石英晶体微天平资料

合集下载

石英晶体微天平的基本原理和具体应用

石英晶体微天平的基本原理和具体应用

流体通过剪切模式的声波传感器装置示意图
Liquid flow cell
70 uL flow through reservoir 1 ml static reservoir O-ring seal Resists harsh chemicals Low stress design
Static cell
x轴(电轴):沿x轴方 向或沿y轴方向施加压力 (或拉力)时,在x轴方 向产生压电效应。
y轴(机械轴):沿y轴方 向或沿x 轴方向施加压力 (或拉力)时,在y轴方 向不产生压电效应,只 产生形变。
天然右旋石英晶体晶轴的分布
石英晶体有天然的和人工培育的。 天然石英晶体产量有限,而且大部分都存 在各种缺陷。 石英晶体常见的缺陷:
ΔF = - 2 F02ΔM/A(qq)1/2
ΔF:石英晶体的频率改变量,又称频移值 (Hz);F0:石英晶体的基频;ΔM:沉积在 电极上的物质的质量改变(g);A:工作电 极的面积; q:剪切参数(2.951010 kg·m-1·s-2); q:石英的密度(2648 kg·m-3)。
可以看出,频移值ΔF与质量改变ΔM之间有一简 单的线性关系,负号表示质量升高,频率降低。
AT- 和 BT-切割模式
四、石英晶体微天平(QCM)的 工作原理
石英晶体微天平由一薄的石英圆片和覆盖其表 面的电极组成 。 外加电压加到压电材料上引起一个内在的机械 振动。因为QCM是压电的,振荡电场横着通 过装置产生一个声学波。
1. Quartz crystal 2. 2. Electrode material
QCM crystal. Grey=quartz, yellow=metallic electrodes.
一、石英晶体的结构

石英微晶天平

石英微晶天平

一、石英晶体微天平的基本原理:石英晶体微天平最基本的原理是利用了石英晶体的压电效应:石英晶体内部每个晶格在不受外力作用时呈正六边形,若在晶片的两侧施加机械压力,会使晶格的电荷中心发生偏移而极化,则在晶片相应的方向上将产生电场;反之,若在石英晶体的两个电极上加一电场,晶片就会产生机械变形,这种物理现象称为压电效应。

如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。

在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,这种现象称为压电谐振。

它其实与LC回路的谐振现象十分相似:当晶体不振动时,可把它看成一个平板电容器称为静电电容C,一般约几个PF到几十PF;当晶体振荡时,机械振动的惯性可用电感L 来等效,一般L 的值为几十mH到几百mH。

由此就构成了石英晶体微天平的振荡器,电路的振荡频率等于石英晶体振荡片的谐振频率,再通过主机将测的得谐振频率转化为电信号输出。

由于晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定度。

二、石英晶体微天平的主要构造:QCM主要由石英晶体传感器、信号检测和数据处理等部分组成。

石英晶体传感器的基本构成大致是:从一块石英晶体上沿着与石英晶体主光轴成35015'切割(AT—CUT)得到石英晶体振荡片,在它的两个对应面上涂敷银层作为电极,石英晶体夹在两片电极中间形成三明治结构。

在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。

石英晶体微天平的其他组成结构在不同型号和规格的仪器中也不尽相同,可根据测量需要选用或联用。

一般附属结构还包括振荡线路、频率计数器、计算机系统等;电化学石英晶体微天平在此基础上还包括恒电位仪、电化学池、辅助电极、参比电极等;三、石英晶体微天平的分析化学应用QCM最早应用于气相组分、有毒易爆气体的检测。

美国Gamry石英晶体微天平简介

美国Gamry石英晶体微天平简介

fp fs
Gamry石英一台仪器可以配多种频率的晶片
• 频率分辨率是0.02Hz
– 不论频率高低分辨率相同
• Gamry的QCM能同时 给出fs和fp的值
• 专业设计控温配件
QCM质量检出限
• Sauerbrey方程
∆f=Cf ∆m • 以5MHz和10MHz晶片为例
Crystal–Applied Potential
QCM原理
• 石英晶片上有其他材料
– 金,铂,碳,其他 – 附着方式如溅射,粘贴等
• 振动可以用BvD模型来 等效
++++++++++++++++++++ ----------------------
QCM原理
• 商业化依赖于锁 相放大器的 QCM,手动抵 消fp,只给出串 联相应频率fs
放o圈
放晶片
固定晶片
连接仪器BNC
溶液槽
控温夹套
•具体操作大图见附件文件
嵌入安装
铁片固定
Gamry石英晶体微天平的安装
• 控温配件和仪器通过BNC连接 • 仪器两根线
– 电源线 – 电脑usb通信线
Gamry石英晶体微天平晶片
Gamry QCM软件
Gamry QCM软件
• Description – 对样品进行说明,备注
– 5MHz的校正因子Cf为56.6Hzcm2/ug
0.02Hz 56.6Hz cm2
/
ug
1cm2

0.35ng
– 10MHz的校正因子Cf为226Hzcm2/ug

石英晶体微天平原理

石英晶体微天平原理

石英晶体微天平原理石英晶体微天平(Quartz Crystal Microbalance,简称QCM)是一种利用石英晶体的振荡频率变化来测量微量物质质量的分析仪器。

其工作原理是基于石英晶体微振器在质量变化时引起谐振频率的变化。

石英晶体是一种具有垂直电极和涂有一层金属电极的薄膜石英技术器件。

在标准条件下,石英晶体具有特定的谐振频率,当质量发生变化时,石英晶体的谐振频率也会发生相应的变化。

这个质量的变化可以是溶质吸附、膜生长、能量转换等引起的。

石英晶体微天平的主要部分包括石英晶体和振荡电路。

石英晶体被放置在真空或气体环境中,通过电极与振荡电路相连。

当外加交流电场施加到石英晶体上时,晶体将发生机械振荡,并产生电荷分布,从而使晶体表面产生一定的驱动力。

这种驱动力可以通过检测电路检测出来,并转换成电信号。

石英晶体微天平利用石英晶体的材料特性和电极结构,通过测量振荡频率的变化来定量分析溶液中微量物质的吸附、反应和生长过程。

当溶液中存在微量物质时,这些物质会在石英晶体的表面上吸附或反应,并改变晶体的质量。

质量的变化将引起石英晶体的共振频率的改变,这个频率的变化与溶液中微量物质的质量变化成正比。

QCM主要分为自由振动和受控振动两种模式。

在自由振动模式下,石英晶体将自由振动,而在受控振动模式下,通过将交流电场施加到电极上,通过调节频率和振幅来控制石英晶体的振荡。

这样可以通过控制石英晶体的振荡来监测微量物质的吸附和反应过程。

石英晶体微天平在生物医学、环境监测、材料科学等领域具有广泛的应用。

例如,它可以用于研究蛋白质的吸附、细胞的生长、药物的吸附和释放等过程。

由于其高灵敏度、快速响应和无需标记的特点,石英晶体微天平已经成为一种非常重要的表征和分析技术。

总之,石英晶体微天平利用石英晶体的振荡频率变化来测量微量物质质量的分析技术。

它的工作原理是基于石英晶体在质量发生变化时引起谐振频率的变化。

通过测定谐振频率的变化,可以定量分析溶液中微量物质的吸附、反应和生长过程。

石英晶体微天平物质结构

石英晶体微天平物质结构
39
40
• Quartz crystal • 2. Electrode material
ΔF= - 2 F02ΔM/A(q q)1/2
ΔF: Frequency Change of Quartz Crystal; ΔM: Mass Change of the Substance on Electrode
石英晶体微天平(quartz crystal microbalance)是一种非常灵敏的质量检 测器,能够快速、简便和实时检测反应过 程中的质量变化,检测限可达到纳克级 水平,已被广泛应用于基因学、诊断学等 各方面,成为分子生物学和微量化学领域 最有效的手段之一。
1
QCM crystal. Grey=quartz, yellow=metallic electrodes.
26
当晶体被浸入到溶液中,振荡频率取决于 所使用的溶剂。当覆盖层比较厚时,频率 f 和质量变化 Dm 之间是非线性的,需要 修正。
27
当石英晶体振荡与流体接触时,晶体表面 对流体的耦合极大地改变振荡频率,并在 晶体与流体接触面附近产生一剪切振动。 振动表面在流体中产生平流层,它导致 频率与(h)1/2成比例降低,这里和h分别 是流体的密度和粘度。
9
而当石英晶体受到电场作用时,在它的某些 方向出现应变,而且电场强度与应变之间 存在线性关系,这种现象称为逆压电效 应。逆压电效应是在电场的作用下,在电 偶极距发生变化的同时产生形变.
10
三、石英谐振器的振动模式
石英谐振器是由石英 晶片、电极、支架及 外壳等部分构成。
11
1、伸缩振动模式 2、弯曲振动模式 3、面切变振动模式 4、厚度切变振动模式
2、光双晶:同时存在左旋和右旋两个部分连 生在一起。

QCM

QCM
QCM:Quartz crystal microbalance 石英晶体微天平
石英晶体微天平是一种新型的高精度谐振式测量仪器,测量精度 可以达到纳克级,由于具备测量精度高,结构简单,成本低廉等 优点,越来越被科研工作者关注和重视。
1.基本原理 2.结 构
3.相关应用
基本原理
相关概念:
晶体的各向异性: 沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此 导致晶体在不同方向的物理化学特性也不同。 压电效应: 对某些电介质施加机械力从而引起它们内部的正负电荷中心发生相 对位移,产生极化,进而导致介质两端表面内出现符号相反的束缚 电荷的现象。 牛顿流体: 指在受力后极易变形,且切应力与变形速率成正比的低粘性流体。 切应力: 物体由于外因而变形时,在物体内部各部分之间所产生的用于抵抗 这种外因的作用,并力图使物体从变形后状态回复到变形前状态的 内力。
基本原理
在上世纪六十年代初,压电石英晶体作为质量传感器的应用一直局限在 气相中。无合适的液相定量方程是其中的原因之一,但更主要的原因是 其在液相中的振荡一直未获得成功。因为晶体在液相中振荡导致的能量 损耗远大于气相中的损耗。直至八十年代,Nomura和Konash等实现了 石英晶体在溶液中的振荡,从而开拓压电传感器应用的全新领域。随后 Kanazawa等提出了著名的Kanazawa-Gordon方程,即在牛顿流体中晶 体的谐振频率变化满足:
基本原理
QCM定量基础:
德国物理学家Sauerbrey通过大量的研究发现厚度剪切压电石英晶体 的谐振频率变化Δf与在晶体表面均匀吸附的刚性物的质量Δm之间 存在着比例关系, 他在1959年给出了Sauerbrey 方程:
式中f为晶体的固有谐振频率,又叫基频率, ( Hz), m 为晶体表面涂层 质量(g), △ f 为晶体谐振频率的变化量,A为涂层面积(cm2)。 该方程的适用前提是晶体表面的吸附层必须为刚性吸附层,既在晶体 发生谐振时该吸附层可随晶体本体发生无形变无相对位移的同步振动。 以此为理论依据,QCM最早只能应用与真空或气相环境中。

石英晶体微天平

石英晶体微天平

提高样机的灵敏度。
国创答辩 研究内容
1. 设计电路,达到电路对石英晶体稳定的自 适应控制降低对 QCM晶体厚度的高要求。 2. 搭载使QCM产生稳定频率的电路,根据工 作原理逐步提高 QCM 的测量精度。 3.做出实现低成本的同时提高石英晶体微天平 控制精度的 QCM样机。
研究方案 研究目标
14
建立电路输入文件确 定分析类型
石物 理英 学晶 体院 微 国天 平创 项 (QCM) 原目 理 及参 赛样 作机 设品 计
小组成员介绍
武晓佳
段璎宸
董丽君 国创答辩
刘静
董振余
展示内容
选题依据
创新点、关键技术
作品简介 研究方案
预期目标
国作创品答简辩介
石英晶体微天平( Quartz crystal microbalance ) 是一种非常灵敏的质量检测仪器,其测量精度可达纳 克级,比灵敏度在微克级的电子微天平高 100 倍,理 论上可以测到的质量变化相当于单分子层或原子层的 几分之一。
如果可以降低芯片的厚度 同时提高QCM的灵敏度将会 在学术领域产生巨大的影响。
主要是用来进行微质量的测量,精度 可以达到纳克级,具有灵敏度高 ,稳定性好、 通用性高、工作温度范围宽、尺寸小、耐 振动性能强等优点。目前,随着研究的不 断深入,QCM 已经被广泛应用于液相、固 相、气相中进行各种物质成分的研究和分 析。在生物医学,化学,环境监测,航天 航空等领域有着广泛的应用和广阔的前景 和较高的科研价值。
创新点、特色
1.精确构建数学模型和电子线路仿真模型, 不忽略任何影响产品精确度的微小因素, 使样机的设计制作变得容易,为实际产品 的开发提供可靠的理论依据。 2.做出可以测量微小质量的QCM样机,。 3.电路设计,实现晶体电路的自适应控制。

石英晶体微天平原理

石英晶体微天平原理

石英晶体微天平原理石英晶体微天平是一种高精度的质量测量仪器,它的原理是利用石英晶体的压电效应来测量物体的质量。

石英晶体是一种具有压电效应的晶体,当施加外力时,会产生电荷,这种电荷的大小与施加的力成正比。

因此,通过测量石英晶体的电荷变化,就可以得到物体的质量。

石英晶体微天平的结构非常简单,它由一个石英晶体片和一个电极组成。

石英晶体片通常是一个长方形的薄片,厚度只有几毫米,宽度和长度分别为几毫米到几厘米不等。

电极则是两个金属片,分别固定在石英晶体片的两端。

当物体放在石英晶体片上时,物体的重力会使石英晶体片产生微小的弯曲,从而改变石英晶体片的压电效应,产生电荷。

这些电荷被电极收集起来,通过放大器放大后,就可以得到物体的质量。

石英晶体微天平的精度非常高,可以达到微克级别。

这是因为石英晶体具有非常好的稳定性和重复性,可以在长时间内保持稳定的压电效应。

此外,石英晶体的压电效应与温度、湿度等环境因素的影响非常小,因此可以在各种环境下进行精确的质量测量。

石英晶体微天平广泛应用于化学、生物、医学等领域的研究中。

例如,在化学实验中,可以用石英晶体微天平来测量化学反应中物质的质量变化,从而研究反应的动力学和热力学性质。

在生物学和医学中,石英晶体微天平可以用来测量细胞、蛋白质等生物分子的质量,从而研究它们的结构和功能。

除了石英晶体微天平,还有其他类型的微天平,如电容微天平、磁悬浮微天平等。

这些微天平的原理和应用都有所不同,但它们都具有高精度、高灵敏度的特点,可以用于各种精密测量和研究。

石英晶体微天平是一种非常重要的质量测量仪器,它的原理简单、精度高,应用广泛。

随着科技的不断发展,微天平的精度和应用范围还将不断扩大,为科学研究和工业生产带来更多的便利和发展机遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创新点、特色
1.精确构建数学模型和电子线路仿真模型, 不忽略任何影响产品精确度的微小因素, 使样机的设计制作变得容易,为实际产品 的开发提供可靠的理论依据。 2.做出可以测量微小质量的QCM样机,。 3.电路设计,实现晶体电路的自适应控制。
关键技术
1.本小组为此次科研活动准备了充足的资料,包括国内重点院校的研究成果, 本校专业老师的指导和耐心讲解,以及本项目的研究生学长的介绍和样机展示。 对石英晶体微天平的工作原理及结构设计有了一定的了解,对研究方向、步骤 都有了很好的把握。 2.指导老师在电路研究方面有多年的经验,是本学院电子电气专业带头人、具 有较强的专业性,曾指导过的许多科研国创小组都取得了优秀的科研成果,作 为第一作者发表了许多专业的学术论文并编写过电子线路等大学物理专业课教 材。 3.我们已经通过实验测得了粉尘质量和振荡频率的关系,为接下来的研究奠定 了良好的基础。
石物 理英 晶学 体院 微 国天 平创 项 原目 (QCM) 理 及参 赛样 作机 设品 计
小组成员介绍
武晓佳
段璎宸
董丽君 国创答辩
刘静
董振余
展示内容
选题依据
创新点、关键技术
作品简介 研究方案
预期目标
国作创品答简辩介
石英晶体微天平(Quartz crystal microbalance) 是一种非常灵敏的质量检测仪器,其测量精度可达纳 克级,比灵敏度在微克级的电子微天平高100 倍,理 论上可以测到的质量变化相当于单分子层或原子层的 几分之一。
可行性分析
选题依据
创新点、关键技术
项目简介 研究方案 预期目标
预期目标
1.本小组为此次科研活动准备了充足的资料,包括国内重点院校的研究成果, 本校专业老师的指导和耐心讲解,以及本项目的研究生学长的介绍和样机展示。 对石英晶体微天平的工作原理及结构设计有了一定的了解,对研究方向、步骤 都有了很好的把握。 2.指导老师在电路研究方面有多年的经验,是本学院电子电气专业带头人、具 有较强的专业性,曾指导过的许多科研国创小组都取得了优秀的科研成果,作 为第一作者发表了许多专业的学术论文并编写过电子线路等大学物理专业课教 材。 3.我们已经通过实验测得了粉尘质量和振荡频率的关系,为接下来的研究奠定 了良好的基础。
执行PSPICE仿真程 序
结果是否正 确?
分析结 束
修改输入 文件
修改电路 元件及参
数值
研究方案 研究方案
15
选题依据
创新点、关键技术
作品简介
研究方案
预期目标
创国新创点答、辩关键技术
1.避开了降低石英晶体厚度来提高测量灵敏 度的方法,另辟蹊径,通过计算机技术进行 电路调整,实现晶体电路自适应控制来提高 石英晶体微天平的灵敏度,为实际产品的开 发降低成本。 2.从QCM工作基本原理入手,使研究过程 精细、全面,保证系统的、可行性、测量的 可靠性,有效防止了沿用其他人研究成果导 致的理论知识不扎实,测量精度不够也无从 改进的结果。
创新点、关键技术
作品简介
研究方案
预期目标
课选题背依景据
国内: 起步阶段 跟踪成果
研究分散 稳定性不好
PowerPoit 2003
国外:相当成熟、商品化、美国的QCM.Research公司的 产品用于NASA火星探测车“Sojourner”的太阳能电池板的 灰尘厚度,从而及时清理灰尘以免影响太阳能电池板的效率; 也有用于检查太空舱的气密性,宇宙射线强度等的产品。
国选内题z的QCM芯片而言, 产生1Hz的响应需要的质量为20ng, 即它的理论质 量灵敏度>20ng。而对于基频为27MHz的芯片,产生 1Hz 的响应需要的质量为 0.7ng。显而易见,27MHz 比5MHz具有更高的灵敏度,提高了29倍。其前提条 件是芯片厚度变得更薄。 虽然“降低芯片的厚度, 提高芯片的基频”是提高QCM灵敏度的方法之一, 但这对芯片的制备工艺要求极高, 目前仅有日本 Okahata小组在使用。主流还是基频为5MHz的QCM 芯片。
提高样机的灵敏度。
国创答辩 研究内容
1. 设计电路,达到电路对石英晶体稳定的自 适应控制降低对QCM晶体厚度的高要求。 2. 搭载使QCM产生稳定频率的电路,根据工 作原理逐步提高QCM的测量精度。 3.做出实现低成本的同时提高石英晶体微天平 控制精度的QCM样机。
研究方案 研究目标
14
建立电路输入文件确 定分析类型
石英晶体微天平利用了石英晶体谐振器的压电 特性,将石英晶振电极表面质量变化转化为石英晶体 振荡电路输出电信号的频率变化,进而通过计算机等 其他辅助设备获得高精度的数据。
作品简介 石英晶体微天平
4


Q
C
M








符7石.合9英9要M空求H间的z 结Q振C构荡M波样形品

国创答辩 前期基础
选题依据
如果可以降低芯片的厚度 同时提高QCM的灵敏度将会 在学术领域产生巨大的影响。
主要是用来进行微质量的测量,精度 可以达到纳克级,具有灵敏度高,稳定性好、 通用性高、工作温度范围宽、尺寸小、耐 振动性能强等优点。目前,随着研究的不 断深入,QCM已经被广泛应用于液相、固 相、气相中进行各种物质成分的研究和分 析。在生物医学,化学,环境监测,航天 航空等领域有着广泛的应用和广阔的前景 和较高的科研价值。
选题依据 应用价值
10
选题依据
创新点、关键技术
作品简介 研究方案 国研创究答方辩案
预期成果
从石英晶体内部结构,压电效应,频率特性, QCM的原理和应用,晶体的振荡电路等进行研 究,全面扎实地掌握石英晶体特质对QCM工作 的影响。
研究方案 研究内容
12
研 究 方 案
型 进 论 研 进及 行 。 行究压 Q的 面 对构C电实石电Q电 振 扎M建C路验英路效荡实从M的数仿验晶结应电地石原工学真证体构,路掌英理作模模同微,频等握晶和的型型时天率进石搭体应影()寻平特行英载内用响构进找样性研晶电部,。建行并机,究体路结晶Q理 丰 设,特并构体C论 富 计全 质进,M仿 原 ,行工真 有 逐试作。 理 步验模,
选题依据 国内外现状分析
选题依据 学术价值
QCM 作为一种新型的介
微称重技术,能够用于高压等 极端实验条件,如果可以降低 芯片的厚度同时提高QCM的 灵敏度将会在学术领域产生巨 大的影响。
对于快速测量化合物在 高压流体中的静态和动态行 为过程、大气与环境污染物 的监测、金属腐蚀与防护、 高分子相变、气相反应动力 学的研究等都具有重要意义。
相关文档
最新文档