数制与编码
数制与编码

第一章数制与编码1.1 数制数制是计数的方法,通常采用进位计数制。
在进位计数制的多位编码中,数制是:⏹ 每一位的构成方法,以及⏹ 从低位到高位的进位规则。
常用的数制:⏹ 二进制(Binary )、 ⏹ 八进制(Octal )、 ⏹ 十进制(Decimal )、 ⏹ 十六进制(Hex-decimal )。
例如:十进制:⏹ 每一位——十进制数由0~9个数字符号(数码)和小数点组成, ⏹进位规则——“逢十进一”(基数为10)。
1.1.1 记数法和分析方法记数法——位置记数法, 分析方法——按权展开式。
例如:十进制数(652.5)10=6×102+5×101+2×100+5×10-1左边为“位置记数法”,右边为“按权展开式”。
代数式为:∑⨯=iiikD 10说明:每一个数位上的数码有不同的权值, ⏹ 权值从左到右以基数的幂次由大到小, ⏹ 数位从左到右由高位到低位排列。
例如:二进制数(101.11)2 = 1×22+0×21+1×20+1×2-1+1×2-2任意进制(基数为R )记数法:∑--=----==110121).()(n mi iiR m n n R R kk k k k k k D八进制和十六进制的按权展开式以此类推。
位置记数法 按权展开式1.1.2 数制转换数值相等,记数方法(数值)不同的数之间的转换。
数制转换的本质是——权值的转换。
1.1.2.1 任意进制到十进制的转换利用任意进制数的按权展开式,可以将一个任意进制数转换成等值的十进制数。
例如:(1011.01)2 =1×23+0×22+1×21+1×20+0×2-1+1×2-2=(11.25)10例如:(8FA.C)16=8×162+F ×161+A ×160+C ×16-1=2048+240+10+0.75=(2298.75)101.1.2.2 “十 二”进制转换考查整数部分,数的二进制按权展开式:设:(D )10可以由n 位二进制数表示,即 (D )10=(k n -1k n -2,…,k 1k 0)2 存在:(D )10=k n -1×2n -1+k n -2×2n -2+…+k 1×21+k 0×20 (D )10/2= k n -1×2n -2+k n -2×2n -3+…+k 1×20 + k 0 / 2((D )10/2商的整数部分)/2= k n -1×2n -3+k n -2×2n -4+…+k 2×20 + k 1 / 2“孤立”余数后,整数的商再除以基数2,依次类推;余数依次为从低到高位的二进制数位。
计算机中的数值和编码

计算机中的数制和编码一、数制的概念:数制是用一组固定的数字和一套统一的规则来表示数目的科学方法。
按照进位方式计算的数制叫做进位数制。
例如:逢十进一即为十进制,逢二进一为二进制,逢八进一为八进制,逢十六进一为十六进制。
进位计数制有两个要素:基数和权值。
1、基数:它是指各种进位计数制中允许选用基本数码的个数。
例如:十进制的数码有0、1、2、3、4、5、6、7、8、9十个数码,所以十进制的基数为10;二进制的数码有0、1两个数码,所以二进制的基数为2;八进制的数码有0、1、2、3、4、5、6、7八个数码,所以八进制的基数为8;十六进制的数码有0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F十六个数码,所以十六进制的基数为16。
2、权值:每个数码所表示的数值等于该数码乘以一个与数码所在位置相关的常数,这个常数叫权值。
其大小是以基数为底,数码所在位置的序号为指数的整数次幂。
例如:十进制数356.4=3×100+5×10+6×1+0.4=3×102+5×101+6×100+4×10-1(3在百位上,所以3×100=3×102;5是在十位上,所以5×10=5×101;6是在个位上,所以6×1=6×100;0.4为小数,所以0.4=4×10-1)。
二、十进制(D ecimal notation)及其特点:1、两个特点:①、十个数码:0、1、2、3、4、5、6、7、8、9;②、进位方法:逢十进一,借一当十。
(满了10个就得进一位)2、基数:103、按权展开式:任意一个a位整数和b位小数的十进制数D可以表示为:D=D a-1×10a-1+D a-2×10a-2+…+D0×100+D-1×10-1+D-2×10-2+…+D-b×10-b4、十进制在书写中的三种表达方式:128或者128D或(128)10三、二进制(B inary notation)及其特点:1、两个特点:①、两个数码:0、1;②、进位方法:逢二进一,借一当二。
计算机中的数制及其编码

一、计算机中的数制及其转换
2. 数制之间的转换
(4) 二、十六进制之间的转换
二进制十六进制: 以小数点为界,分别向左、向右四位一组分段,不足四位 补0(整部在前,小数部分在后),然后将每段换成对应的十 六进制数码。 十六进制二进制: 将每位十六进制数码换成对应的四位二进制数,然后去前 后无效的0。 例7 (10110101.10101011)2 =(1011 0101. 1010 1011)2 =(B5.AB)16 (56A.C4)16 =(0101 0110 1010. 1100 0100)2
一、计算机中的数制及其转换
2. 数制之间的转换
(2) 十进制数转换为非十进制数
例4 (123.45)10 =(? 2 123……..1 2 61…….1 2 30……0 2 15…...1 2 7…..1 2 3…..1 2 1….1 0 )2 低位
0
1
高位
除 到 商 为 0 时 停 止
1
1 0 0 1
一、计算机中的数制及其转换
2. 数制之间的转换
(1) 非十进制数转换为十进制数
例2:(345.67)8 = 3*82 + 4*81 + 5*80 + 6*8-1 + 7*8-2 = 192 + 32 + 5 + 0.75 + 0.109375 = (229.859375)10
例3: (2FA.D)16 = 2*162 + 15*161 + 10*160 + 13*16-1 = 512 + 240 + 10 + 0.8125 = (762.8125)10
+101.0001 1111.0001 10.1 ×100 000 000 +101 10100 101.0001 11001.0101 101 101 101
数制和编码

补码[X]补
定义: 若X>0, 则[X]补= [X]反= [X]原 若X<0, 则[X]补= [X]反+1 正式定义为:
[ X ]补 2n+X - 2n1 ≤ X<2n1
35
例
X= –52= – 0110100 [X]原=10110100 [X]反=11001011 [X]补= [X]反+1=11001100
Y3 Y4 Y5 Y6 Y7 11111 11111 11111 11111 11111 11111 11111 01111 10111 11011 11101 11110
25
§2.3 符号数的表示及运算
计算机中的符号数的表示方法:
把二进制数的最高位定义为符号位。
符号位:“0”
表示正,
“1”
表示负。
38
8/16位符号数的表示范围
对8位二进制数: 原码: -127 ~ +127 反码: -127 ~ +127 补码: -128 ~ +127 对16位二进制数: 原码: -32767 ~ +32767 反码: -32767 ~ +32767 补码: -32768 ~ +32767
39
A
&
C
B
A∧B=C
A
≥1
C
B
A∨B=C
21
“非”、“异或”运算
“非”运算即按位求反
两个二进制数相“异或”: 相同则为0,相异则为1
A
1
B
A
⊕
C
B
B=A
A B=C
22
“与非”、“或非”运算
A∧B=C
A
&
计算机中的数制与编码

计算机中的数制与编码
(2)定点小数 定点小数规定小数点的位置固定在符号位之后,但不占一个二进制位。那么,符号位的右边表示的是一 个纯小数。
定点小数的表示形式
例如,用8位二进制定点整数表示(-0.6875)10,应为: (-0.6875)10=(11011000)2
计算机中的数制与编码
2 浮点数
浮点数是指小数点的位置不固定的数。对于既有整数部分又有小数部分的数,一般用浮点数表示。 任意一个二进制数N都可以表示成如下形式:
微机原理与接口技术
计算机中的数制 与编码
计算机中的数制与编码
1.1 计算机中的数制
1 数制的概念
数制是人们按进位的原则进行计数的一种科学方法。在日常生活中,经常要用到数制,除了最常见的十进 制计数法,有时也采用别的进制来计数。
一种计数制所使用的数字符号的个数称为基数,某个固定位置上的计数单位称为位权。同一数字符号处 在不同位置上所代表的值是不同的,它所代表的实际值等于数字本身的值乘以所在位置上的位权。例如,十 进制数345中的数字3在百位上,表示位权为100,故此时的3表示的是300。又如,十进制数123.45用位权可以 表示为
整数部分:
小数部分:
所以,(69.625)10=(1000101.101)2。
计算机中的数制与编码
② 转换成八进制数
③ 转换成十六Βιβλιοθήκη 制数计算机中的数制与编码3 二进制数与八进制数、十六进制数之间的转换
二进制、八进制、十六进 制之间存在特殊的关系:1位 八进制数对应3位二进制数,1 位十六进制数对应4位二进制 数,因此转换比较容易。
(2)小数部分的转换。
• 小数部分的转换采用“乘基取整法”,方法 是:将十进制数的小数部分反复乘以基数R, 将每次乘积的小数部分作为被乘数,并取得 相应的整数部分,直到乘积的小数部分为0。 将每次得到的整数部分顺序排列在小数点后, 即为转换后的R进制小数。
数字电路-数制与编码

数码的个 数和计数 规律是进 位计数制 的两个决 定因素
一、 十进制数的表示 数码个数10: ⒈ 数码个数 :
0,1,2,3,4,5,6,7,8,9
计数规律: 计数规律
逢十进 1,借一当10
2.基与基数 2.基与基数
用来表示数的数码的集合称为基 用来表示数的数码的集合称为基(0—9), ) 称为基数 十进制为10)。 称为基数(十进制为 。 基数 十进制为 集合的大小
lg α j≥i lg β
取满足不等式的最小整数
)16 ,已知精度为±(0.1)410
例: (0.3021)10→(
解: α=10,β=16,i=4
lg10 j≥ 4 = 3.32 取 j=4 lg16
⑵按题意要求
例: (0.3021)10→( 解:
)2 ,要求精度 0.1% ∴取 j=10
1 1 0.1% = ≥ 10 1000 2
X ;0 ≤ X < 2n [ X ]补= 2n +1 + X ;-2n ≤ X < 0
例 2:
(321.4)8 = ( )10 =3×82+2×81+1×80 +4×8-1 =(209.5)10 192 16 1 0.5
基数乘除法( 10 → R )
分整数部分和小数部分分别转换。 ⒈整数的转换——基数除法 规则:除基取余, 规则:除基取余,商零为止 例1:(25) 10 = ( ) 2
例:已知 X1=1100 X2=1010 求 Y1= X1- X2 ; Y2= X2- X1
01100 +10101 100001 + 1 00010 01010 +10011 11101
数电知识点汇总

数电知识点汇总一、数制与编码。
1. 数制。
- 二进制:由0和1组成,逢2进1。
在数字电路中,因为晶体管的导通和截止、电平的高和低等都可以很方便地用0和1表示,所以二进制是数字电路的基础数制。
例如,(1011)₂ = 1×2³+0×2² + 1×2¹+1×2⁰ = 8 + 0+2 + 1=(11)₁₀。
- 十进制:人们日常生活中最常用的数制,由0 - 9组成,逢10进1。
- 十六进制:由0 - 9、A - F组成,逢16进1。
十六进制常用于表示二进制数的简化形式,因为4位二进制数可以用1位十六进制数表示。
例如,(1101 1010)₂=(DA)₁₆。
- 数制转换。
- 二进制转十进制:按位权展开相加。
- 十进制转二进制:整数部分采用除2取余法,小数部分采用乘2取整法。
- 二进制与十六进制转换:4位二进制数对应1位十六进制数。
将二进制数从右向左每4位一组,不足4位的在左边补0,然后将每组二进制数转换为对应的十六进制数;反之,将十六进制数的每一位转换为4位二进制数。
2. 编码。
- BCD码(Binary - Coded Decimal):用4位二进制数来表示1位十进制数。
常见的有8421 BCD码,例如十进制数9的8421 BCD码为(1001)。
- 格雷码(Gray Code):相邻的两个代码之间只有一位不同。
在数字系统中,当数据按照格雷码的顺序变化时,可以减少电路中的瞬态干扰。
例如,3位格雷码的顺序为000、001、011、010、110、111、101、100。
二、逻辑代数基础。
1. 基本逻辑运算。
- 与运算(AND):逻辑表达式为Y = A·B(也可写成Y = AB),当A和B都为1时,Y才为1,否则Y为0。
在电路中可以用串联开关来类比与运算。
- 或运算(OR):逻辑表达式为Y = A + B,当A和B中至少有一个为1时,Y为1,只有A和B都为0时,Y为0。
数制及编码

∴(0.3125)10 =(0.0101)2
说明:有时可能无法得到0的结果,这时应
根据转换精度的要求适当取一定位数。
2024/2/21
7
2. 二进制与八进制、十六进制之间的转换
(1)二进制与八进制之间的转换 三位二进制数对应一位八进制数。
(6574)8 =(110,101,111,100)2 =(110101111100)2
12
(1)8421码
选取0000~1001表示十进制数0~9。 按自然顺序的二进制数表示所对应的十进制数字。 是有权码,从高位到低位的权依次为8、4、2、1,
故称为8421码。 1010~1111等六种状态是不用的,称为禁用码。
例:
(1985)10 =(0001 1001 1000 0101)8421BCD
(101011100101)2 =(101,011,100,101)2 =(5345)8
2024/2/21
8
(2)二进制与十六进制之间的转换 四位二进制数对应一位十六进制数。
例如: (9A7E)16 =(1001 1010 0111 1110)2
=(1001101001111110)2
(10111010110)2 =(0101 1101 0110)2
2024/2/21
19
表1-5 美国标准信息交换码(ASCII码)
2024/2/21
20
b2
2∣27 …………余1
b3
2∣13 …………余1
b4
2∣6 …………余0
b5
2∣3 …………余1
b6
2∣1 …………余1
b7
0
2024∴/2/21(217)10 =(11011001)2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数制与编码
自然语言中一般使用十进制,在程序编写中为了书写和检查方便一般使用八进制和十六进制,计算机处理信息和数据归根结底都是二进制,计算机中将信息用规定的代码来表示的方法称为编码。
学习本节后,你将能够:
1.了解二进制的概念;
2.初步了解二进制数与十进制数.十六进制数以及八进制数的转
换。
任务1了解二进制和十进制数之间的转换
(1)将十进制数3转换为二进制数,计算方法如下:
整数部分
还可以用powerpoint制作一个动画演示二进制的运算。
(2)将(1101)2转换成十进制数,计算方法如下:
(1101)2=8+4+0+1
=(13)1
相关知识
1.二进制数与十进制数之间的关系见表0
二进制数与十进制数之间的关系
用excel表格制作一个表格显示二进制数与十进制数之
间的关系。
任务2了解二进制数与八.十六进制数之间的关系
用excel表格制作一个表格显示二进制数与八.十六进制
数之间的关系。
(3)将二进制数1101101110.110101转换成十六进制数(整数位高位和小数位低位可以补零)
提示:将二进制数以小数点向左右四位为一组分组,
0011 0110 1110.1101 0100B=36E.D4H
(4)将二进制数1101101110.110101转换成八进制数(整数高位和小树位低位可以补零)。
提示:将二进制数以小数点向左右三位为一组分组,001 101 101 110 .110 101B=1556.65O
(5)将2C1D.A1H转换为二进制数。
2C1D.A1H=0010110000011101.10100001B
(6)将7123.14O转换为二进制数。
7123.14O=111001010011.001100B。