三角形全等证明方法SSS教案
全等三角形sss教案

全等三角形sss教案教案标题:全等三角形(SSS)教案教案目标:1. 学生能够理解全等三角形的概念,并能够运用SSS(边边边)判定条件来判断两个三角形是否全等。
2. 学生能够应用全等三角形的性质解决与全等三角形相关的问题。
3. 学生能够运用全等三角形的性质进行证明和推理。
教学准备:1. 教师准备白板、黑板笔、教学投影仪等教学工具。
2. 学生准备纸和铅笔。
教学过程:引入:1. 教师通过引入几个简单的问题,如“当两个三角形的三边分别相等时,我们可以说这两个三角形全等吗?”来激发学生对全等三角形的兴趣。
2. 教师简要介绍全等三角形的概念,并提出全等三角形的判定条件之一:SSS (边边边)。
探究:1. 教师通过投影仪展示两个具有相等边长的三角形,并引导学生观察、比较两个三角形的边长。
2. 教师提问:“当两个三角形的三边分别相等时,我们可以说这两个三角形全等吗?”鼓励学生思考并表达自己的观点。
3. 教师引导学生运用SSS判定条件,逐步分析和比较两个三角形的边长,最终得出结论:当两个三角形的三边分别相等时,这两个三角形全等。
巩固:1. 教师提供一些具体的例子,要求学生根据给定的边长信息判断两个三角形是否全等,并解释他们的判断依据。
2. 学生进行小组讨论,互相交流并比较自己的答案。
3. 学生将自己的判断结果和依据与全班分享,教师进行点评和总结。
拓展:1. 教师提供一些与全等三角形相关的问题,要求学生运用全等三角形的性质进行解答。
2. 学生进行个人或小组练习,解决教师提供的问题,并相互交流和讨论解题思路。
3. 学生将自己的解题思路和答案与全班分享,教师进行点评和总结。
延伸:1. 教师提供一些证明题目,要求学生运用全等三角形的性质进行证明和推理。
2. 学生进行个人或小组练习,尝试证明教师提供的命题,并相互交流和讨论证明过程。
3. 学生将自己的证明过程和答案与全班分享,教师进行点评和总结。
总结:1. 教师对本节课的内容进行总结,并强调全等三角形的概念、判定条件以及性质的重要性。
三角形全等的判定(SSS)教学设计与教学反思

出示探究一:(课前完成)多媒体
已知一个条件 已知两个条件
AD条件与图形 结论 条件与图形 结论
已知:△ABC与△DEF
条件1:AB=10cm AC=12cm BC=13cm BCE条件2:DE=10cm DF=12cm EF=13cm
让两个组学生按照条件1中所给出的条件画出三角形ABC,让另两个组学生按照条件2中所给出的条件画出三角形DEF。
3、情感、态度与价值观
在探索三角形全等条件的过程中,培养学生有条理的思考能力、概括能力和语言表达能力。
二、学习重点和难点
等的条件及应用“边边边”定理解决问题。
(2)难点:三角形全等条件的探索过程。
三、教具准备
(1)准备一些形状、大小完全相同的三角形纸片(2)教师自制的多媒体课件、三角板、量角器、圆规等(3)上课环境为多媒体大屏幕环境。(4)剪刀
画完后将三角形剪下来,与周围同学比一比,看所画的两个三角形是否全等。 本节课组织学生进行交流,经过学生逐步分析,各种情况逐渐明朗。 得出结论:只给出一个或两个条件时,都不能保证所画出的三角形全等。 (学生动手操作,通过实践、自主探索、交流获得新知,同时也渗透了分类的思想,引导学生从六个元素中选取部分元素可得到全等的三角形.)
四、教学过程
(一)复习引入
多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等。反之,这六个元素分别相等,这样的两个三角形一定全等。(在教师引导下回忆前面知识,为探究新知识作好准备。) 提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个元素中的一部分,至少需要几个元素对应相等能保证两个三角形全等呢?(问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望。引导学生先确定探究的思路和方法,进一步培养理性思维。)
《全等三角形的判定(SSS)》教案

全等三角形的判定(SSS)教学目标(1)掌握边边边条件的内容;能初步应用边边边条件判定两个三角形全等。
(2)会使用边边边条件证明两个三角全等。
教学重点难点教学重点:能应用边边边条件判定两个三角形全等。
教学难点:探究三角形全等的条件。
(一)知识回顾,提出问题已知△ABC ≌△ A ′B ′ C ′,找出其中相等的边与角:思考:满足这六个条件能够保证△ABC ≌△A ′B ′C ′吗? 师生活动:师提出问题,学生回答。
问题1、当满足一个条件时, △ABC 与△ABC ′全等吗?一个条件(1)一条边(2)一个角师生活动:让学生经历画图的过程后,总结经验。
达成共识:不一定全等。
如下列图:一条边分别相等时:AB C C ′B ′A ′一个角分别相等时:问题2:当满足两个条件时, △ABC 与△A ′B ′C ′全等吗? 两个条件(1)两条边(2)一边一角(3)两个角 师生活动:让学生通过画图、展示交流后得出结论。
达成共识:不一定全等。
如下列图: 两条边分别相等时:两个角分别相等时: AB C4cm45°BCAA ’B ’C ’45° A ’B ’45°65°A BCB ’C ’A ’45°65°9cm5cmA ’B ’C ’9cm5cm AC一边一角分别相等时:问题3:当满足三个条件时, △ABC 与△A ′B ′C ′全等吗?满足三个条件时,又分为几种情况呢?师生活动:让学生交流讨论后、得到以下几种情况。
三个条件(1)三条边(2)两边一角(3)两角一边(4)三个角 师问:我们现在研究第①种情况。
当两个三角形满足三边对应相等时,这两个三角形全等吗?设计意图:先提出“全等判定”问题,构建出三角形全等条件的探索路径,然后以问题串的方式表现探究过程,引导学生层层深入地思考问题。
(二)动手操作,感悟新知活动:尺规作图,探究“边边边”判定方法先任意画出一个△ABC ,再画出一个△A ′B ′C ′,使A ′B ′= AB ,B ′C ′= BC ,A ′C ′= AC .把画好的△A ′B ′C ′剪下,放到△ABC 上,它们全等吗?ABCA ’C ’’4cmACB4cm解:画法(1)画线段B ′C ′=BC ;(2)分别以B ′、C ′为圆心,BA 、BC 为半径画弧,两弧交于A ′; (3)连接线段A ′B ′,A ′C′。
《三角形全等的判定(SSS)》优质课教学设计

《三角形全等的判定(SSS)》优质课教学设计其实是采用相对对称的结构来维持风筝的稳定, 也就是保证风筝的左右一样。
那么我们要怎么证明一个十字风筝和三角风筝左右都一样呢?那就一起来学习今天的课程三角形全等的判定(SSS)。
一起探究一下风筝是不是左右相等的吧。
复习回顾: 全等三角形的性质。
提问1: 还记得什么是全等三角形吗?提问2: 全等三角形具有什么样的性质呢?提问3:若已知△ABC≌△DEF, 会有什么结论?提示1: 能够重合的两个三角形叫全等三角形.提示2:全等三角形的对应边相等, 对应角相等。
提示3:∵△ABC≌△DEF∴ AB=DE ∠A=∠DAC=DF ∠B=∠EBC=EF ∠C=∠F探究新知:因此, 判定两个三角形全等, 除了定义外, 还可以利用这六组条件, 但这两种方法都较为复杂, 我们能否减少条件, 用尽量少的条件进行判定呢?如果只满足这些条件中的一部分, 那么能保证两个三角形全等吗?我们先从最少的条件开始探究。
探究一: (同桌讨论)①只给1条边。
所以, 只确定一条边, 可以画出无数个三角形, 它的形状不定, 所以只满足一条边对应相等, 是不足以证明两个三角形全等的。
这种方式叫做举反例, 即满足条件, 但却发现结论不成立。
②只给1个角类比一个边的方法, 让学生用画图举反例证明。
综上所述, 只满足一个条件, 不足以证明两个三角形全等。
探究二: (分成小组探究)●如果给出两个条件, 有哪几种情况?●有2条边对应相等的两个三角形●有1个角和1条边对应相等的两个三角形●有2个角对应相等的两个三角形分成三个小组, 每个小组探究一个情况。
教师引导学生利用提前准备好的道具——纸棒、尺子、量角器, 用纸棒围成三角形, 此条件下的三角形是否只有一个。
①2条边结论: 有两条边相等不能保证两个三角形全等.②2个角结论: 有两个角相等不能保证两个三角形全等.③1个角1条边结论: 有一个角和一条边相等不能保证两个三角形全等.●思考: 如果只给三个条件能保证两个三角形全等吗?●有3条边对应相等的两个三角形●有1条边和2个角对应相等的两个三角形●有2条边和1个角对应相等的两个三角形●有3个角对应相等的两个三角形猜想: 三条边分别相等的三角形全等.动手实践: 拿出两组分别长4cm, 6cm, 8cm的纸棒。
三角形全等的判定教案SSSSAS教案

三角形全等的判定SSS、SAS广东实验中学陈秀君教学内容:探索三角形全等的判定条件SSS、SAS;教学目标:1、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2、用“边边边SAS”、“边角边SAS”判定两个三角形是否全等,并列举简单理由;3、知道确定三角形的起码条件适合的三个部分;4、培养学生合作学习和探索精神;教学重点:三角形全等条件:“边边边SAS”、“边角边”SAS;教学难点:用三角形全等的条件“边边边”、“边角边”进行有条理地思考,并进行简单的推理;教具准备:实物投影仪、三角板、圆规、三角形纸板等教学过程:一、全等三角形及全等三角形的性质1、什么是全等三角形两个能完全重合的三角形2、全等三角形的性质全等三角形对应边相等;对应角相等3、若两个三角形的边和角分别对应相等,则这两个三角形全等二、探索三角形全等的判定条件SSS、SAS1、拿出两个区别不大的三角形,让学生看是否全等有的同学认为全等,通过重叠在一起,发现不能完全重合;设问:判断两个三角形是否全等,光看行不行,那我们该如何检验两个三角形是否全等呢揭示课题,并板书现有的方法是①摆一摆看看是否重合;②看看它们的六对对应部分是否分别相等;能否有比较简单快捷的方法2、进入探索阶段:1老师手中有一个三角形,现在什么条件也不告诉你,你能否画一个三角形和它全等结果发现:无条件时,所画的三角形与老师的不一定全等;如果他画的与老师的全等,那只能说明他今天的运气好;相应板书2给你一些条件,你能画一个三角形和它全等吗注意:①你画的三角形唯一确定吗②与你同桌画的全等吗 ①cm AB 3= ②︒=∠60A③cm AC cm AB 2,3== ④︒=∠︒=∠30,60B A通过操作、交流,发现:以上的每一种情况都不能唯一确定一个三角形,即同学们所画的三角形不一定能全等;这一环节可以配合事物进行直观演示,较为快速的得出结论,不一定要学生具体的把三角形画出来结论:只知道两个三角形有一对或两对对应相等的部分,这两个三角形不一定全等;相应板书3、探索“SSS”、”SAS”给出一个条件不行,两个条件也不行,那下面我们该怎么继续呢再添一个条件;如果已知三角形的三个部分,我们能画岀怎样的三角形呢根据以下所给的条件,画一个三角形;把你所画的三角形与同伴交流,比一比是否全等你画三角形与老师的全等呢学生操作在学生操作之前,现学生一起探究如何画三角形,即第一步可以画什么,第二步画什么……最后将学生引导到探索“SSS ”与“SAS”上①AB =3cm,BC =4cm,CA =2cm; ②∠A=60°, AB =4cm, AC =3cm;将三角形教具借给先画好的同学,检验他画的与教具是否全等,同桌两人的三角形是否全等;最后交流讨论的结果: 三角形全等的判定条件一:若一个三角形的三条边与另一个三角形的三条边对应相等,则这两个三角形全等;简记:SSS⎪⎩⎪⎨⎧===FD CA EF BC DE AB)(SSS DEF ABC ∆≅∆∴三角形全等的判定条件二:若一个三角形的两条边及夹角与另一个三角形的两条边及夹角对应相等,则这两个三角形全等简记:SAS ⎪⎩⎪⎨⎧=∠=∠=RP CA P A POAB )(SAS PQR ABC ∆≅∆∴相应板书还有其它的方法,留给同学们课后探索、合作、交流,板书中用“”表示三、学会应用:1、指出全等的三角形,并说明全等的理由2、说出图中的两个三角形全等的理由PRQA CBD6886CAB4433ABCD图(2)p (1)D EFC BA (3)ODCBA(4)3、如图,AB=AD,你认为添上什么条件就可以判定△ABC 和△ADC 全等为什么4、如图,1写出一对全等三角形的名称,并说明理由; 2求∠BAD 的大小;5、如图,已知AD=CB,AD//CB,△ADC 和△CBA 全等吗为什么四、课堂小结: 根据板书回顾1、确定三角形的条件: 三个适合的部分2、三角形全等的判定条件: 条件 结论一对相等—— 不一定二对相等—— 不一定三对相等—— SSS SASDCAB40°13cm D9cm 13cm9cm68°CA B12DCAB。
三角形全等的判定(SSS) 教案

三角形全等的判定(SSS)教案三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS•”). 两角和它们的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”). 两个角和其中一个角的对边对应相等的两个三角形全等(简与成AAS).斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).角的平分线上的点到角的两边的距离相等.(性质定理)到角的两边的距离相等的点在角的平分线上.(判定定理)教学内容本节课主要内容是探索三角形全等的条件(SSS),•及利用全等三角形进行证明.教学目标1.知识与技能了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.过程与方法经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.情感、态度与价值观培养有条理的思考和表达能力,形成良好的合作意识.重、难点与关键1.重点:掌握“边边边”判定两个三角形全等的方法.2.难点:理解证明的基本过程,学会综合分析法.3.关键:掌握图形特征,寻找适合条件的两个三角形.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果△ABC 与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.二、范例点击,应用所学【例1】如课本图11.2─3所示,△ABC 是一个钢架,AB=AC ,AD 是连接点A 与BC 中点D 的支架,求证△ABD ≌△ACD .(教师板书)【教师活动】分析例1,分析:要证明△ABD ≌△ACD ,可看这两个三角形的三条边是否对应相等.证明:∵D 是BC 的中点,∴BD=CD在△ABD 和△ACD 中,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.三、实践应用,合作学习【问题思考】已知AC=FE ,BC=DE ,点A 、D 、B 、F 在直线上,AD=FB (如图所示),要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD ,只要AD=FB 两边都加上DB 即可得到AB=FD.”【教学形式】先独立思考,再合作交流,师生互动.四、随堂练习,巩固深化课本P8练习.【探研时空】如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?•你能找到一对全等三角形吗?说明你的理由.(BC=EF,△ABC≌△DFE)五、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)六、布置作业,专题突破1.课本P15习题11.2第1,2题.2.选用课时作业设计.板书设计把黑板平均分成三份,左边部分板书“边边边”判定法,中间部分板书例题,右边部分板书练习.疑难解析证明中的每一步推理都要有根据,不能“想当然”,这些根据,可以是已知条件,也可以是定义、公理、已学过的重要结论.。
《全等三角形的判定(SSS)》教学设计

《全等三角形的判定(SSS)》教学设计
一、教学目标
1.理解“边边边”(SSS)判定全等三角形的方法。
2.掌握运用SSS判定方法进行三角形全等的证明。
3.培养学生的逻辑推理能力和观察分析能力。
二、教学重难点
1.重点:SSS判定方法的理解和应用。
2.难点:三角形全等证明过程的书写规范。
三、教学方法
讲授法、演示法、讨论法。
四、教学过程
1.导入
展示两个形状相同但大小不同的三角形和两个形状大小完全相同的三角形,引导学生观察并思考如何判断两个三角形全等。
2.讲解SSS判定方法
(1)通过具体实例,让学生观察当两个三角形的三条边分别相等时,这两个三角形能够完全重合,从而引出SSS判定方法。
(2)用图形和符号语言表述SSS判定方法。
3.例题讲解
(1)已知三角形的三条边的长度,证明两个三角形全等。
(2)在实际问题中,运用SSS判定方法解决问题。
4.课堂练习
让学生进行三角形全等的证明练习,巩固SSS判定方法。
5.小组讨论
讨论在证明过程中遇到的问题和解决方法。
6.总结归纳
总结SSS判定方法的要点和证明过程的注意事项。
7.作业布置
布置课后作业,要求学生运用SSS判定方法证明三角形全等。
人教版数学八年级上册12.2.1用SSS判定三角形全等教学设计

2.引导学生通过实际操作和探究,发现并理解SSS判定方法,提高他们的几何推理能力。
3.针对不同学生的学习特点,设计有针对性的教学活动,使他们在轻松愉快的氛围中掌握知识。
4.关注学生的学习情感,激发他们的学习兴趣,培养他们的自主学习能力。
在教学过程中,教师要关注学生的个体差异,充分调动他们的积极性,使他们在合作、交流、探索中不断提高,为后续几何知识的学习打下坚实基础。
-运用多媒体辅助教学,展示动态的几何图形,帮助学生形象地理解全等三角形的性质和判定方法。
-设计实际案例,让学生在解决问题的过程中,将理论知识与实际应用相结合。
2.教学步骤:
(1)导入新课:通过复习全等三角形的定义和已知判定方法,为新课的学习做好铺垫。
(2)自主探究:学生分组讨论,尝试运用SSS判定方法判断给定三角形是否全等,并总结规律。
4.鼓励学生运用所学知识,解决实际问题,培养他们的创新意识和应用能力。
(三)情感态度与价值观
在本节课的学习过程中,学生将形成以下情感态度与价值观:
1.培养学生对数学学习的兴趣,激发他们探索数学问题的热情。
2.培养学生的自信心,让他们在解决问题的过程中体验成功的喜悦。
3.培养学生严谨的学术态度,让他们明白在数学推理中,每一步都需要严谨的逻辑支撑。
人教版数学八年级上册12.2.1用SSS判定三角形全等教学设计
一、教学目标
(一)知识与技能
1.了解全等三角形的定义,知道全等三角形在形状和大小上完全相同。
2.熟练掌握用SSS(Side-Side-Side,即边-边-边)判定两个三角形全等的方法。
3.能够运用SSS判定方法,解决实际问题和几何证明题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数学内容:义务教育课程标准实验教科书<<数学>>(人教版)
八年级上册第十一章第二节教学内容(证明方
法:SSS)
二、教材分析:三角形是我们最常见的几何图形之一,是后续学习
四边形、相似性、直角三角形和圆等知识的基础,
在工农业生产和日常生活中都有广泛的应用。
图形
的全等是图形相似的特殊情况,三角形全等是图形
全等的特例。
三角形全等的判定识别和性质又是证
明两条线段相等或两个角相等的重要工具,为今后
进一步学习推理打下了基础。
三、数学目标:
1.知识与技能
1)学会用SSS证明两个三角形全等
2)培养学生动手画图和观察识图的能力
2.过程与方法
通过画、量、观察、比较和猜想等过程,探索、归纳、证
明两个三角形全等的条件,并在具体应用中感悟
3.情感、态度与价值观
通过实践比赛,在探索中体验发现数学规律的乐趣
四、教学重点:掌握三角形全等判定定理中的边边边(SSS)并灵
活运用
五、教学难点:正确地书写证明过程,恰当地选择判定定理
六、教学方法:讲连结合法
七、辅助手段:图形模型、圆规、直尺
八、教学设计理念:创设与引入——探索与发现——体验与感悟
九、教学过程
(一)创新与引入
知识回顾
1.什么叫全等三角形?
能够重合的两个三角形叫全等三角形
2.已知,找出其中相等的边与角
①AB=DE ②BC=EF ③CA=FD
④∠A=∠D ⑤∠B=∠E ⑥∠C=∠F
思考:
a.满足这六个条件可以保证△ABC≌△DEF吗?
b.如果只满足这些条件中的一部分,那么能保证△ABC≌△DEF吗?
(二)探索与发现
我们先考虑只给边相等的条件
1.只给一对相等边的条件,可否判定两个三角形全等?
结论:只有一条边对应相等的两个三角形不一定全等
2.只给两对边相等的条件,可否判定两个三角形全等?
结论:只有两对边相等的条件,可否判定两个三角形全等
3.只给三队相等边的条件,可否判定两个三角形全等?
结论:三边对应相等的两个三角形一定全等
已知:△ABC
画:△A'B'C',使A'B'=AB,A'C'=AC,B'C'=BC
作法: 画线段B'C'=BC。
②分别以B'、C'为圆心,线段AB、AC为半径画弧,两弧交
于点A'。
③连接线段A'B'、A'C'。
结论:三边对应相等的两个三角形全等,可简写成
(三)体验与感悟
三边对应相等的两个三角形全等(边边边),如何用符号语言来表达呢?
在△ABC与△DEF中,
判断两个三角形全等的推理过程,叫做证明三角形全等
你能用“边边边”解释三角形具有稳定性吗?
三角形的三边确定了,这个三角形的形状、大小也就确定了。
例1. 已知:AD=BC
利用“边边边”能否判定△ABD≌△ABC
若不能,请你添加一个条件,使△ABD≌△ABC(SSS)
例2. 如图,△ABC是一个钢架,AB=AC,AD是
连接A与BC的中点的
支架,
求证:△ABD≌△ACD
证明:∵D是BC的中点
∴BD=CD
∴
∴△ABD≌△ACD(SSS)
练习1.如图,AB=AD,CB=CD.
△ABC与△ADC全等吗?为什么?
解:△ABC≌△ADC
证明:在△ABC与△ADC中,
∴△ABC≌△ADC(SSS)
练习2:如图,C是AB的中点,AD=CE,CD=BE
求证:△ABC≌△CBE
证明:∵C是AB的中点
∴AC=BC
在△ACD与△CBE中,
∴△ACD≌△CBE(SSS)
DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH。
请用你所学的知识给予证明。
提示:必要时可考虑添加适当的辅助线。