自由曲线与曲面一
《自由曲线与曲面》PPT课件

7.6 B样条曲线
• Gordon和Riesenfeld于1974年用B样条基函数代替了Bernstein基函数,构造了B样条 曲线。
• 比Bezier曲线更贴近控制多边形,曲线更光滑(很容易产生C2连续性),曲线的次数 可根据需要指定
• 增加了对曲线的局部修改功能,B样条曲线是分段组成的,所以控制多边形的顶点对曲 线的控制灵活而直观。
2.一阶导数
• 将式(7-12)求导,有
n
p' (t) Pi Cni [i t i1 (1 t)ni (n i) t i (1 t)ni1 ] i0 在闭区间〔0,1〕内,将t=0和t=1 代入上式,得到
p' (0) n (P1 P0 ) p' (1) n (Pn Pn1)
可以证明,二次Bezier曲线是一段抛物线。
3.三次Bezier曲线
• 当n=3时,Bezier曲线的控制多边形有四个控制点P0、P1、P2和P3,Bezier曲线 是三次多项式。
3
p(t) Pi Bi,3 (t) (1 t)3 P0 3t(1 t)2 P1 3t 2 (1- t) P2 t3 P3 i0 (t3 3t 2 - 3t 1)P0 (3t 3 6t 2 3t)P1 (3t3 3t 2 ) P2 t3P3
• 通常单一的曲线段或曲面片难以表达复杂的形状,必须将一些曲线段连接成组合曲线, 或将一些曲面片连接成组合曲面,才能描述复杂的形状。
• 为了保证在连接点处平滑过渡,需要满足连续性条件。连续性条件有两种:参数连续 性和几何连续性。
•
参数连续性
• 零阶参数连续性,记作C0,指相 邻两个曲线段在交点处具有相同的 坐标。
菅光宾
数字媒体系
• 7.1 基本概念 • 7.4 Bezier曲线 • 7.5 Bezier曲面 • 7.6 B样条曲线 • 7.7 B样条曲面
《自由曲线与曲面》课件

课件演示流程及时间安排
开场介绍:5分钟 添加标题
自由曲线与曲面的生成方法: 自由曲线与曲面的优化与改
15分钟
进:10分钟
添加标题
添加标题
提问与互动:5分钟 添加标题
添加标题
自由曲线与曲面的基本概念: 10分钟
添加标题
自由曲线与曲面的应用实例: 10分钟
添加标题 总结与展望:5分钟
课件素材及资源获取方式
结论与展望
课件页码及内容安排
• 封面:标题、作者、日期 • 目录:列出所有章节和页码 • 引言:介绍自由曲线与曲面的背景和重要性 • 第一章:自由曲线与曲面的定义和分类 • 第二章:自由曲线与曲面的性质和特征 • 第三章:自由曲线与曲面的表示方法 • 第四章:自由曲线与曲面的应用实例 • 结论:总结自由曲线与曲面的重要性和应用价值 • 参考文献:列出参考的书籍、论文和网站 • 致谢:感谢指导老师和同学的帮助 • 封底:结束语和版权声明
单击此处添加副标题
自由曲线与曲面PPT课件
大纲
汇报人:
目录
01 02 03 04 05 06
添加目录项标题 课件简介 课件内容 课件结构 课件效果 总结评价
01
添加目录项标题
02
课件简介
课件背景
自由曲线与曲面是数学和计算机图形学中的重要概念 课件旨在帮助学生理解自由曲线与曲面的基本概念、性质和应用 课件内容涵盖了自由曲线与曲面的定义、分类、性质、表示方法、计算方法、应用实例等 课件适合数学、计算机科学、工程学等专业的学生和教师使用
课件目的
讲解自由曲线与曲面的生成 方法
介绍自由曲线与曲面的基本 概念和性质
探讨自由曲线与曲面的应用 领域
提高学生理解和应用自由曲 线与曲面的能力
自由曲线曲面的基本原理(上)

自由曲线曲面的基本原理(上)浙江黄岩华日(集团)公司梁建国浙江大学单岩1 前言曲面造型是三维造型中的高级技术,也是逆向造型(三坐标点测绘)的基础。
作为一个高水平的三维造型工程师,有必要了解一些自由曲线和曲面的基本常识,主要是因为:(1)可以帮助了解CAD/CAM软件中曲面造型功能选项的意义,以便正确选择使用;(2)可以帮助处理在曲面造型中遇到的一些问题。
由于自由曲线和自由曲面涉及的较强的几何知识背景,因此一般造型人员往往无法了解其内在的原理,在使用软件中的曲(线)面造型功能时常常是知其然不知其所以然。
从而难以有效提高技术水平。
针对这一问题,本文以直观形象的方式向读者介绍自由曲线(面)的基本原理,并在此基础上对CAD/CAM软件中若干曲面造型功能的使用作一简单说明,使读者初步体会到背景知识对造型技术的促进作用。
2 曲线(面)的参数化表达一般情况下,我们表达曲线(面)的方式有以下三种:(1)显式表达曲线的显式表达为y=f(x),其中x坐标为自变量,y坐标是x坐标的函数。
曲面的显式表达为z=f(x,y)。
在显式表达中,各个坐标之间的关系非常直观明了。
如在曲线表达中,只要确定了自变量x,则y的值可立即得到。
如图1所示的直线和正弦曲线的表达式就是显式的。
曲线的隐式表达为f(x,y)=0,曲面的隐式表达为f(x,y,z)=0。
显然,这里各个坐标之间的关系并不十分直观。
如在曲线的隐式表达中确定其中一个坐标(如x )的值并不一定能轻易地得到另外一个(如y )的值。
图2所示的圆和椭圆曲线的表达式就是隐式的。
图2(3)参数化表达曲线的参数表达为x=f(t);y=g(t)。
曲面的参数表达为x=f(u,v);y=g(u,v);z=g(u,v)。
这时各个坐标变量之间的关系更不明显了,它们是通过一个(t )或几个(u,v )中间变量来间接地确定其间的关系。
这些中间变量就称为参数,它们的取值范围就叫参数域。
显然,所有的显式表达都可以转化为参数表达,如在图1所示的直线表达式中令x=t 则立即可有y=t 。
自由曲线与曲面

11.1 解析曲面 11.2 Bezier曲面 11.3 B样条曲面 11.4 NURBS曲面 11.5 曲面的其它表达 11.6 曲面求交算法
11.1 解析曲面(代数曲面)
代数曲面在造型系统中常见,但远远不能满足复 杂曲面造型的要求
适合构造简单曲面,不能构造自由曲面 不同类型曲面拼接连续性难以保证 不同曲面求交公式不一,程序实现量大 工程设计交互性差
通常样条曲面的求交算法采用离散逼近、迭代求精 与跟踪的方法,求交精度不高,计算量大,速度慢,对 共点、共线、共面难以处理,从而影响布尔运算的效率 和稳定性。
基本的求交算法:
由于计算机内浮点数有误差,求交计算必须引进容差。假定
容差为e,则点被看成是半径为e的球,线被看成是半径为e的圆管, 面被看成是厚度为2e的薄板。
c)然后固定指标i,以第一步求出的n+1条截面曲线的控制顶 点阵列中的第i排即: di,j, j 0,1,, n 为“数据点”,以上一 步求出的跨界切矢曲线的第i个顶点为”端点切矢”,在节点矢 量V上应用曲线反算,分别求出m+3条插值曲线即控制曲线的 B样条控制顶点di.j ,i 0,1,,m 2; j 0,1,,n 2 ,即为所求双
superquadric
superquadric曲面在商用 CAD系统应用相对较少,但 在动画软件中常用
superquadric toroids
(
x
)2/E2
(
y
)2/E2
E2/E1 a
(
z
)2/E1
1
rx
ry
rz
superquadric ellipsoids
(
x
)2/E2
(
y
E2/E1 )2/E2
计算机图形学曲线和曲面

曲线构造方法
判断哪些是插值、哪些是逼近
曲线构造方法
插值法
线性插值:假设给定函数f(x)在两个不同点x1和x2的值,用 线形函数 :y=ax+b,近似代替f(x),称为的线性插值函 数。
插值法
抛物线插值(二次插值):
已知在三个互异点x1,x2,x3的函数值为y1,y2,y3,要求构造 函数 ¢ (x)=ax2+bx+c,使得¢(x)在xi处与f(x)在xi处的值相 等。
曲线曲面概述
自由曲线和曲面发展过程
自由曲线曲面的最早是出现在工作车间,为了获得特殊的曲线,人们 用一根富有弹性的细木条或塑料条(叫做样条),用压铁在几个特殊 的点(控制点)压住样条,样条通过这几个点并且承受压力后就变形 为一条曲线。人们调整不断调整控制点,使样条达到符合设计要求的 形状,则沿样条绘制曲线。
5.1.2 参数样条曲线和曲面的常用术语
在工程设计中,一般多采用低次的参数样条曲线。 这是因为高次参数样条曲线计算费时,其数学模型难于 建立且性能不稳定,即任何一点的几何信息的变化都有 可能引起曲线形状复杂的变化。
因此,实际工作中常采用二次或三次参数样条曲线,如: 二次参数样条曲线: P (t) = A0 + A1t + A2t2 三次参数样条曲线: P (t) = A0 + A1t + A2t2 + A3t3
a3
1 0] a2 a1 a0
三次参数样条曲线
P(k) a3 0 a2 0 a1 0 a0 P(k 1) a3 1 a2 1 a1 1 a0 P '(k) 3a3t2 2a2t a1 a1 P '(k 1) 3a3 2a2 a1
P0 0 0 0 1 a3
自由曲线与曲面

例如,x=r cos , y=r sin 表示圆
x=a cos cos
y=b cos sin
z=c sin
表示椭球面
3
矢量形式:
4
(2) 表示形式的比较 非参数方程的表示有以下缺点: 1) 与坐标轴相关;
2) 会出现斜率为无穷大的情况;
3) 非平面曲线曲面难以用常系数非参数化函 数表示;
得:
2m0+m1=C0 mn-1+2mn=Cn
27
(3) 特别当M0=0或Mn=0时,称为自由端点条件。 此时端点为切点,曲率半径无限大。例如,在曲线 端点出现拐点或与一直线相切时。
在求得所有mi后,分段三次曲线即可由(6-4)确定。 整条三次样条曲线的表达式为: y(x) = yi(x) ( i=1, 2, ... ,n)
, 0 , 1
19
y (u ) y0 F0 (u ) y1 F1 (u ) y G0 (u ) y G1(u )
, 0 , 1
(6-1)
F0 (u ) 1 3u 2 2u 3 其中: F1 (u ) 3u 2 2u 3 G0 (u ) u 2u 2 u 3 G1 (u ) u 2 u 3
imi-1+2mi+ imi+1=ci
( i= 1,2, ..., n-1 )
(6-5)
hi+1 i = hi + hi+1 ci =3(i
, + i
i=1-i
yi-yi-1 hi
yi+1-yi ) hi+1
25
式(6-4)、(6-5)包含m0,m1,…,mn共n+1个未知量, 对应整条曲线的x0、x1,…,xn的n+1型值点,式(65)包含n-1个方程个数,还不足以完全确定这些mi , 须添加两个条件。 这两个条件通常根据对边界节点x0与xn处的附加 要求来提供,故称为端点条件。常见有以下几种:
自由曲线和自由曲面

x x(t)
y
y(t)
(7.1)
z z(t)
为便于计算机处理,曲线上一点常用其位置向量表示,如下所示:
P(t) x(t) y(t) z(t)
(7.2)
通常,通过对参数变量的规格化,使参数 t 在闭区间[0,1]内变化(写成t 0 1),并对此区间内的
参数曲线进行研究。
用参数方程描述自由曲线具有以下优点: ● 所描述的曲线形状与坐标系的选取无关。例如,如果通过一系列型值点拟合一条曲线或由一系列控 制点(或特征点)定义一条曲线,曲线的形状仅取决于这些点本身之间的关系,而与这些点所在的坐标系无 关。
● 规格化的参数变量 t 0 1,使其相应的几何分量是有界的(即表示曲线是有界的),不需要另设
其他参数来定义其边界。
● 有更大的自由度来控制曲线、曲面的形状。如一条二维三次曲线的显式表示为: y a0 a1x a2x2 a3x3
其中只有 4 个系数用来控制此曲线的形状。而该曲线的参数表示为:
1. 点 点是构造曲线和曲面的最基本的几何元素,在曲线和曲面构造中常用的点有型值点、控制点(特征点) 和插值点,如 6.1 节所述。
2. 插值 插值是函数逼近的重要方法。其原理是:
设函数 f (x) 在区间[ a, b ]上有互异的 n 个型值点 f (xi ) ( i 1, 2, 3, , n ),基于这个列表数据,寻求 某个函数(x) 去逼近 f (x) ,使 (xi ) f (xi )( i 1, 2, 3, , n ),则称(x) 为 f (x) 的插值函数, xi 为插值 节点。
● 参数方程中,代数、几何相关和无关的变量是完全分离的,并且不限制变量的个数,便于用户把低 维空间中的曲线或曲面扩展到高维空间。这种变量分离的特点使得人们可以用数学公式去处理几何分量,如 本章随后使用到的调和函数就具有此特点。
自由曲线曲面造型技术

2、简单技术 (插值与拟合)
2.1曲 线 拟 合 问 题 的 提 法
已知一组(二维)数据,即平面上 n个点(xi,yi) i=1,…n, 寻求一个函数(曲线)y=f(x), 使 f(x) 在某种准则下与所 有数据点最为接近,即曲线拟合得最好。
y
+
+
+
+ + (xi +i,yi)
+
+
y=f(x) +
但人们并不安于现状,继续探索新的造型方法。相继 出现了自由变形造型、偏微分方程造型、能量法造型、 小波技术等。这些方法目前还处于深入研究阶段,有 望于21世纪得到广泛的应用。
插值(interpolation)、拟合(fitting)和
逼近(approximation),一直是曲线曲面 造型基本的方法。
问题:给定一批数据点,需确定满足特定要求的曲线或曲面 解决方案: •若要求所求曲线(面)通过所给所有数据点,就是插值问题; •若不要求曲线(面)通过所有数据点,而是要求它反映对象 整体的变化趋势,这就是数据拟合,又称曲线拟合或曲面拟合。
函数插值与曲线拟合都是要根据一组数据构造一个函数作 为近似,由于近似的要求不同,二者的数学方法上是完全不同 的。 实例:下面数据是某次实验所得,希望得到X和 f之间的关系?
4)线性插值
等等
样条插值
比分段线性插值更光滑。
y
a
xi-1 xi
bx
在数学上,光滑程度的定量描述是:函数(曲
线)的k阶导数存在且连续,则称该曲线具有k阶光
滑性。 光滑性的阶次越高,则越光滑。是否存在较低
次的分段多项式达到较高阶光滑性的方法?三次 样条插值就是一个很好的例子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲线的分类
规则曲线 自由曲线 随机曲线
1
概 述
研究分支
计算几何
1969 Minsky, Papert提出 1972 A.R.Forrest给出正式定义
CAGD (Computer Aided Geometrical Design)
1974 Barnhill, Riesenfeld, 美国Utah大学的一次国 际会议上提出
矩阵表示
条件
GH M H
GH M H
GH M H
GH M H
1 0 T |t 0 GH M H P0 0 0 1 1 T |t 1 GH M H P 1 1 1 0 1 T |t 0 GH M H R0 0 0 0 1 T |t 1 GH M H R1 2 3
定义--n次多项式曲线
x (t ) x0 x1 t xn t n n y ( t ) y y t y t 0 1 n z (t ) z z t z t n 0 1 n
t [0,1]
17
参数多项式曲线(2/4)
曲线的表示形式
非参数表示
显式表示
y f ( x) z g ( x)
隐式表示
f ( x, y , z ) 0 g ( x, y , z ) 0
8
参数曲线基础(2/6)
参数表示
x x(t ) y y (t ) z z (t )
矢量表示形式
x(t ) x0 y P(t ) y ( t ) 0 z (t ) z0
x1 xn 1 t 记为 y1 yn C T n z1 zn t
t [0,1]
P0+P1基矩阵MT来自P1 P020
三次Hermite曲线(1/7)
定义
给定4个矢量 P0 , P 1 , R0 , R1 ,称满足条件的三 次多项式曲线P(t)为Hermite曲线
P(0) P0 , P(1) P 1 P(0) R0 , P(1) R1
R0 P1
P0
R1
21
三次Hermite曲线(2/7)
2
概 述
研究内容
对几何外形信息的计算机表示 对几何外形信息的分析与综合 对几何外形信息的控制与显示
3
概 述
对形状数学描述的要求?
从计算机对形状处理的角度来看 (1)唯一性
(2)几何不变性
对在不同测量坐标系测得的同一组数据点进行拟合, 用同样的数学方法得到的拟合曲线形状不变。
4
概
(3)易于定界 (4)统一性:
述
统一的数学表示,便于建立统一的数据库 标量函数:平面曲线 y = f(x) 空间曲线 y = f(x) z = g(x) 矢量函数:平面曲线 P(t) = [x(t) y(t)] 空间曲线 P(t) = [x(t) y(t) z(t)]
x x(t ) y y (t ) z z (t ) t [ a, b]
几何矩阵
G G0 G1 Gn
控制顶点 Gi 基矩阵M
M T 确定了一组基函数
19
参数多项式曲线(4/4)
例子—直线段的矩阵表示
P(t ) P0 tP 1 P 0 (1 t ) ( P 0 P 1 )t P0
几何矩阵G
1 1 1 P0 P t [0,1] 1 0 1 t
传统的、严格的连续性 称曲线P = P(t)在 t t0处n阶参数连续,如果 它在 t 0 处n阶左右导数存在,并且满足
d k P(t ) dt k
t t 0
d k P(t ) dt k
t t 0
, k 0,1, n
记号 C n
11
参数曲线基础(5/6)
几何连续性
曲线曲面拟合方法
生成方法
插值
点点通过型值点 插值算法:线性插值、抛物样条插值、Hermite插 值
逼近
提供的是存在误差的实验数据
最小二乘法、回归分析 Bezier曲线、B样条曲线等
16
提供的是构造曲线的轮廓线用的控制点
拟合
参数多项式曲线(1/4)
为什么采用参数多项式曲线
表示最简单 理论和应用最成熟
加权和形式
n P(t ) C T P0 t P t Pn t [0,1] 1
缺点
Pi 没有明显的几何意义 Pi 与曲线的关系不明确,导致曲线的形状控制困难
18
参数多项式曲线(3/4)
矩阵表示
矩阵分解
C GM
P(t ) C T G M T t [0,1]
直观的、易于交互控制的连续性 0阶几何连续
称曲线P=P(t)在 t t0 处0阶几何连续,如果它在 t 0 处位置连续,即 P(t0 ) P(t0 ) 记为 GC 0
1阶几何连续
称曲线P=P(t)在 t t0 处1阶几何连续,如果它在该 处 GC 0 ,并且切矢量方向连续 记为 GC1
i
26
5
概
述
从形状表示与设计的角度来看 (1)丰富的表达能力:表达两类曲线曲面
(2)易于实现光滑连接 (3)形状易于预测、控制和修改 (4)几何意义直观,设计不必考虑其数学表达
6
自由曲线曲面的发展过程
目标:美观,且物理性能最佳
1963年,美国波音飞机公司,Ferguson双三次曲 面片 1964~1967年,美国MIT,Coons双三次曲面片
22
三次Hermite曲线(3/7)
合并
1 0 GH M H 0 0 1 0 0 1 1 1 P0 1 0 2 1 0 3
1
P 1
R0
R1 GH
取为
解
1 0 MH 0 0 1 0 0 1 0 1 1 1 0 1 0 2 1 0 3 0 2 0 3 2 1 2 1 0 1 1
P(t0 ) P(t0 )
0为任一常数
12
参数曲线基础(6/6)
2阶几何连续
称曲线P=P(t)在 t t0处2阶几何连续,如果它在 t 0处
(1) GC
1
B ( t ) B ( t (2)副法矢量方向连续 0 0)
(3)曲率连续
k (t0 ) k (t0 )
23
0 3
三次Hermite曲线(4/7)
基矩阵与基函数(调和函数)
1 0 M H T 0 0 2 1 1 3t 2t 3 G0 (t ) 2 3 G ( t ) 0 3 2 t 3t 2t 1 1 2 1 t 2 t 2t 2 t 3 H 0 (t ) 3 2 3 0 1 1 t t t H1 (t ) 0 3
13
参数表示的好处
有更大的自由度来控制曲线、曲面的形状
易于用矢量和矩阵表示几何分量,简化了计算 设计或表示形状更直观,许多参数表示的基函数 如Bernstein基和B样条函数,有明显的几何意义
14
曲线曲面拟合方法
已知条件的表示方法
一系列有序的离散数据点
型值点 控制点
边界条件 连续性要求
15
1971年,法国雷诺汽车公司,Bezier曲线曲面 1974年,美国通用汽车公司,Cordon和 Riesenfeld, Forrest, B样条曲线曲面 1975年,美国Syracuse大学,Versprille有理B样条 80年代,Piegl和Tiller, NURBS方法
7
参数曲线基础(1/6)
24
三次Hermite曲线(5/7)
形状控制
改变端点位置矢量 P0 , P 1 调节切矢量 R0 , R1 的方向 调节切矢量 R0 , R1 的长度
25
三次Hermite曲线(6/7)
三次参数样条曲线
样条? 曲线的定义
给定参数节点 ti in0 ,型值点 Pi in0 ,求一条 C 2 的分段三次参数曲线 P(t )(t [t0 , tn ]) , 使 P(t ) |t t 。P(t)称为三次参数样条曲线
t [ a, b]
参数的含义
时间,距离,角度,比例等等 规范参数区间[0,1]
9
参数曲线基础(3/6)
参数矢量表示形式
例子:直线段的参数表示
t [0,1]
P P(t ) P0 t ( P1 P0) (1 t ) P0 tP1
10
参数曲线基础(4/6)
参数连续性