数学第四章导学案

合集下载

人教版七年级数学上册导学案 第四章几何图形初步 4.1.1立体图形与平面图形

人教版七年级数学上册导学案 第四章几何图形初步 4.1.1立体图形与平面图形

人教版七年级数学上册导学案第四章几何图形初步 4.1.1立体图形与平面图形【学习目标】1.认识以生活中的事物为原型的几何图形;2.认识一些简单几何体的基本特性,能识别这些简单几何体.3.能由实物形状想象出几何图形,由几何图形想象出实物形状;初步理解立体图形与平面图形.【课前预习】1.下列各组图形中都是平面图形的是()A.三角形、圆、球、圆锥B.点、线段、棱锥、棱柱C.角、三角形、正方形、圆D.点、角、线段、长方体2.按组成面的平或曲划分,与圆柱为同一类的几何体是()A.长方体B.正方体C.棱柱D.圆锥3.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利4.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥5.乐乐玩橡皮泥时,将一个底面直径为4cm,高为4cm的圆柱,捏成底面直径为3.2cm的圆柱,则圆柱的高变成了()A.7.5cm B.6.25cm C.5cm D.4.75cm6.一个无盖的正方体盒子的平面展开图可以是下列图形中的()A.图2B.图1或图2C.图2或图3D.图1或图37.如图,点D,E,F分别是等边三角形ABC的边AB,BC,CA的中点,现沿着虚线折起,使A,B,C三点重合,折起后得到的立体图形是( )A.正方体B.圆锥C.棱柱D.棱锥8.下列几何体中,属于棱柱的有()A.6个B.5个C.4个D.3个9.下列所述物体中,与球的形状最类似的是()A.电视机B.铅笔C.西瓜D.烟囱冒10.奥运会的标志是五环,这五环的每一个环的形状与下列图形中类似的是()A.三角形B.正方形C.圆D.长方体【学习探究】自主学习阅读课本,完成下列问题1、观察下列几何图形(1)图中的长方体、正方体都有六个面,它们的各部分不都在__________内。

【人教版二年级数学下册】第4章表内除法(二)导学案

【人教版二年级数学下册】第4章表内除法(二)导学案
1、教学例1.(课件或小黑板出示彩旗图)
①看图,你知道什么信息?
(你能列出乘法算式吗?怎样计算?)
②如果要求每行有几面小旗,怎样列式?为什么?
(小组交流,说说方法和理由。)
③如果求有几行呢?该怎么计算?
(学生独立计算。)
④仔细观察这两道除法算式,你发现了什么?
(被除数相同,但除数和商的位置交换了。)
人教版二年级数学下册导学案
第四单元 表内除法(二)
使用说明及学法指导:
1、结合问题自学课本第37-39页例1、例2和“做一做”,用红笔勾画出疑惑点,独立思考完成自主学习和合作探究任务,并总结规律方法。
2、针对自主学习中找出的疑惑点,课上小组讨论交流,答疑解惑。
3、带﹡号的帮扶生不做。
学习目标:
1、让学生经历用7、8、9的乘法口诀求商的过程,掌握用乘法口诀求商的一般方法,形成用乘法口诀求商的计算技能。
4、在“○”里填上“+”“-”“×”或“÷”。
48○6=2○6 49○7=21○3
2○3=54○9 15○3=4○1
四、拓展作业:(1、先独立答题 2、组内交流 3、师生交流)
1、( )里最大能填几?
15÷( )>4 36÷( )>8
40÷( )>7 35÷( )>6
2、一道除法算式题,除数是9, 芳芳把被除数十位和个位上的数字看颠倒了。结果除得的商是7.正确的商是几?
七、板书设计:
解决问题
一个地球仪要8元,56元可以买几个地球仪?
解:56÷8=7(个)
答:56元可以买7个地球仪.
教学反思:
使用说明及学法指导:
1、结合问题自学课本第43、44页以及练习九中的第1题、第5—9题、思考题。用红笔勾画出疑惑点,独立思考完成自主学习和合作探究任务,并总结规律方法。

部编RJ人教版 初一七年级数学 上册第一学期秋季(导学案)第四章 几何图形初步(全章 分课时)

部编RJ人教版 初一七年级数学 上册第一学期秋季(导学案)第四章 几何图形初步(全章 分课时)

第四章 几何图形初步. .根据已有的数学经验,我们能否把它们进行分类?你的标准是什么?要点归纳2. 观察小茗的房间,说说你能看到哪些立体图形.探究点3:平面图形观察与思考:说一说下面这些几何图形又有什么共同特点?画一画A. ①⑤①B. ①C. ①⑤⑥D. ⑤⑥4. 月球、西瓜、易拉罐、篮球、热水瓶胆、书本等物体中,形状类似圆柱的有6. 图中的各立体图形的表面包含哪些平面图形?试指出这些平面图形在立体图形中的 位置.第四章 几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第2课时 从不同的方向看立体图形和立体图形的展开图学习目标:1. 了解立体图形与平面图形之间的联系.2. 能画出简单立体图形从不同方向看得到的平面图形.3. 了解研究立体图形的方法,体会一个立体图形按照不同方式展开可得到不 同的平面展开图.4. 通过展开与折叠,了解棱柱、棱锥、圆柱、圆锥、长方体、正方体的表面 展开图或根据展开图判断立体图形.重点:了解立体图形从不同方向看能够得到平面图形,了解基本几何体与其展开图的关 系,体会一个立体图形可以有多种展开图.难点:会画简单立体图形从不同方向看得到的平面图形,能够画出简单立体图形的展开 图,或根据展开图判断立体图形.二、要点探究探究点1:从不同的方向看立体图形 合作探究:画出正方体、长方体、圆柱体、圆锥、四棱锥、三棱柱从正面、左面、上面看得到的平面图形.这些展开图有没有什么规律?哪些展开图可以分为一类,为什么?2. “坚”在下,“就”在后,“胜”和“利”在哪里?3. 下面图形是一些多面体的表面展开图二、课堂小结常见几何体的展开图:1. 下图所示的从正面、上面看到的图形对应的是 ( )2. 下图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是( )3. 下图是由一些相同的小正方体构成的几何体的从正面、左面、上面看得到的三个平面图形,这些相同的小正方体的个数是 ( ) A .4个B .5个C .6个D .7个4. 下列的三幅平面图是三棱柱的表面展开图的有(多选) ( )5. 如图是一个立方体纸盒的展开图,使展开图沿虚线折叠成正方体后相对面上的两个数互为相反数,求:a= ;b= ;c= .第四章几何图形初步..包,线和线相交的地方是.这可以说成点动成线. 类如下图,围成这些立体图形的各个面中,哪些面是平的?哪些面是曲的?请把下图中的平面图形与其绕轴旋转一周后得到的立体图形连接起来.,宽为2cm的长方形,绕其一边进行旋转得到一几何体.这个几何体是什么?4.2 直线、射线、线段第1课时 直线、射线、线段.. ..将你联想到的图形填在图形下边的横线上(填._________________ _______________ ________________ 2.自己动手,分别画一条直线、射线和线段. A ,B 可以画几条直线? .简称:两点确定一条直线.. 并使其不能转动,至少需要几个钉子?你知道这样做 .A.B相交于点O4.2 直线、射线、线段第1课时 直线、射线、线段... ....AB )等于已知线段(a )的作法: AC 上截取AB=a.,CD 的长短.AB 、CD 的长度,再进行比较:几何语言:∵ M 是线段 AB第3题图第1题图第2题图要点归纳:1.两点的所有连线中,_____最短.简称:两点之间,2.连接两点间的线段的,叫做这两点的距离.两个村庄,如图,现在要在公路l上建一个汽两村庄的距离之和最小,请在图中画出汽车站的位置第2题图4.3 角4.3.1 角.... ._______组成的图形,叫做角.这个公共端点叫做角的叫做角的两条边.四、我的疑惑______________________________________________________________________________________________________________________________________________________六、要点探究探究点1:角的概念及表示方法问题1 有哪些方式可以表示如图所示的角?问题2 下图中有哪些角?如何表示?还能用∠O 表示∠AOB 吗?要点归纳:角的表示方法:①用一个大写字母表示,该大写字母表示的点为顶点;②用三个大写字母表示;③用一个数字或一个小写希腊字母表示.注意:①当两个或两个以上的角共同一个顶点时,不能用一个大写字母表示;②当用三个大写字母表示角时,必须把顶点字母放在中间;③用数字或希腊字母表示角时,一定要在图形中用角弧标出.思考:角也可以看做由一条射线绕着它的端点旋转所形成的图形. 如图,射线OA 绕点O 旋转,当终止位置OB 和起始位置OA 成一条直线时,形成什么角?继续旋转,OB 和OA 重合时,又形成什么角?1.用一个大写字母表示:∠_____2.用三个大写字母表示:∠_____或∠_____3.用一个小写希腊字母或数字表示:∠_____图中的角有___________________________________ ____________________________________________. ___________(填“能”或不能)用∠O 表示∠AOB.下列说法正确的是平角是一条直线填写下表,将图中的角用不同方法表示出来.°.1°=′;针对训练1.计算:(1)5°=(3)36″=当堂检测5.如图所示:-1) 条呢?4.3 角4.3.2 角的比较与运算....针对训练如图所示:(1) ∠AOC是哪两个角的和?(2) ∠AOB是哪两个角的差?(3) 如果∠AOB=∠COD,则∠AOC与∠BOD的大小关系如何?(1) 如图①,若∠AOC=35°,∠BOC=40°,则∠AOB=度.(2) 如图②,若∠AOB= 60°,∠BOC=40°,则∠AOC=度.(3) 若∠AOB=60°,∠AOC=30°,则∠BOC=度.易错提醒:在计算角的度数时,若无图,一定要注意分类讨论.试一试:如图,借助一副三角尺可以画出15°和75°的角,你还能画出哪些度数的角?例2计算(1)120°-38°41′;(2)67°31′+48°49′.的角的射线,叫做这个角的平分线..4.3.3 余角和补角... . 1+∠2= °, 图① 90°(直角),就说这两个角互为______ (简称为两个角______ ). 是∠2的余角,或∠2是∠1的余角,或∠1和∠2互余.180°(平角),就说这两个角互为______ (简称为两个角______). 是∠4的补角,或∠4是∠3的补角,或∠3和∠4互补.的补角探究点3:方位角八大方位 正东: 正南: 正西: 正北: 西北方向: 西南方向: 东北方向: 东南方向:例4 如图,货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上. 同时,在它北偏东40°,南偏西10°,西北 (即北偏西45°)方向上又分别发现了客轮B ,货轮C 和海岛D . 仿照表示灯塔方位的方法画出表示客轮B ,货轮C 和海岛D 方向的射线.针对训练1. 如图,说出下列方位(1) 射线 OA 表示的方向为 . (2) 射线 OB 表示的方向为 .(3) 射线 OC 表示的方向为 . . (4) 射线 OD 表示的方向为 .2.费俊龙、聂海胜乘坐“神舟”六号遨游太空时,我国当时派出远望一号~四号船队,跟踪检测. 其中远望一、二号停在太平洋洋面上,某一时刻,分别测得神舟六号在北偏东60°和北偏东30°的方向,你能在下图中画出当时神舟六号所处的位置吗?的北偏东60°的方向上,那么点A在点C。

八年级数学第四章导学案

八年级数学第四章导学案

第四章:一次函数 4.1 函数知识点:1、在某一个变化过程中,数值 的量,我们称之为变量.2、数值 的量,我们称之为常量.3、一般地,如果在一个变化过程中,有 变量x 和y ,对于x 的每一个值,y 都有 的值与之对应,我们称y 是x 的函数.其中x 是 ,y 是 .4、表示函数的方法一般有: 、 、 。

5、求函数自变量取值范围的两个依据:一是要使函数的 有意义:二是对于反映实际问题的函数关系,应使 有意义。

典型例题:【例1】求下列函数当 时的函数值:(1) (2)(3)(4)【例2】函数y =中,自变量x 的取值范围是( ).A .2x >-B .2x -≥C .2x ≠-D .2x -≤ 【例3】(2009重庆綦江)如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD 的面积是( ) A .3 B .4 C .5 D .6【例4】 如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )【例5】2009年重庆)如图,在矩形ABCD 中,AB=2,1BC =,动点P 从点B 出发, 沿路线B C D →→作匀速运动,那么ABP △的面积S 与点P 运动的路程x 之间的函数图象大致是( )图1AB C PD 图2A .B .C .D .夯实基础训练一、选择题1. 某同学在做电学实验时,记录下电压(伏特)与电流(安培)有如下对应关系:请你估计,若电流是5安培时,电压为( )伏特. A 、10.5 B 、6 C 、80 D 、182.三角形的一条边长为a ,这条边上的高为h ,h 为常量,已知当a=6时,三角形面积S=12,则当a=4时,S 的值为( ).A 、4B 、6C 、8D 、103. 某中学要在校园内划出一块面积是100cm 2的矩形土地做花圃,设这个矩形的相邻两边的长分别为xm 和ym ,那么y 关于x 的函数关系式可表示为( ). A 、y=100x B 、y= 100 – x C 、y=50 – x D 、4.一个正方形的周长p (cm )与这个正方形的面积S (cm2)之间的关系为( ).A 、S=4p 2B 、S= p 2C 、162p s = D 、42p s =二、填空题1. 无线市话小灵通的通话收费标准为:前3分钟(不足3分钟按3分钟计)为0.2元,3分钟后每分钟收0.1元,则一次通话时间x 分钟(x>3)与这次通话的费用y (元)之间的关系式为 .2.把方程xy=3x-5y 改成用x 的代数式表示y 的函数形式为 ,当x=5时,y 的值为 .3.当x=2时,函数y=kx+10与函数y=3x+3k 的值相等,则k 的值等于 .A .B .C .D .D C P BA例2图三、解答题如图,等腰直角△ABC 的直角边长与正方形MNPQ 的边长均为10 cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分面积y cm 2与MA 长度x cm 之间的函数关系式.拓展知识训练一、选择题1. 一个长方形的周长为8cm ,若长是xcm ,宽是ycm ,则y 关于x 的函数关系式是 . A 、y = 4 +x B 、y= 4 – x C 、y = 8+ x D 、y = 8/x2.函数x y 215+=中,自变量x 的取值范围( ). A 、x ≥-2 B 、x ≥-10 C 、x ≤-10 D 、x ≤-5 二、解答题3. 某商店售货时,在进价的基础上加一定的利润,其数量与售价如下表:(1)请写出y 与x 的关系式,并指出自变量和因变量; (2)求出当数量为6.5千克、8千克时的售价分别是多少?4. 如图,一个四棱柱的底面是一个边长为10cm 的正方形,它的高h 变化时,棱柱的v 体积也随着变化.(1))请写出v 与h 的关系式,指出问题中的自变量与因变量; (2)当高为7cm 时,求棱柱的体积;(3)棱柱的高由1cm 变化到50cm 时,它的体积由 变化成 .4.2 一次函数知识点:1、一次函数的定义:一般地,形如y=kx+b(k,b 是常数,且k ≠0)的函数,叫做 . (x 为 ,y 为 )。

四年级数学下册第四单元《小数的意义和性质》导学案

四年级数学下册第四单元《小数的意义和性质》导学案

第四单元小数的意义和性质导学案单元教学总述单元内容导引本单元的主要内容有小数的意义和读写法、小数的性质和大小比较、小数点移动引起小数大小的变化、小数与单位换算、小数的近似数。

小学阶段小数的意义和性质的学习有两方面作用:一是对数系加以扩展,为中学学习有理数打下基础。

由于小数在日常生活中的应用比较广泛,学生也经常有机会接触小数,学习一些小数的知识,有助于他们理解生活中小数的具体含义,从而拓宽数学视野,同时对数的认识范围加以扩展。

二是会运用小数的知识解决生活中的实际问题,提高数学应用能力。

在日常生活中,学生会经常遇到有关小数的问题,所以有必要系统学习小数,体现数学的应用价值。

本单元内容是在“分数的初步认识”“小数的初步认识”的基础上教学的,是学生系统学习小数的开始。

通过这部分内容的学习,使学生进一步理解小数的意义和性质,为今后学习小数四则运算打好基础。

单元学习目标1.了解小数的产生,理解并掌握小数的意义,认识小数的计数单位。

2.掌握小数的数位顺序表,会正确读写小数。

3.理解并掌握小数的性质,会正确比较小数的大小。

4.理解并掌握小数点位置移动引起小数大小变化的规律。

5.理解现实生活中常见的小数所表示的实际意义,能对同一数量进行不同单位之间的改写、换算。

6.能根据需要用“四舍五入”法对一个小数保留一定的小数位数,能将较大的数改写成用“万”或“亿”做单位的数。

单元重难剖析重点:1.理解小数的意义,认识小数的计数单位,会读写小数,会比较小数的大小。

2.掌握小数的性质和小数点移动引起小数大小变化的规律。

3.能按照“四舍五入”法求出小数的近似数。

难点:1.理解小数的基本性质。

2.理解小数点移动引起小数大小变化的规律,并能应用这个规律解决实际问题。

3.理解把较大的数改写成用“万”或“亿”做单位的数与求一个数的近似数的区别。

单元结构导图课时教学设计1.小数的意义和读写法课时1 小数的意义(2)引导学生明确:110米可以用0.1米表示。

新人教版七年级数学上册第四章复习导学案

新人教版七年级数学上册第四章复习导学案

最新人教版七年级数学上册第四章复习导学案学习目标:1.进一步熟悉常见几何体的基本特征,能正确识别常见的几何体.2.熟悉和了解常见几何体的平面展开图以及简单几何体的三视图.3.进一步认识点、线、面、体及其相互关系.学习重点:能正确识别常见的几何体及其平面展开图.学习难点:正确作出简单几何体的三视图.使用要求:1.阅读课本P151小结2.完成教材P152复习题4第1、2、3题;3.限时25分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、知识回顾:1.什么是几何图形?几何图形可分为_______和________两大类.2.常见的立体图形:常.见.的立体图形大致可分为:柱体、锥体和球体三类.(1)下面的几何体都我们生活中常见的,你能不能找到生活中的实例图形.长方体、正方体、球、圆柱、圆锥、棱柱、棱锥、棱台、圆台等.(2)完成教材P152复习题4第1题.3.常见的平面图形:试写几个常见的平面图形,找一找生活中的实例,想一想其图形的形状. 4.点、线、面、体及其相互间的关系.5.简单几何体的三视图.从正面看从左面看从上面看按要求画出这个几何体从正面、左面、上面观察所得到的三视图.二、合作探究:1.如图,左边这个几何体的展开图可以是()A B C D【老师提示】当我们不能正确判断时,最好动手折一折.2.如图,把左边的图形折叠起来,它会变为 ( )A B C D3.下面是水平放置的四个几何体,从正面观察不是长方形的是()A B C D4.如图,5个边长都为1㎝的正方体摆在桌子上,则露在表面的部分的面积是_______.5.P152复习题4第2、4题.二、学习小结:三、作业:P152复习题3第3、10、11题.。

六年级上册第四单元(比和按比例分配)

六年级上册第四单元(比和按比例分配)

小学数学六年级上册第四单元导学案—1—4.1 比的意义和性质(一)学习内容:西师版教材六年级上册第四单元第一节例1、课堂活动及练习十四的第1题、第5题的第1小题。

课 型:新授课学习目标:1.理解比的意义,掌握比的读写方法,知道比的各部分名称,理解并掌握比与除法、分数的关系,掌握求比值的方法,会正确求比值。

2.结合实际情境并经历比的概念的形成过程,感悟数学知识之间的内在联系,培养学生观察、比较、抽象、概括以及推理的能力,发展学生的数学思维。

3.运用所学内容,解决生活实际问题,增强对数学与实际生活联系的感受。

学习重点:比的意义的理解。

学习难点:比与除法、分数之间的联系与区别。

教学准备:多媒体。

✂回顾旧知1.填空。

速度=( )÷( );单价=( )÷( );工作效率=( )÷( )。

2.用分数表示下面的商。

2÷3 = 5÷7 = 17÷6 = 1÷19 =(想一想:分数与除法有什么关系?在除法中除数能不能为0?分数的分母能不能为0?)3.一个长方形的长是10 cm ,宽是7 cm ,这个长方形的宽是长的几分之几?✂新课先知阅读课本第50页,思考并回答下面问题:1.仔细分析例1的表格。

张丽用的时间是李兰用的时间的几倍?李兰到学校的路程是张丽到学校的路程的几分之几?列式并计算。

这两个问题都要用( )法来解决。

2.根据3÷8= 38,我们还可以把它们之间的关系用( )来表示,3÷8可以写成( )或( ),都读作( )。

3.什么叫做两个数的比?比的各部分名称分别是什么?4.怎样求一个比的比值?5.比5﹕4读作( ),它的比值是( )。

6.完成课本第50页的“试一试”。

(做在书上)✂初步构建学习小组合作交流自主学习导学版块内容。

学生在教师的引导下初步掌握本节课将要学习的基础知识,搭建本节课要将学习的知识体系。

—2—✂自主检测1.9比5写成( ),也可以写成( );其中( )是比的前项,( )是比的后项,它的比值是( )。

新人教版七年级数学上册第四章导学案

新人教版七年级数学上册第四章导学案

新人教版七年级数学上册第四章导学案教学目标:知识目标:1、对所学的知识能准确应用来解决具体的问题 ;2、明确每一个知识具体在什么时侯进行应用。

情感与能力目标:对相近似知识点能进行区别,并准确地应用。

教学重点:对每一个知识点能进行准确、熟练应用。

教学难点:相近似知识点能进行区别。

学法指导:学生自主学习,培养学生独立思考的学习习惯。

1、等式的两条性质在应用时,何时应用加减性质?何时应用乘除性质?请你说出你的判定原则。

2、一元一次方程求解的基本步骤有五步。

是不是在解一元一次方程时五步全部出现呢?有些步骤可否重复出现吗?3、列一元一次方程解应用题的关键所在是什么?1、主要是学生回忆前面的作业中出错的题目中,自已存在的知识差异在什么地方。

2、进一步理解教材中的知识点。

1、下列变形中,正确的是 ( )A 若x x 52=,则5=x ;B 若y a x a 22=,则y x =;C 若823=-k ,则12-=k ; D 若ay a x =,则y x =。

2、 由y x =+1变形为525)1(2-=-+y x ,变形的过程中所用等式的性质及顺序是( )。

A 先性质2,再性质1; B 先性质1,再性质2; C 仅用性质1; D 仅用性质2.3、解下列方程:⑴、)6()2(3)12(2+--=+y y y ; ⑵、13126823-+=--+m m m 。

4、水池有一进水管,6小时可注满空池;它底部有一个出水管,8小时可放完满池的水;若同时打开进水管和出水管,问多少小时可以把空水池注满?(知识准备中的三个问题 )(一)基础知识探究例题1:选择或填空:⑴、下列结论正确的是 ( )A 等式5363+=-n m 两边都除以3,可得等式52+=-n m ;B 等式357+=y y 两边都减去3-x ,可得等式6436+=-y y ;C 等式t 1.05-=,可得5.0-=t ;D 等式k =-23,则有23-=k 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲沟镇一中数学导学案册次:课题: 图形认识初步课时时间【学习目标】:1、观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;2、能由实物形状想象出几何图形,由几何图形想象出实物形状;3、能识别一些简单几何体,正确区分平面图形与立体图形。

【重点难点】:1、识别简单的几何体是重点2、从具体事物中抽象出几何图形是难点。

一、自主探究1.几何图形(1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界;(2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题:从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。

我们把这些图形称为几何图形。

2.立体图形思考第117页思考题并出示实物,它们与我们学过的哪些图形相类似?长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。

思考:课本118页图4.1-4中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来。

3.平面图形平面图形的概念:线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。

请再举出一些平面图形的例子?长方形、圆、正方形、三角形、……。

思考:立体图形与平面图形是两类不同的几何图形,它们的区别在哪里?它们有什么联系?1、立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;2、立体图形中某些部分是平面图形。

【课堂练习】:课本119页练习【要点归纳】:1、 2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。

【拓展训练】1.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是( )A. ①②③;B. ③④⑤;C. ① ③⑤;D. ③④⑤⑥【总结反思】:现实物体 几何图形 平面图形立体图形看外形曲沟镇一中数学导学案册次:课题: 4.1.1几何图形(2)课时时间【学习目标】:1初步体会从不同方向观察同一物体可能看到不一样的结果,2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;【学习重点】:识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形【学习难点】:画出从正面、左面、上面看正方体及简单组合体的平面图形【导学指导】一、知识链接多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》并说说诗中意境。

横看成岭侧成峰,远近高低各不同。

不识庐山真面目,只缘身在此山中。

从数学的角度来理解是什么意思呢?二、自主探究1.说一说:分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物2.画一画:长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(出示实物)这样,我们将立体图形转化成了平面图形3.探究活动1:从正面、左面、上面观察得到的平面图形能画出来吗?小组合作学习,动手画一画,并进行展示探究:分别从正面、左面、上面观察课本119页图4.1-8这个图形,分别画出得到的平面图形。

【课堂练习】:课本120页练习1【要点归纳】:1.本节课我们主要学习了什么?2.有哪些收获?【拓展训练】1. 如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。

【总结反思】:A.B.C.D.曲沟镇一中数学导学案册次:课题: 4.1.1几何图形(3)课时时间【学习目标】:1.能直观认识立体图形和展开图,了解研究立体图形方法。

2.通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,培养动手操作能力,初步建立空间观念,发展几何直觉。

【学习重点】:了解基本几何体与其展开图之间的关系,体会一个立体按照不同方式展开可得到不同的平面展开图。

【学习难点】:正确判断哪些平面图形可以折叠为立体图形;某个立体图形的展开图可以是哪些平面图形【导学指导】一、知识链接我们把一些像墨水瓶盒、粉笔盒这样的纸盒沿它的表面适当剪开,可以展平成平面图形。

这样的平面图形叫做相应立体图形的展开图。

你知道长方体、圆柱、圆锥和三棱柱的展开图是什么样子的吗?二、自主探究(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会? 再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种, 请你画出其余5种。

(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?凭想象回答,回答不出来的,就把它画在纸片上,剪下来折叠。

做一做:下面是一些常见几何体的展开图,的名字么?【课堂练习】:课本121页练习2【要点归纳】:1..我学会了什么?2我发现了什么?【拓展训练】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.【总结反思】:曲沟镇一中数学导学案册次:课题: 4.1.2点、线、面、体课时时间【学习目标】:(1)了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面;(2)了解几何图形构成的基本元素是点、线、面、体及其关系能正确判定由点、面、体经过运动变化形成的简单的几何图形;【学习重点】:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系。

【学习难点】:探索点、线、面、体运动变化后形成的图形。

【导学指导】一、温故知新1.出示一个长方体模型,请同学们认真观察。

2.回答问题:这个长方体有几个面?面与面相交成了几条线?•线与线相交成几个点?二、自主探究1.经过学生的独立思考,然后在小组中进行交流,在小组讨论中,评价并修正自己的结论。

(教师进行巡视,及时给予指导,教师对学生分布的答案作鼓励性评价)。

2.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?3.面的分类通过对上面问题的解决,得出面的分类:____面和___面。

面与面相交成线,线有___线和____线;线与线相交成_____;4点、线、面、体教师指导学生看课本第121~122页内容,•观察图片能发现什么结论?点、线、面、体的关系:点动成_____,线动成___________,面动成________。

请你再举出生活中的一些实例:5.点、线、面、体与几何图形关系.指导学生阅读课本第123页内容,总结出点、线、面、体与几何图形的关系几何图形都是由_______________________组成的,________是构成图形的基本元素。

【课堂练习】课本第122页练习1、2;【要点归纳】:1.本节课我们主要学习了什么?2. 本节课我们有哪些收获?【拓展训练】:1.人在雪地上走,他的脚印形成一条_______,这说明了______的数学原理;2.体是由_______围成的,面和面相交形成_______,线和线相交形成______;3.点动成________,线动成______,面动成_______;4.将三角形绕直线L旋转一周,可以得到如下图所示立体图形的是()A B C D 【总结反思】:曲沟镇一中数学导学案册次:课题: 4.2直线、射线、线段(1)课时时间【学习目标】:1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,能用几何语言描述直线性质;2.会用字母表示直线、射线、线段,会根据语言描述画出图形;【重点难点】:理解并掌握直线性质,会用字母表示图形和根据语言描述画出图形;【导学指导】一、知识链接1.在小学已经学过了直线、射线、线段.请你画出一条直线、一条射线、一条线段?2.填写下列表格:1、直线的性质(1)如果你想将一根细木条固定在墙上,至少需要几个钉子?操作一下,试试看。

(2)经过一个已知点的直线,可以画多少条直线?请画图说明。

(3)经过两个已知点画直线,可以画多少条直线?请画图试试。

猜想:如果将细木条抽象成直线,将钉子抽象为点,你可以得到什么结论?直线的基本性质:经过两点有 条直线,并且 条直线;简述为:举例说明直线的性质在日常生活中的应用:(1) 在挂窗帘时,只要在两边钉两颗钉子扯上线即可,这是因为(2)建筑工人在砌墙时拉参照线,木工师傅锯木板时,用墨盒弹墨线,都是根据(3)你还能从生活中举出应用直线的基本性质的例子吗?试试看:2、直线有两种表示方法:①用一个小写字母表示;②用两个大写字母表示。

平面上一个点与一条直线的位置有什么关系?①点在直线上;②点在直线外。

当两条直线有一个共公点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

3、射线和线段的表示方法:如图。

显然,射线和线段都是直线的一部分。

图①中的线段记作线段AB 或线段a ;图②中的射线记作射线OA或射线m 。

注意:用两个大写字母表示射线时,表示端点的字母一定要写在前面。

思考:直线、射线和线段有什么联系和区别?【课堂练习】B A 直线AB · · a 直线a 点B 在直线外 · B ·点A 在直线A O b a · a · B A O A m · ②①1.下列给线段取名正确的是()A.线段M B.线段m C.线段Mm D.线段mn2下列语句中正确的个数有( )①直线MN与直线NM是同一条直线②射线AB与射线BA 是同一条射线③线段PQ与线段QP是同一条线段④直线上一点把这条直线分成的两部分都是射线.A.1个B.2个C.3个D.4个3、129页练习【要点归纳】:通过本节课的学习你有什么收获?【拓展训练】1.如图,线段AB上有两点C、D,则共有条线段。

A C D B2.变形题:往返于甲、乙两地的客车中途要停靠三个车站,有多少种不同的票价?要准备多少种不同的车票?总结反思】:曲沟镇一中数学导学案册次:课题: 4.2直线、射线、线段(2)课时时间【学习目标】:1、会用尺规画一条线段等于已知线段;2、会比较两条线段的长短;3、理解线段中点的概念,了解“两点之间,线段最短”的性质。

【学习重点】:线段的中点概念,“两点之间,线段最短”的性质是重点;【学习难点】:画一条线段等于已知线段是难点。

相关文档
最新文档