利用轴对称求最短距离

合集下载

利用轴对称和平移求最短距离

利用轴对称和平移求最短距离

利用轴对称和平移求最短距离作者:莫慧琼来源:《学苑创造·C版》2014年第08期利用轴对称和平移求最短距离是近年来中考的一个热点,这类问题主要考察同学们化归的数学思想和建模能力,它可以结合各类知识进行考察,综合性强,是同学们较为头痛的一类问题.例如,2012年南宁市中考压轴题的最后一问就是此类问题.如图1,已知点A(3,4),当点B的坐标为(-1,1)时,在x轴上另取两点E,F,且EF=1. 线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?求出此时点E的坐标.要解决这个问题,我们得先从几个简单的数学模型入手,发现并归纳解这一类问题的思想和方法.先跟着老师看下面的例题,或许你能从中得到某些启示.例1:如图2,地下河两侧有村庄A,B. 今年大旱,村民们要在河上方挖一口井向A村与B村供水. 若要使井口P分别到A,B两村的水管之和最短,应在图上什么地方凿井?(注:本题由八年级上册课本第42页例题改编)【分析】这道题是个实际问题,我们将它转化成数学模型就不需要考虑河宽,所以可以将这个实际问题抽象为下面这样一个数学问题:如图3,两点A,B分别在一直线l的两侧,直线上一动点P停留在哪一位置时,能使PA+PB最短?显然,应该连接AB,与直线l相交于一点,当动点P位于此位置时,PA+PB是最短的,理由是“两点之间,线段最短”.【变式1】当村庄A,B在河的同一侧时,井口P又应在什么地方呢?【分析】这时在直线上任取一点P,连接PA,PB,如图4,还能轻易看出哪条路径最短吗?能否想个办法,把它转化成刚才那种点在直线两侧的情况呢?显然,可以作点B关于直线l的对称点B′,再连接AB′交直线l于点P,连接PB,如图5. 利用对称性可知PB=PB′,则线段PA+PB的长等于线段AB′的长,由“两点之间,线段最短”可知此时所得路径是最短的.【变式2】如图6,公路m与河流n之间有一个村庄C,公路m上准备设置一个加油站P,河边设置一个加水点Q.今年大旱,县政府派出送水车为村民们供水,运水车从村庄C出发,先去加油,再去加水,最后回到村庄C为村民们供水.请问:把加油站P和加水点Q分别设在何处,可使运水车所走路程最短?解:如图7,分别作出点C关于直线m和直线n的对称点C′和C″,再连接C′C″,分别交直线m和直线n于点P和点Q,则所得路径C→P→Q→C为最短路径.【变式3】如图8,将变式2中的一个村庄改为两个村庄C和D,运水车从村庄C出发,先去加油,再去加水,最后到村庄D送水,则又应把加油站P和加水点Q分别设在何处,才能使运水车所走路程最短?(注:本题由八年级上册课本第47页习题的第9题改编)解:如图8,作点C关于直线m的对称点C′,点D关于直线n的对称点D′,再连接C′D′,分别交直线m和直线n于点P和点Q,则所得路径C→P→Q→D为最短路径.由刚才的几道题中,我们得到以下几个基本几何模型:【思考】观察这些模型有何共同特征?在求最短距离时都用了怎样的方法?【总结】这些模型都利用了轴对称,把本来不在同一直线上的几条线段都转化到了同一直线上,把求几条线段和的最小值转化成两点之间线段最短的简单问题. 可见,利用化归的数学思想,可将复杂问题简单化.前面的几种情况都不需要考虑河宽,假如需要考虑河宽又该怎么办呢?有什么办法把它也转化为最容易解决的情况吗?下面我们来看这道题:【变式4】如图9,运水车需从A村送水到B村,A,B两村之间有一条宽为a的河,在何处架桥才能使A村到B村的路程最短?(注:本题由七年级下册课本第31页习题的第7题改编)【分析】显然,此时已不能将河流抽象成一条直线,只能将河岸抽象成距离为a的一组平行线m,n,由于桥是垂直于河岸的,假设桥为线段PQ,则PQ在什么位置时,才能使得线段AP+PQ+QB的和最小呢?由于PQ的长是一定值,所以求三条线段AP+PQ+QB的和最小,其实只是求两条线段AP+QB的和最小. 于是,我们可以这么理解,将河岸m平移到与河岸n重合,此时相当于除去了定长a的干扰,转化成了最简单的“模型1”这种情况,连接AB就相当于线段AP+QB的长. AB交直线n于点Q,再把河岸m平移回来,原来直线m上Q点的位置记为点P.此外,我们还可以这么理解,运水车从A村到B村,无论如何,桥都是要过的,那可否将整条河流平移到A处,使点A在直线m上,相当于让运水车先过桥呢?如图10,将点A向下平移a个单位得到点A′,连接A′B交直线n于点Q,过点Q作直线m的垂线,交直线m于点P,然后连接PA,此时线段AP+PQ+QB的和最小.【思考】将图10记为“模型5”,对比前面4个模型,你有何感悟?【总结】在这道题中,解题的方法虽然很多,但其实都是利用平移先排除掉定长,将问题转化成“求两条线段之和何时最短”的老问题,依然是将这两条线段化归到同一直线上.我们不妨用一顺口溜来记下解此类题的方法:“对称加平移,最短问题不被迷.化归同一线,最短长度图自现.”下面我们再来看看2012年南宁市中考压轴题的最后一问该如何求解.解:如图11,过点A作x轴的平行线,并在平行线上截取线段AA′,使AA′=1,作点B 关于x轴的对称点B′,连接A′B′,交x轴于点E,在x轴上截取线段EF=1,则此时四边形ABEF的周长最小.∵A(3,4),∴A′(2,4),∵B(-1,1),∴B′(-1,-1).设直线A′B′的解析式为y=kx+b,则[2k+b=4-k+b=-1],解得[k=53b=23].∴直线A′B′的解析式为[y=53x+23],当y=0时,[53x+23=0],解得[x=-25].故线段EF平移至如图所示位置时,四边形ABEF的周长最小,此时点E的坐标为([-25],0).。

人教版数学八年级上册13.4最短路径问题教案

人教版数学八年级上册13.4最短路径问题教案
首先,我发现通过生活中的实际问题引入新课,极大地激发了学生的兴趣。他们能够将数学知识与现实生活联系起来,感受到数学的实用性和趣味性。在今后的教学中,我还要多设计一些贴近生活的案例,让学生感受到数学的无处不在。
其次,在新课讲授环节,我发现学生们对轴对称性质的理解较为扎实,但在将其应用于最短路径问题的求解过程中,部分学生还是显得有些吃力。针对这一点,我在讲解过程中尽量放慢速度,通过详细的步骤解析和直观的图形演示,帮助他们理解。在之后的课堂中,我还需要加强对学生的个别辅导,确保他们能够真正掌握这一知识点。
(2)确定最短路径问题中的对称轴:在实际问题中,确定对称轴可能较为困难,尤其是当问题涉及多个线段或点时。
难点解析:通过具体例子,展示如何寻找和确定线段、点到线段的最短路径问题中的对称轴。
(3)计算最短路径长度的方法:在确定对称轴和对称点后,如何进行有效计算,避免复杂和繁琐的步骤。
难点解析:教授学生运用几何图形的直观和代数计算相结合的方法,简化计算过程,如利用勾股定理等。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了轴对称的基本概念、最短路径问题的求解方法及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂上,我们探讨了人教版数学八年级上册13.4节“最短路径问题”。这节课让我感受到了学生们对几何问题的热情,也让我意识到了一些教学中的亮点和需要改进的地方。
4.培养学生的团队合作意识,通过小组讨论和合作完成最短路径问题的求解,提高学生的沟通与协作能力。
三、教学难点与重点
1.教学重点
(1)轴对称图形的性质及其应用:轴对称图形的对称轴、对称点等基本概念,以及如何利用这些性质解决最短路径问题。

用轴对称求最短距离

用轴对称求最短距离

用轴对称求最短距离在研究几条线段长之和(差)的最小或最大值时,常常需要把这些线段集中到一起,然后将其与某条长度固定的线段进行比较。

把其中的部分特殊点进行恰当的轴对称变换,是实现这一目标的有效手段。

现举例说明,供同学们参考。

一、为了在已知直线上寻找与同侧两点距离之和最小的点,可通过轴对称变换,把同侧两点转化为异侧两点,再利用“三角形任意两边之和大于第三边”来确定例1. 如图1,牧童在A处放牧,其家在B处,A、B到河岸l的距离分别为AC、BD,,且A处到河岸CD中点的距离为500m。

(1)如牧童从A处将马牵到河边饮水后再回家,试问:在何处饮水,所走路程最短?(2)最短的路程是多少?解析:这个问题可简述为“已知直线CD和直线CD同侧的两点A,B,在直线CD 上求一点M,使最小。

”(1)如图2,先作点A关于直线CD的对称点,再连接交CD于点M,则点M为所求的点。

证明如下:在CD上任取一点,连接、、、AM。

点A、关于直线CD对称,点M、在CD上,。

最小。

(2)由(1)知,,。

故M为CD中点,且最短路程为。

二、在涉及折线段长的最值问题的,一般是通过多次轴对称变换,利用两点之间线段最短求最值。

例2. 如图3,牧童家在A处。

现在牧童要先带马到河边(图中用直线a表示)饮水,再到草地(图中用直线b表示)吃草,然后回家。

问:牧童让马在何处饮水、吃草,所走的总路程最短?解析:设点B、点C分别是马饮水、吃草处,本题即是要求线段长之和AB+BC+CA 的最小值。

我们通常需要把它和固定线段相比较。

可通过轴对称变换,把这些线段放在同一直线上,利用两点之间线段最短来解决。

如图4所示,分别作点A关于直线a的对称点A”,点A关于直线b的对称点A””。

连接A”A””。

A”A””交直线a于点B,交直线b于点C,则AB+BC+CA=A”B+BC+CA””=A”A””。

而对其他地点B”、C”,也都可以同样转化为A”B”+B”C”+C”A””,即为A”、A””两点间的折线段的长。

与轴对称相关的线段之和最短问题

与轴对称相关的线段之和最短问题

与轴对称相关的线段之和最短问题在中考复习课中,有一种题型我们不可避免地要帮学生复习,即求:某种情节下的最短距离、最短路线;以何种情况下由3点围成的三角形、由4点围成的四边形的周长最小,等等。

试题虽然花样翻新,但其实质还是一样的。

当这类题目呈现在学生面前时,学生的感觉往往是一个字——难,不善于做这类题。

现以“用轴对称知识解决最值问题”的题组为例,通过几个强有力的数学模型,例说相关中考试题的解决方法,供老师们参考。

一、基本模型【数学模型1】:已知一条直线l与这条直线同侧的两点A、B,如图(1),在直线上找出一点P,使得这点与已知两点的距离和PA+PB最短。

作为题组的“基石”,中考复习时,我们重在让学生明白相关的解题策略。

如何解决线段的和的最短的问题?我们需要寻求和其中一条线段长度相等的线段,充分利用轴对称的有关性质,从而将线段的和最短转化为线段最短的问题。

让学生记住这个模型,并理解其中相关的数学原理,从而利用这个基本模型,轻松解决“最短”问题,这才是我们的最终目的。

二、变式模型通过基本问题结构的局部灵活重组,或者结论的拓展延伸,或者与其他问题的有机组合,加深学生对相关知识的理解,同时强化策略及思想等高层次的能力。

拓展延伸型问题也可以通过设问方式的改变,丰富问题设计的立意及内涵。

【数学模型2】:已知两条平行直线l1,l2及位于这两条直线上的两点A、B(线段AB与直线l1,l2不垂直),如图(3),分别在这两条直线上找出两点N、M,使得路径A-M-N-B最短。

解决方法:如图(3),分别作出A、B两点关于直线l2,l1的对称点A′、B′,连接 A′B′,分别交直线l2,l1于点M、N,有轴对称的有关性质,则路径A-M-N-B的长度就是线段A B′的长度,最短。

对比图(4),折线A-M-N-B的长度不是最短。

从一条定直线上的一个动点到分布在两条直线上的两个动点,孤立地看,变量增多(AM、MN、NB),问题较模型1复杂。

利用轴对称求最短距离

利用轴对称求最短距离
杂的图形找到基本图形—A点关于直线L的对称点A′,连AA′B,就能解
决关于轴对称图形求最小值问题。 解:(1)设直线AB的解析式为y=px+q
则 解得 ∴直线AB的解析式为y=-x+1 2分 ∵当x=3和x=-3时,这条抛物线上对应点的纵坐标相等 ∴抛物线的对称轴为y轴,∴b=0,∴y=ax 2+c 把A(-4,3)、B(2,0)代入,得:
A
D F M B C H E
(2)在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B 分别在X轴、Y轴的正半轴上,OA=3,OB=4,D为边OB的中点。
①若E为边OA上的一个动点,当?CDE的周长最小时,求点E的坐
标;
②若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小
时,求点E、F的坐标。
解①:作点D关于X轴对称点D′,连D′C交X轴与点E,则点E即为所
求D(1,0)
解②:∵EF=2,取CM=2作D关于X轴对称点D′,连D′M,交X轴于点
E,∵M(1,4) D′(0,-2)则D′M的解析式
Y=kx+b y
4=k+b B C
b=-2
D′M的解析式为 D
y=bx-2
一、基础知识 如图直线l同侧有两点A、B,在直线l上找点P,使得PA+PB最短,并 简要说明理由。解:作点关于直线l的对称点A′,连A′B交直线l于点 P,则点P即为所求,此时PA+PB=PA′+PB= A′B。
B A
PL LL
二、典型例题: A组(1)以菱形为载体的最短距离问题: 如图所示,菱形ABCD中, ∠ BAD=60°,AB=4,M是AB的中点,P是对 角线AC上的一个动点,则PM+PB的最小值是_________。 解:∵菱形ABCD是以AC为对称轴的轴对称图形。 ∴点B关于直线AC的对称点为点D, 连接DM交AC于点P,则PM+PB的最小值即为线段DM,此时DM= ∴PM+PM的最小值为.

初中数学专题复习(轴对称-最短距离问题)

初中数学专题复习(轴对称-最短距离问题)

初中数学专题复习(轴对称-最短距离问题)一.轴对称-最短路线问题1.(2020•荆门)在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动,A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为()A.2B.2C.6D.3解:设C(m,0),∵CD=2,∴D(m+2,0),∵A(0,2),B(0,4),∴AC+BD=+,∴要求AC+BD的最小值,相当于在x轴上找一点P(n,0),使得点P到M(0,2)和N(﹣2,4)的距离和最小,如图1中,作点M关于x轴的对称点Q,连接NQ交x轴于P′,连接MP′,此时P′M+P′N的值最小,∵N(﹣2,4),Q(0,﹣2)P ′M+P′N的最小值=P′N+P′Q=NQ==2,∴AC+BD的最小值为2.故选:B.2.(2020•贵港)如图,动点M在边长为2的正方形ABCD内,且AM⊥BM,P是CD边上的一个动点,E是AD边的中点,则线段PE+PM的最小值为()A.﹣1B.+1C.D.+1解:作点E关于DC的对称点E',设AB的中点为点O,连接OE',交DC于点P,连接PE,如图:∵动点M在边长为2的正方形ABCD内,且AM⊥BM,∴点M在以AB为直径的圆上,OM=AB=1,∵正方形ABCD的边长为2,∴AD=AB=2,∠DAB=90°,∵E是AD的中点,∴DE=AD=×2=1,∵点E与点E'关于DC对称,∴DE'=DE=1,PE=PE',∴AE'=AD+DE'=2+1=3,在Rt△AOE'中,OE'===,∴线段PE+PM的最小值为:PE+PM=PE'+PM=ME'=OE'﹣OM=﹣1.故选:A.3.(2020•恩施州)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=,∴△BFE的周长=5+1=6,故选:B.4.(2020•潍坊)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB 交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A.B.C.1D.解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO∴∵OC=2,OB=4,∴BC=2,∴,解得,CD=;∵CD∥AO,∴=,即=,解得,PO=故选:B.5.(2020•西宁)如图,等腰△ABC的底边BC=20,面积为120,点D在BC边上,且CD=5,直线EF是腰AC 的垂直平分线,若点M在EF上运动,则△CDM周长的最小值为18.解:如图,作AH⊥BC于H,连接AM,∵EF垂直平分线段AC,∴MA=MC,∴DM+MC=AM+MD,∴当A、D、M共线时,DM+MC的值最小,∵等腰△ABC的底边BC=20,面积为120,AH⊥BC,∴BH=CH=10,AH==12,∴DH=CH﹣CD=5,∴AD===13,∴DM+MC的最小值为13,∴△CDM周长的最小值=13+5=18,故答案为18.6.(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为15.解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′作A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB==10,∵A′H⊥AB,∴AH=HB=5,∴A′H=AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.7.(2020•毕节市)如图,已知正方形ABCD的边长为4,点E是边AB的中点,点P是对角线BD上的动点,则AP+PE的最小值是.解:如图,连接CE交BD于点P,连接AP,∵四边形ABCD是正方形,∴点A与点C关于BD对称,∴AP=CP,∴AP+EP=CP+EP=CE,此时AP+PE的最小值等于CE的长,∵正方形ABCD的边长为4,点E是边AB的中点,∴BC=4,BE=2,∠ABC=90°,∴CE==,∴AP+PE的最小值是,故答案为:.8.(2020•黑龙江)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△EGF,∴EG=AB=1,EG∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴EG=CD,EG∥CD,连接ED∴四边形EGCD是平行四边形,∴ED=GC,∴EC+GC的最小值=EC+ED的最小值,∵点E在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点M,连接CM交定直线于E,则CM的长度即为EC+DE的最小值,∵∠EAD=∠ADB=30°,AD=1,∴∠ADM=60°,DH=MH=AD=,∴DM=1,∴DM=CD,∵∠CDM=∠MDG+∠CDB=90°+30°=120°,∴∠M=∠DCM=30°,∴CM=2×CD=.故答案为:.9.(2020•日照)如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE.(1)求证:△ABC≌△BDF;(2)P,N分别为AC,BE上的动点,连接AN,PN,若DF=5,AC=9,求AN+PN的最小值.(1)证明:∵Rt△ABC中,∠C=90°,DF⊥CB,∴∠C=∠DFB=90°.∵四边形ABDE是正方形,∴BD=AB,∠DBA=90°,∵∠DBF+∠ABC=90°,∠CAB+∠ABC=90°,∴∠DBF=∠CAB,∴△ABC≌△BDF(AAS);(2)解:∵△ABC≌△BDF,∴DF=BC=5,BF=AC=9,∴FC=BF+BC=9+5=14.如图,连接DN,∵BE是正方形顶点A与顶点D的对称轴,∴AN=DN.如使得AN+PN最小,只需D、N、P在一条直线上,由于点P、N分别是AC和BE上的动点,作DP1⊥AC,交BE于点N1,垂足为P1,所以,AN+PN的最小值等于DP1=FC=14.10.(2019•西藏)如图,在矩形ABCD中,AB=6,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为()A.2B.2C.3D.解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=6,AE=2+2=4,∴BE===2,即PA+PB的最小值为2.故选:A.11.(2019•聊城)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB 的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),故选:C.12.(2019•黑龙江)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为4.解:如图,作PM⊥AD于M,作点D关于直线PM的对称点E,连接PE,EC.设AM=x.∵四边形ABC都是矩形,∴AB∥CD,AB=CD=4,BC=AD=6,∵S△P AB=S△PCD,∴×4×x=××4×(6﹣x),∴x=2,∴AM=2,DM=EM=4,在Rt△ECD中,EC==4,∵PM垂直平分线段DE,∴PD=PE,∴PC+PD=PC+PE≥EC,∴PD+PC≥4,∴PD+PC的最小值为4.13.(2019•陕西)如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为2.解:如图所示,以BD为对称轴作N的对称点N',连接PN',延长PN′交BC于M,根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==,∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.14.(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.15.(2019•德阳)如图,在四边形ABCD中,BC∥AD,BC=AD,点E为AD的中点,点F为AE的中点,AC⊥CD,连接BE、CE、CF.(1)判断四边形ABCE的形状,并说明理由;(2)如果AB=4,∠D=30°,点P为BE上的动点,求△PAF的周长的最小值.解:(1)四边形ABCE是菱形,理由如下:∵点E是AD的中点,∴AE=AD.∵BC=AD,∴AE=BC.∵BC∥AD,即BC∥AE.∴四边形ABCE是平行四边形∵AC⊥CD,点E是AD的中点,∴CE=AE=DE,∴四边形ABCE是菱形(2)由(I)得,四边形ABCE是菱形.∴AE=EC=AB=4,且点A、C关于BE对称∵点F是AE的中点,AF=AE=2∴当PA+PF最小时,△PAF的周长最小即点P为CF与BE的交点时,△PAF的周长最小,此时△PAF的周长=PA+PF+AF=CF+AF,在Rt△ACD中,点E是AD的中点,则CE=DE,∠ECD=∠D=30°,∠ACE=90°﹣30°=60°.∴△ACE是等边三角形.∴AC=AE=CE=4.∵AF=EF,CF⊥AE∴CF==2△PAF的周长最小=CF+AF=2.。

轴对称最短路线问题原理

轴对称最短路线问题原理

轴对称最短路线问题原理
一、问题描述
轴对称最短路线问题,即求平面上两点间沿轴对称线走的最短距离。

二、问题解法
1. 构造对称轴
首先需要找到两点的对称轴,对称轴的构造方法有多种,常用的有以
下两种:
(1)连接两点,垂直平分线即为对称轴。

(2)以两点为圆心,以它们之间的距离为半径,画两个圆;两圆的交
点就是对称轴。

2. 沿对称轴转换
对称轴将平面分为两个对称部分,假设起点在对称轴左侧(或右侧),求出终点在对称轴右侧(或左侧)的最短距离,即为要求的轴对称最
短路线。

3. 求最短距离
最短距离可以使用最短路算法(如 Dijkstra 算法、Bellman-Ford 算法等)来计算。

三、应用领域
轴对称最短路线问题常见于自动化生产线、机器人运动等领域,在这
些领域中,机器人需要在不碰撞的情况下从一个点到达另一个点,同
时保证走的路径最短。

该问题的解决方法可以为机器人运动路径规划
提供参考。

初中数学最短距离说明(奶站问题)

初中数学最短距离说明(奶站问题)

奶站问题的讨论以及解决策略奶站问题中中,关键在于,我们善于作定点关于动点所在直线的对称点,或利用平移和展开图来处理。

这对于我们解决此类问题有事半功倍的作用。

理论依据:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”“立体图形展开图”。

教材中的例题“饮马问题”,“造桥选址问题”“立体展开图”。

考的较多的还是“饮马问题”。

解题总思路:找点关于线的对称点实现“折”转“直”,利用平移把“折”转“直”,利用平面展开图把“折”转“直”。

一、运用轴对称解决距离最短问题利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离。

基本思路是运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.注意:利用轴对称解决最值问题应注意题目要求,根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.1、两点在一条直线异侧例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。

解:连接AB,线段AB与直线L的交点P ,就是所求。

(根据:两点之间线段最短.)2、两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C 就是所求的点.应用1、(2009年达州)在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).2、(2009年抚顺市)如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE 的和最小,则这个最小值为( ) A .23 B .26 C .3 D .63、(2009年鄂州)已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A +PD 取最小值时,△APD 中边AP 上的高为( ) A 、17172B 、17174C 、17178D 、33、一点在两相交直线内部例:已知:如图A 是锐角∠MON 内部任意一点,在∠MON 的两边OM ,ON 上各取一点B ,C ,组成三角形,使三角形周长最小.解:分别作点A 关于OM ,ON 的对称点A ′,A ″;连接A ′,A ″,分别交OM ,ON 于点B 、点C ,则点B 、点C 即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小4、两个点在矩形内部例:已知矩形ABCD 内有两个点M 、N ,过M 击球到CD 边P ,然后击到BC 边Q ,然后到N,则小球所走的最短路线?二、利用平移确定最短路径选址通过平移,除去固定部分的长,使其余几段的和正好为两定点之间的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用轴对称求最短距离
一、问题引入:
1、如下图,在直线异侧各有点A、B,在直线上找一点p,使PA+PB最小。

2、如下图,在直线同侧各有点A、B,在直线上找一点p,使PA+PB最小。

二、典型例题:
(1)、以菱形为媒介的最短距离问题:
如下图,菱形ABCD中,∠BAD=60°,AB=4,点M是AB中点,P是对角线AC上的一个动点,则PM+PB的最小值是多少?
(2)、以正方形为媒介的最短距离问题:
如下图,正方形ABCD边长为2,△ABE为等边三角形,且点E 分析:根据“两点之间线段最短”,可知:连接AB,与直线的交点即为P点.此基本类型为:一线(直线)两定点(点A、B)。

分析:作点A关于直线的对称点A′,连接AA′,则直线就是线段AA′的垂直平分线,根据“垂直平分线上一点到线段两端点的距离相等”可得,直线上任一点到点A的距离都等于到点A′的距离。

事实上,这个问题就可以转化成:在直线异侧各有点A′、B,在直线上找一点p,使PA′+PB最小。

即:一线两定点的问题。

由(1)得,连接BA′,与直线的交点即为点P。

分析:由题意知:首先找点B或者点M关于AC所在直线的对称点。

由菱形的轴对称性不难发现:点D即是点B关于直线AC的对称点,则连接DM与线段AC的交点即为P点。

那么PM+PB的最小值实际上就是线段DM的长度
分析:由题意知:首先找点D或者点E关于AC所在直线的对称点。

由正方
在正方形ABCD内部,在对角线AC上找一点P,使PD+PE最小,则这个最小值为多少?
(3)、以圆为媒介的最短距离问题:
如下图,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,
∠AOB=60°,P是OB上一动点,求PA+PC的最小值
(4)、以二次函数为媒介的最短距离:
如下图,抛物线y=x^2+2x-3与x轴交与A、B两点,与y 轴交与点C,对称轴上存在一点P,使△PBC周长最小,求P 点坐标。

三、巩固加深:
(5)、以三角形为媒介的最短距离问题:
如下图,在锐角△ABC 中,AB=4,∠BAC=45°, ∠BAC的角平分线交BC于D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少?形的轴对称性不难发现:点B即是点D关于直线AC 的对称点,则连接BE与线段AC的交点即为P点。

那么PD+PE的最小值实际上就是线段BE的长度,BE=2。

分析:由题意知:首先找点A或者点C关于OB所在直线的对称点。

由圆的轴对称性不难发现:延长AO交圆于点A′,则点A′即是点A关于直线OB的对称点,则连接CA′与线段OB的交点即为P点。

那么PA+PC的最小值实际上就是线段CA′的长度。

分析:由题意知:易得A(-3,0),B(1,0),C(0,-3),对称轴为:x=-1,△PBC周长=BC+PB+PC,因为BC是定值,则求△PBC 周长的最小值实际上就是求PB+PC的最小值。

然后找点B或者点C关于对称轴的对称点。

由二次函数的轴对称性不难发现:点A即是点B关于对称轴的对称点,则连接AC与对称轴的交点即为P点。

根据A点和C点坐标求出直线AC的函数解析式,然后令x=-1得出y的值,即得P点坐标。

分析:由AD是∠BAC的角平分线得,点N关于直线AD对称的点N′一定在线段AC上,则直线AD是线段NN′的垂直平分线,则MN=MN′,则求BM+MN的最小值就是求BM+MN′的最
(6)、如下图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴上,OA=3,OB=4,D 为OB中点。

(1)、若E为边OA上一个动点,当△CDE周长最小时,求点E坐标。

(2)、若E、F为边OA上两动点,且EF=2,当四边形CDEF周长最小时,求E、F坐标。

图1 图2
四:课堂小结:
通过本节课的学习,我们发现要想灵活掌握“利用轴对称来解决最短距离”的问题还是不容易的,它需要我们具有系统的知识结构、很高的知识素养,同时也要求我们具有丰富的想象能力以及灵活的创新能力,它还要求我们在学好基础知识的同时,还需要有大量的课外阅读知识!小值。

易知点B、M、N′三点共线时BM+MN′最小,根据“点到直线上点的距离中垂线段最短”得:过点B作AC的垂线,垂足为N′′,则B N′′的长度就是BM+MN′的最小值,也就是BM+MN的最小值。

由△AB N′′为等腰直角三角形,AB=4立得。

分析:(1)、很简单,作点D关于x轴的对称点D′,连接CD′与x轴的交点即为E点,然后根据点C和点D′的坐标求出一次函数解析式,令y=0,得x的值,立得。

(2)、要求四边形CDEF 周长的最小值,因为线段CD、EF都是定值,所以只要求DE+CF的最小值即可。

根据“两点间线段最短”,如果能将线段DE和CF转化到同一条直线上,那么求出的值肯定最小,于是我们想到作D关于x 轴的对称点D′(0,-2),作点G(2,-2),则GD′=2,连接CG交x轴于点F,则F点确定了,E点也就随之而确定。

这时四边形EFGD′是平行四边形,则FG=ED′=DE,此时CG就是DE+Cf的最小值。

相关文档
最新文档