
问题
• • • • 如何寻找子节点i? Open表中存放的数据是什么? Closed表中存放的数据是什么? 为什么要检查Open表和Closed表中是否有 节点i存在? • 算法的返回值应该是什么?
关键的数据结构
• Open表
– 用队列实现 – 队列:线性表,具有先 进先出特征 – 每次从open表头部取 出第一个元素 – 添加元素到Open表的 尾部
109 1011 1013 1015
2.2深度优先搜索(depth-first search)
• 初始节点:A • 目标节点:I • 搜索序列:A B C D E F GHI
A B C D E G H
演示
F I
深度优先搜索
• 初始节点:A • 目标节点:I • 搜索序列:A B C D G E F H I
• 什么是动作(算子)?(确定、离散)
推箱子实验报告

引言概述推箱子是一种常见的游戏,也是计算机算法和研究中的经典问题,它涉及的算法和方法有助于提高问题解决能力和逻辑思维能力。
本文将对推箱子实验进行详细分析和讨论,包括推箱子游戏的定义、规则和目标,以及解决推箱子难题的算法和策略。
正文内容1.推箱子游戏的定义、规则和目标1.1定义:推箱子是一种益智类游戏,玩家需要将箱子推到指定位置,才能过关。
1.2规则:玩家通过控制一个游戏角色,推动箱子向指定位置移动,但箱子无法直接移动至目标位置。
1.3目标:玩家需要以最少的移动步数将所有箱子推至目标位置,即完成关卡。
2.解决推箱子难题的算法和策略2.1盲目搜索算法2.1.1深度优先搜索算法:从初始状态开始,一直沿着一个方向推动箱子,直到遇到障碍物为止。
2.1.2广度优先搜索算法:在每一步中,尝试所有可能的移动方向,并记录每个状态的移动路径,直到找到解决方案。
2.1.3双向搜索算法:从初始位置和目标位置同时开始搜索,直到两个搜索路径相交为止。
2.2启发式搜索算法2.2.1A算法:根据启发函数估计当前状态到目标状态的距离,选择距离最小的下一步移动方向。
2.2.2剪枝算法:通过预判某些状态的不可行性,提前排除无需尝试的移动方向。
2.2.3贪心算法:每次选择距离目标位置最近的箱子进行推动,以减少总体移动步数。
2.3知识表示与推理2.3.1逻辑推理:使用逻辑规则和推理算法进行箱子和角色的位置推理。
2.3.2状态空间搜索:将推箱子问题转化为状态空间搜索问题,通过搜索解空间来获得解法。
2.3.3约束满足问题:将箱子移动约束转化为约束满足问题,使用约束满足算法找到解决方案。
2.4强化学习方法2.4.1Q学习:使用状态动作奖励状态的马尔可夫决策过程进行学习和决策的强化学习方法。
2.4.2深度强化学习:基于深度神经网络的强化学习方法,通过大量样本数据进行模型训练和优化。
2.4.3遗传算法:通过基因编码和演化算子的操作,寻找最优的解决方案。
八数码问题实验报告

八数码问题实验报告八数码问题实验报告引言:八数码问题,也被称为九宫格问题,是一种经典的数学谜题。
在一个3x3的方格中,摆放有1至8的数字,其中一个位置为空。
目标是通过交换数字的位置,将数字按照从小到大的顺序排列,最终使得空格位于最后一个位置。
本实验旨在通过编程实现八数码问题的求解,并探讨不同算法在解决该问题上的效果和优劣。
实验步骤:1. 算法选择在本次实验中,我们选择了广度优先搜索算法和A*算法作为求解八数码问题的两种不同方法。
广度优先搜索算法是一种盲目搜索算法,它通过逐层扩展搜索树,直到找到目标状态。
而A*算法则是一种启发式搜索算法,它结合了广度优先搜索和启发式函数,通过评估每个状态的代价来指导搜索过程,以找到最优解。
2. 算法实现我们使用Python语言实现了以上两种算法。
首先,我们定义了一个表示状态的类,并实现了状态的初始化、移动、判断是否达到目标状态等基本操作。
然后,我们分别编写了广度优先搜索算法和A*算法的求解函数。
在广度优先搜索算法中,我们使用队列数据结构来保存待扩展的状态,以实现逐层扩展的效果;在A*算法中,我们使用优先队列来保存待扩展的状态,并根据启发式函数的值进行优先级排序。
3. 实验结果我们使用了多个测试样例来验证两种算法的求解效果。
实验结果表明,广度优先搜索算法能够找到解,但是在面对状态空间较大的情况下,搜索时间会呈指数级增长。
而A*算法则能够更快地找到最优解,其效率相对较高。
然而,A*算法需要选择合适的启发式函数,并且对于某些特殊情况,可能会陷入局部最优解而无法找到最优解。
4. 结果分析通过对比两种算法的求解结果,我们可以发现广度优先搜索算法和A*算法在时间效率和解的质量上存在一定的差异。
广度优先搜索算法适用于状态空间较小的情况,但是在状态空间较大时效率较低;而A*算法则能够在较短的时间内找到最优解,但需要对问题进行合理的建模和启发式函数的选择。
因此,在实际应用中,我们需要根据问题的规模和特点来选择合适的算法。
盲目搜索启发式搜索

2015-3-22
39
有序状态空间搜索算法
(6) 扩展节点i生成其全部后继节点。对于i的每一个后继节点j: – (a) 计算f(j)。 – (b) 如果j既不在OPEN表中,又不在CLOSED表中,则用估 价函数 f 把它添入 OPEN 表。从 j 加一指向其父辈节点 i 的指 针,以便一旦找到目标节点时记住一个解答路径。 – (c) 如果 j 已在 OPEN 表上或 CLOSED 表上,则比较刚刚对 j 计算过的f值和前面计算过的该节点在表中的 f值。如果新 的f值较小,则 (i) 以此新值取代旧值。 (ii) 从j指向i,而不是指向它的父辈节点。 (iii) 如果节点j在CLOSED表中,则把它移回OPEN表 (7) 转向(2),即GO TO(2)。
2015-3-22
24
3.1.3 深度优先搜索
2015-3-22
25
有界深度优先搜索
定义节点的深度如下: (1) 起始节点(即根节点)的深度为0。 (2) 任何其它节点的深度等于其父辈节点深度加上1。 • 对于许多问题,其状态空间搜索树的深度可能为无限深, 或者可能至少要比某个可接受的解答序列的已知深度上限 还要深。为了避免考虑太长的路径(防止搜索过程沿着无 益的路径扩展下去 ) ,往往给出一个节点扩展的最大深 度——深度界限。任何节点如果达到了深度界限,那么都 将把它们作为没有后继节点处理。值得说明的是,即使应 用了深度界限的规定,所求得的解答路径并不一定就是最 短的路径。
CLOSED表变化过程
编号 0 ቤተ መጻሕፍቲ ባይዱ 2 节点号 S0 A B 父节点号 空 S0 S0
图搜索的一般过程
(1) 建立一个只含有起始节点S的搜索图G,把S放到一 个叫做OPEN表的未扩展节点表中。 (2)建立一个叫做CLOSED的已扩展节点表,其初始为 空表。 (3)LOOP:若OPEN表是空表,则失败退出。 (4) 选择OPEN表上的第一个节点,把它从OPEN表移出 并放进CLOSED表中。称此节点为节点n。 (5) 若n为一目标节点,则有解并成功退出,此解是追 踪图G中沿着指针从n到S这条路径而得到的(指针将 在第7步中设置)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一:盲目搜索算法一、实验目的掌握盲目搜索算法之一的宽度优先搜索求解算法的基本思想。
对于宽度优先搜索算法基本过程,算法分析有一个清晰的思路,了解宽度优先搜索算法在实际生活中的应用。
二、实验环境PC机一台,VC++6.0三、实验原理宽度优先搜索算法(又称广度优先搜索)是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。
Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽度优先搜索类似的思想。
其别名又叫BFS,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。
同时,宽度优先搜索算法是连通图的一种遍历策略。
因为它的思想是从一个顶点V0开始,辐射状地优先遍历其周围较广的区域,故得名。
其基本思想是:(1) 把起始节点放到OPEN表中(如果该起始节点为一目标节点,则求得一个解答)。
(2) 如果OPEN是个空表,则没有解,失败退出;否则继续。
(3) 把第一个节点(节点n)从OPEN表移出,并把它放入CLOSED扩展节点表中。
(4) 扩展节点n。
如果没有后继节点,则转向上述第(2)步。
(5) 把n的所有后继节点放到OPEN表的末端,并提供从这些后继节点回到n的指针。
(6) 如果n的任一个后继节点是个目标节点,则找到一个解答,成功退出;否则转向第(2)步。
宽度优先搜索示意图和宽度优先算法流程图如下图1和图2所示:图1、宽度优先搜索示意图图2、宽度优先算法流程图四、实验数据及步骤这部分内容是通过一个实例来对宽度优先算法进行一个演示,分析其思想。
问题描述了《迷宫问题》的出路求解办法。
定义一个二维数组:int maze[5][5] = {0, 1, 0, 0, 0,0, 1, 0, 1, 0,0, 0, 0, 0, 0,0, 1, 1, 1, 0,0, 0, 0, 1, 0,};它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。
题目保证了输入是一定有解的。
下面我们队问题进行求解:对应于题目的输入数组:0, 1, 0, 0, 0,0, 1, 0, 1, 0,0, 0, 0, 0, 0,0, 1, 1, 1, 0,0, 0, 0, 1, 0,我们把节点定义为(y,x),(y,x)表示数组maze的项maze[x][y]。
于是起点就是(0,0),终点是(4,4)。
我们大概梳理一遍:初始条件:起点Vs为(0,0),终点Vd为(4,4),灰色节点集合Q={},初始化所有节点为白色节点,说明:初始全部都是白色(未访问),即将搜索起点(灰色),已经被搜索过了(黑色)。
开始我们的宽度搜索。
执行步骤:1.起始节点Vs变成灰色,加入队列Q,Q={(0,0)}2.取出队列Q的头一个节点Vn,Vn={0,0},Q={}3.把Vn={0,0}染成黑色,取出Vn所有相邻的白色节点{(1,0)}4.不包含终点(4,4),染成灰色,加入队列Q,Q={(1,0)}5.取出队列Q的头一个节点Vn,Vn={1,0},Q={}6.把Vn={1,0}染成黑色,取出Vn所有相邻的白色节点{(2,0)}7.不包含终点(4,4),染成灰色,加入队列Q,Q={(2,0)}8.取出队列Q的头一个节点Vn,Vn={2,0},Q={}9.把Vn={2,0}染成黑色,取出Vn所有相邻的白色节点{(2,1), (3,0)}10.不包含终点(4,4),染成灰色,加入队列Q,Q={(2,1), (3,0)}11.取出队列Q的头一个节点Vn,Vn={2,1},Q={(3,0)}12. 把Vn={2,1}染成黑色,取出Vn所有相邻的白色节点{(2,2)}13.不包含终点(4,4),染成灰色,加入队列Q,Q={(3,0), (2,2)}14.持续下去,知道Vn的所有相邻的白色节点中包含了(4,4)……15.此时获得最终答案我们来看看广度搜索的过程中节点的顺序情况:图3 迷宫问题的搜索树图中标号即为我们搜索过程中的顺序,我们观察到,这个搜索顺序是按照上图的层次关系来的,例如节点(0,0)在第1层,节点(1,0)在第2层,节点(2,0)在第3层,节点(2,1)和节点(3,0)在第3层。
我们的搜索顺序就是第一层->第二层->第三层->第N层这样子。
我们假设终点在第N层,因此我们搜索到的路径长度肯定是N,而且这个N一定是所求最短的。
我们用简单的反证法来证明:假设终点在第N层上边出现过,例如第M层,M<N,那么我们在搜索的过程中,肯定是先搜索到第M层的,此时搜索到第M层的时候发现终点出现过了,那么最短路径应该是M,而不是N了。
所以根据广度优先搜索的话,搜索到终点时,该路径一定是最短的。
五、实验核心代码/*** 广度优先搜索*/void course(char **maze,int hang,int lie){int i=1,j=1,n=-1;step *Step; //定义一个存储行走路线的栈Step=new step [hang*lie];if(maze[1][1]=='1'){cout<<"此路无法行走!!!"<<endl<<endl;getchar();exit(0);}else{n++;maze[i][j]='.';//.表示入口Step[n].x=i; //记录入口的坐标Step[n].y=j;while(maze[hang][lie]!='.'){//'1'表示走不通,'+'表示已经走过但不通又回来的路径,'.'表示已经走过并通了的路径if(maze[i][j+1]!='1'&&maze[i][j+1]!='.'&&maze[i][j+1]!='+')//向右走{maze[i][j+1]='.';j=j+1;n++;Step[n].x=i;Step[n].y=j;cout<<"第"<<n<<"步: "<<"向右走到:"<<"("<<i<<","<<j<<")"<<endl;}elseif(maze[i+1][j]!='1'&&maze[i+1][j]!='.'&&maze[i+1][j]!='+') //向下走{maze[i+1][j]='.';i=i+1;n++;Step[n].x=i;Step[n].y=j;cout<<"第"<<n<<"步: "<<"向下走到:"<<"("<<i<<","<<j<<")"<<endl;}elseif(maze[i][j-1]!='1'&&maze[i][j-1]!='.'&&maze[i][j-1]!='+')//向左走{maze[i][j-1]='.';j=j-1;n++;Step[n].x=i;Step[n].y=j;cout<<"第"<<n<<"步: "<<"向左走到:"<<"("<<i<<","<<j<<")"<<endl;}elseif(maze[i-1][j]!='1'&&maze[i-1][j]!='.'&&maze[i-1][j]!='+')//向上走{maze[i-1][j]='.';i=i-1;n++;Step[n].x=i;Step[n].y=j;cout<<"第"<<n<<"步: "<<"向上走到:"<<"("<<i<<","<<j<<")"<<endl;}elseif(maze[i+1][j+1]!='1'&&maze[i+1][j+1]!='.'&&maze[i+1][j+1]!='+')//向右下走{maze[i+1][j+1]='.';j=j+1;i=i+1;n++;Step[n].x=i;Step[n].y=j;cout<<"第"<<n<<"步: "<<"向右下走到:"<<"("<<i<<","<<j<<")"<<endl;}elseif(maze[i+1][j-1]!='1'&&maze[i+1][j-1]!='.'&&maze[i+1][j-1]!='+')//向右上走{maze[i+1][j-1]='.';j=j+1;i=i-1;n++;Step[n].x=i;Step[n].y=j;cout<<"第"<<n<<"步: "<<"向右上走到:"<<"("<<i<<","<<j<<")"<<endl;}elseif(maze[i-1][j+1]!='1'&&maze[i-1][j+1]!='.'&&maze[i-1][j+1]!='+')//向左下走{maze[i-1][j+1]='.';j=j-1;i=i+1;n++;Step[n].x=i;Step[n].y=j;cout<<"第"<<n<<"步: "<<"向左下走到:"<<"("<<i<<","<<j<<")"<<endl;}elseif(maze[i-1][j-1]!='1'&&maze[i-1][j-1]!='.'&&maze[i-1][j-1]!='+')//向左上走{maze[i-1][j-1]='.';j=j-1;i=i-1;n++;Step[n].x=i;Step[n].y=j;cout<<"第"<<n<<"步: "<<"向左上走到:"<<"("<<i<<","<<j<<")"<<endl;}else //返回上一步{if(i==1&&j==1) //当回到入口时,说明无通路,结束循环break;else{maze[i][j]='+'; //将走不通的点置为+n--;i=Step[n].x;j=Step[n].y;cout<<"此路不通!返回至上一步:"<<"("<<i<<","<<j<<")"<<endl; //输出返回信息}}if(i==hang&&j==lie)cout<<"成功走到出口!!!"<<" "<<"共"<<n<<"步";}}outway(maze,hang,lie,i,j);//输出结果}实验结果如下:实验图中点的坐标转化为问题描述中的点:(0, 0)(1, 0)(2, 0)(2, 1)(2, 2)(2, 3)(2, 4)(3, 4)(4, 4)六、实验总结通过本次实验,我掌握了宽度优先搜索算法的思想方法,对于其分析流程有了很清晰的思路,盲目搜索算法中的宽度优先搜索算法应用于实际生活中求解分析问题就有很重要的意义。