利用轴对称求最短距离精修订

合集下载

《最短路径问题》轴对称

《最短路径问题》轴对称

轴对称与最短路径问题
轴对称是指图形关于某一直线或平面对称的现 象。
在最短路径问题中,如果图是轴对称的,那么 两个顶点之间的最短路径必然是对称的。
例如,在有向图和无向图中,如果两个顶点之 间的所有边都具有相同的权重,那么这两个顶 点之间的最短路径就是对称的。
最短路径问题的数学模型
01
最短路径问题的数学模型通常包括一个有向图G=(V,E)和两个顶点s和t,表示要 找到从s到t的最短路径。
02
最短路径问题与轴对称
最短路径问题简介
1
最短路径问题是一种经典的图论问题,旨在寻找 图中两个顶点之间的最短路径。
2
最短路径问题在交通网络设计、通信网络优化、 生产计划制定等领域都有广泛应用。
3
最短路径问题通常可以使用动态规划、Dijkstra 算法、Bellman-Ford算法等算法进行求解。
《最短路径问题》轴对称
2023-11-09
目 录
• 轴对称简介 • 最短路径问题与轴对称 • 轴对称算法实现 • 实验结果与分析 • 总结与展望
01
轴对称简介
轴对称定义
轴对称是指一个物体关于某一直线(称为对称轴)对称,也就是说,物体在这条 直线的两边呈现出镜像状态。
在图形中,如果一个图形关于某一直线对称,那么它的对称轴是从图形的一侧到 另一侧的最短距离。
02
在最短路径问题中,通常使用权重来表示每条边的长度或成本。权重可以是有 向的或无向的,可以是正值或负值。
03
最短路径问题的数学模型还包括一个求解算法,用于在图中找到从s到t的最短 路径。常用的求解算法包括Dijkstra算法和Bellman-Ford算法。
03
轴对称算法实现

轴对称结合两点之间线段最短求最短距离问题

轴对称结合两点之间线段最短求最短距离问题

轴对称结合两点之间线段最短求最短距离问题轴对称结合两点之间线段最短求最短距离问题
1.已知点A 、B 为直线m 同侧的两个点,请在直线m 上找一点C ,使得AM+BM 有最小值。

m
B
A
2.已知边长为4的正三角形ABC 上一点E ,AE=1,AD ⊥BC 于D,请在AD 上找一点N ,使得EN+BN 有最小值,并求出最小值。

有最小值,并求出最小值。

E
D C
B A
3.已知边长为4的正方形ABCD 上一点E ,AE=1,请在对角线AC 上找一点N ,使得EN+BN 有最小值,并求出最小值。

有最小值,并求出最小值。

E D
C B A
4.已知D 为∠BAC 内一点,请在射线AC 、AB 上分别找到一点M 、N ,使得△DMN 的周长最小。

最小。

D
C
B A
四个问题均为先作点关于直线的对称点,再找最短路线,利用了轴对称三角形全等的知识来
解释,四个问题结合,可以加深学生对本知识点的掌握,其中4题也可以给∠BAC一个特
两边的距离,进而求出最短周长。

定角度(30°等),并给出点D到∠BAC两边的距离,进而求出最短周长。

《最短路径问题》轴对称PPT

《最短路径问题》轴对称PPT

A
C
C′
l
即 AC +BC 最短.
B′
例1 如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,
AD=5,点F是AD边上的动点,则BF+EF的最小值为( B )
A.7.5 C.4
B.5 D.不能确定
解析:△ABC为等边三角形,点D是BC边的中点,即点B与点C关于直线 AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小值可转化为求CF+EF 的最小值,故连接CE即可,线段CE的长即为BF+EF的最小值.
周长是( A )
A.10 C.20
B.15 D.30
3、如图,牧童在A处放马,其家在B处,A、B到河岸的距离分别
为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,
则牧童从A处把马牵到河边饮水再回家,所走的最短距离10是00
米.
C
D 河
A
B
4、如图,荆州古城河在CC ′处直角转弯,河宽相同,从A处到
则A到B的路径长为 AC+CD+DB=AC+CD+CE=AC+CE+MN,
A MC
在△ACE中,∵AC+CE>AE, ∴AC+CE+MN>AE+MN,
ND E
即AC+CD+DB >AM+MN+BN,
B
故桥的位置建在MN处,A到B的路径最短.
总结:在解决最短路径问题时,我们通常利用轴对称、平移 等变换把未知问题转化为已解决的问题,从而作出最短路径 的选择.
则点C 即为所求.
B
A
C l
B′

轴对称最短路线问题原理

轴对称最短路线问题原理

轴对称最短路线问题原理
一、问题描述
轴对称最短路线问题,即求平面上两点间沿轴对称线走的最短距离。

二、问题解法
1. 构造对称轴
首先需要找到两点的对称轴,对称轴的构造方法有多种,常用的有以
下两种:
(1)连接两点,垂直平分线即为对称轴。

(2)以两点为圆心,以它们之间的距离为半径,画两个圆;两圆的交
点就是对称轴。

2. 沿对称轴转换
对称轴将平面分为两个对称部分,假设起点在对称轴左侧(或右侧),求出终点在对称轴右侧(或左侧)的最短距离,即为要求的轴对称最
短路线。

3. 求最短距离
最短距离可以使用最短路算法(如 Dijkstra 算法、Bellman-Ford 算法等)来计算。

三、应用领域
轴对称最短路线问题常见于自动化生产线、机器人运动等领域,在这
些领域中,机器人需要在不碰撞的情况下从一个点到达另一个点,同
时保证走的路径最短。

该问题的解决方法可以为机器人运动路径规划
提供参考。

八年级数学上册第十三章轴对称13.4课题学习最短路径问题课件新版新人教版

八年级数学上册第十三章轴对称13.4课题学习最短路径问题课件新版新人教版
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/5/25
最新中小学教学课件
10
谢谢欣赏!
2019/5/25
最新中小学教学课件
11
13.4 课题学习 最短路径问题
学前温故 新课早知
快乐预习感知
1.两点的所有连线中, 线段 最短. 2.连接直线外一点与直线上各点的所有连线中, 垂线段 最 短.
学前温故 新课早知
快乐预习感知
1.前面我们研究过一些关于“两点的所有连线中,线段最短”“连接 直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我 们称它们为 最短路径 问题.
2.在解决最短路径问题时,我们通常利用 轴对称 、 平移 等 变化把已知问题转化为容易解决的问题,从而作出最短路径的选 择.
互动课堂理解
利用轴对称求最短路径 【例题】 如图,在△ABC中,BC=5,S△ABC=15,AD⊥BC于点D,EF垂 直平分AB,交AC于点F,在EF上确定一点P使PB+PD最小,则这个最 小值为( ). A.3 B.4 C.5 D.6 分析根据三角形的面积公式得AD=6,由EF垂直平分AB,知点A,B 关于直线EF对称,于是得到AD的长度为PB+PD的最小值,即可得出 结论.
轻松尝试应用
1
2
3
1.如图,A,B两点都在直线m的同侧,画图,在直线m上取点P,使PA+PB 最小,则下列示意图正确的是( ).
关闭
D
答案123轻 Nhomakorabea尝试应用
2.在直角坐标系中有A,B两点,要在y轴上找一点C,使得它到A,B两点 的距离之和最小,现有如下四种方案,其中正确的是( ).

八年级数学上册第十三章《轴对称》13.4课题学习最短路径问题课件(新版)新人教版

八年级数学上册第十三章《轴对称》13.4课题学习最短路径问题课件(新版)新人教版

综合能力提升练
7.某班举行文艺晚会,桌子摆成如图所示的两直排( 图中的AO,BO ),AO桌面上摆满了
橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮 助他设计一条行走路线,使其所走的总路程最短.
解:作C点关于OA的对称点C1,作D点关于OB的对称点D1,连接C1D1, 分别交OA,OB于点P,Q,那么小明沿C→P→Q→D的路线行走,所走 的总路程最短.
拓展探究突破练
8.如图,安徽省某大学建立分校,校本部与分校隔着两条平行的小河,l1∥l2表示
Hale Waihona Puke 小河甲,l3∥l4表示小河乙,A为校本部大门,B为分校大门,为方便人员来往,要在两条小河上各建 一座桥,桥面垂直于河岸.请你设计一条路线,使A,B两点间来往的路程最短.
拓展探究突破练
解:把点A向下平移河甲的宽度后得到A',把点B向上平移河乙的宽度后得到B',连接A'B'交l2于点 D,交l3于点E,作CD⊥l1于点C,EF⊥l4于点F,连接AC,BF.则在CD,EF处建桥就是使得A点到B点总 路程最短的桥的位置.
13.4 课题学习 最短路径问题
知识要点基础练
知识点 最短路径问题 1.如图,直线l是一条河,A,B两地相距10 km,A,B两地到l的距离分别为8 km,14 km,欲在l上的某点 M处修建一个水泵站,向A,B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺 设的管道最短的是 ( B )
4.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线 MN上的一个动点,当PC+PD最小时,∠PCD的度数是 30° .
综合能力提升练
5.如图,在四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN 周长最小,则此时∠AMN+∠ANM的度数为 120° .

运用“轴对称”解决最短路径问题

运用“轴对称”解决最短路径问题

龙源期刊网 运用“轴对称”解决最短路径问题作者:刘军来源:《初中生世界·八年级》2014年第10期在学习“轴对称图形”时,我们经常会遇到与最短路径有关的问题,同学们往往在处理这类问题时感到困难. 这类问题通常会转化成“两点之间,线段最短”来解决,而轴对称的性质是实现这一转化的有效方法之一. 只要我们能把握轴对称的性质,那么问题便迎刃而解.在苏科版八(上)“轴对称图形”一章的课后习题中就有这样一个问题:如图1,点A、B在直线l同侧,点B′是点B关于l的对称点,AB′交l于点P. (1)AB′与AP+PB相等吗?为什么?(2)在l上再取一点Q,并连接AQ和QB,比较AQ+QB与AP+PB的大小,并说明理由.【解析】(1)由点B与点B′关于直线l成轴对称可知PB=PB′,则AB′=AP+PB′=AP+PB. (2)利用“三角形任意两边之和大于第三边”及(1)的结论可知,AQ+QB>AB′=AP+PB.这个问题还可以进一步说明直线l上的点P能使得线段PA+PB的和最小.下面再通过对几个最短路径问题的分析,帮助同学们熟悉并掌握这类问题的解题策略,真正能做到融会贯通,一通百通.一、已知两点在一条直线的同一侧例1 (将军饮马)古希腊一位将军要从A地出发到河边(如下图MN)去饮马,然后再回到驻地B. 问怎样选择饮马地点P,才能使路程最短?【点拨】分别作点A、B关于OM、ON的对称点A1、B1,连接A1B1,分别交OM、ON于点C、D,即得点C、D就是所求的两点.利用“轴对称”解决最短路径问题的关键是根据轴对称的性质,将不在一条直线的线段转化到同一条直线上,然后用“两点之间,线段最短”来解决. 解决这类问题,还需要认真审题,不仅要注意图形,而且要重视问题的要求,才能够有效地解决此类问题.(作者单位:江苏省无锡市天一实验学校)。

利用轴对称求最短距离

利用轴对称求最短距离

利用轴对称求最短距离轴对称知识在近来的中考题中,经常出现,笔者浏览最近几年各地的中考试题,发现各地中考试题除考察轴对称图形的基本知识和性质,还考察了利用轴对称知识解决最短距离问题,这类问题在各地中考试题中,屡见不鲜,如何利用轴对称的性质解决最短距离问题呢?根据本人多年从事初三数学教学工作的一些体会。

概括一些一些常见的题型。

一、基础知识如图直线l 同侧有两点A 、B ,在直线l 上找点P ,使得PA+PB 最短,并简要说明理由。

解:作点关于直线l 的对称点A ′,连A ′B 交直线l 于点P,则点P 即为所求,此时PA+PB=PA ′+PB= A ′B 。

A 1二、典型例题:A 组(1)以菱形为载体的最短距离问题:如图所示,菱形ABCD 中, ∠ BAD=60°,AB=4,M 是AB 的中点,P 是对角线AC 上的一个动点,则PM+PB 的最小值是_________。

解:∵菱形ABCD 是以AC 为对称轴的轴对称图形。

∴点B 关于直线AC 的对称点为点D,ABLP连接DM 交AC 于点P,则PM+PB 的最小值即为线段DM,此时DM=32 ∴PM+PM 的最小值为32.(2)以矩形为载体求最短距离问题在矩形ABCD 中,AB=2,AD=4,E 为为边CD 中点。

P 为边BC 上的任一点,求PA+EP 的最小值。

解:作点A 关于BC 的对称点A ′,连A ′E 交BC 于点P,则点P 为所求,此时PA+PE 的最小值即为A ′E,过点E ,作EF ⊥AB , A ′E=2243 =5 ∴PA+PE 的最小值为5。

MA A 1ED如图所示,正方形ABCD 的边长为2,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上找一点P,使PD+PE 最小,则这个最小值为_________.解:∵正方形ABCD 是以AC 为对称轴的轴对称图形。

∴点B 关于点D 关于AC 对称 ∵BE 即为PD+PE 的最小值 ∴PD+PE 的最小值为2(4) 以圆形为载体的最短距离问题:如图,⊙O 的半径为2,点A 、B 、C 在⊙O 上,OA ⊥OB, ∠ABC=60°,P 是OB 上一动点,求PA+PC 的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析:由题意知:首先找点B或者点M关于AC所在直线的对称点。由菱形的轴对称性不难发现:点D即是点B关于直线AC的对称点,则连接DM与线段AC的交点即为P点。那么PM+PB的最小值实际上就是线段DM的长度
分析:由题意知:首先找点D或者点E关于AC所在直线的对称点。由正方形的轴对称性不难发现:点B即是点D关于直线AC的对称点,则连接BE与线段AC的交点即为P点。那么PD+PE的最小值实际上就是线段BE的长度,BE=2。
(2)、以正方形为媒介的最短距离问题:
如下图,正方形ABCD边长为2,△ABE为等边三角形,且点E在正方形ABCD内部,在对角线AC上找一点P,使PD+PE最小,则这个最小值为多少?
(3)、以圆为媒介的最短距离问题:
如下图,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,
∠AOB=60°,P是OB上一动点,求PA+PC的最小值
(4)、以二次函数为媒介的最短距离:
如下图,抛物线y=x^2+2x-3与x轴交与A、B两点,与y轴交与点C,对称轴上存在一点P,使△PBC周长最小,求P点坐标。
三、巩固加深:
(5)、以三角形为媒介的最短距离问题:
如下图,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC的角平分线交BC于D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少
分析:由AD是∠BAC的角平分线得,点N关于直线AD对称的点N′一定在线段AC上,则直线AD是线段NN′的垂直平分线,则MN=MN′,则求BM+MN的最小值就是求BM+MN′的最小值。易知点B、M、N′三点共线时BM+MN′最小,根据“点到直线上点的距离中垂线段最短”得:过点B作AC的垂线,垂足为N′′,则BN′′的长度就是BM+MN′的最小值,也就是BM+MN的最小值。由△ABN′′为等腰直角三角形,AB=4立得。
分析:由题意知:首先找点A或者点C关于OB所在直线的对称点。由圆的轴对称性不难发现:延长AO交圆于点A′,则点A′即是点A关于直线OB的对称点,则连接CA′与线段OB的交点即为P点。那么PA+PC的最小值实际上就是线段CA′的长度。
分析:由题意知:易得A(-3,0),B(1,0),C(0,-3),对称轴为:x=-1,△PBC周长=BC+PB+PC,因为BC是定值,则求△PBC周长的最小值实际上就是求PB+PC的最小值。然后找点B或者点C关于对称轴的对称点。由二次函数的轴对称性不难发现:点A即是点B关于对称轴的对称点,则连接AC与对称轴的交点即为P点。根据A点和C点坐标求出直线AC的函数解析式,然后令x=-1得出y的值,即得P点坐标。
利用轴对称求最短距离
利用轴对称求最短距离
一、问题引入:
1、如下图,在直线异侧各有点A、B,在直线上找一点p,使PA+PB最小。
2、如下图,在直线同侧各有点A、B,在直线上找一点p,使PA+PB最小。
二、典型例题:
(1)、以菱形为媒介的最短距离问题:
如下图,菱形ABCD中,∠BAD=60°,AB=4,点M是AB中点,P是对角线AC上的一个动点,Biblioteka PM+PB的最小值是多少?
(6)、如下图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴上,OA=3,OB=4,D为OB中点。
(1)、若E为边OA上一个动点,当△CDE周长最小时,求点E坐标。
(2)、若E、F为边OA上两动点,且EF=2,当四边形CDEF周长最小时,求E、F坐标。
图1 图2
四:课堂小结:
分析:作点A关于直线的对称点A′,连接AA′,则直线就是线段AA′的垂直平分线,根据“垂直平分线上一点到线段两端点的距离相等”可得,直线上任一点到点A的距离都等于到点A′的距离。事实上,这个问题就可以转化成:在直线异侧各有点A′、B,在直线上找一点p,使PA′+PB最小。即:一线两定点的问题。由(1)得,连接BA′,与直线的交点即为点P。
分析:(1)、很简单,作点D关于x轴的对称点D′,连接CD′与x轴的交点即为E点,然后根据点C和点D′的坐标求出一次函数解析式,令y=0,得x的值,立得。
(2)、要求四边形CDEF周长的最小值,因为线段CD、EF都是定值,所以只要求DE+CF的最小值即可。根据“两点间线段最短”,如果能将线段DE和CF转化到同一条直线上,那么求出的值肯定最小,于是我们想到作D关于x轴的对称点D′(0,-2),作点G(2,-2),则GD′=2,连接CG交x轴于点F,则F点确定了,E点也就随之而确定。这时四边形EFGD′是平行四边形,则FG=ED′=DE,此时CG就是DE+Cf的最小值。
通过本节课的学习,我们发现要想灵活掌握“利用轴对称来解决最短距离”的问题还是不容易的,它需要我们具有系统的知识结构、很高的知识素养,同时也要求我们具有丰富的想象能力以及灵活的创新能力,它还要求我们在学好基础知识的同时,还需要有大量的课外阅读知识!
分析:根据“两点之间线段最短”,可知:连接AB,与直线的交点即为P点.此基本类型为:一线(直线)两定点(点A、B)。
相关文档
最新文档