电子信息科学专业英语导读教程(第二版)翻译
课文参考译文 (15)-信息科学与电子工程专业英语(第2版)-吴雅婷-清华大学出版社

Unit 15 人工智能Unit 15-1第一部分:什么是人工智能人工智能,简称AI,是一项包含了计算机技术,生理学和哲学的综合技术。
AI是一个宽泛的课题,由从机器视觉到专家系统的多个不同领域组成。
AI所包含的这些领域的共同点在于它所创造的机器能够“思考”。
为了分辨计算机是否会“思考”,我们有必要定义一下什么是智能。
智能在多大程度上包含譬如解决复杂问题、进行概括和建立关系这样的能力?包括感知和理解能力吗?在学习,语言和感官知觉领域的研究帮助科学家们制造智能机器。
专家们所面临的最大的挑战之一就是如何制造出一个能够模仿人类大脑行为模式的机器,而人类的大脑由上亿个神经细胞组成,被认为是世界上最复杂的东西。
或许度量机器智能最好的方法就是由英国计算机科学家Alan Turing提出的测试。
他说,当一台计算机可以骗过人,相信它是一个人而不是机器时便可称得上是智能的。
人工智能由一群专注的研究人员推动着,已由最初的研究走过了很长的一条路。
AI的起源在电子学之前,可以追溯到Boole和其他一些哲学家和数学家们,他们根据那些已成为AI逻辑基础的原则建立起了最初的理论。
随着1943年计算机的发明,AI开始吸引研究人员的注意。
这项技术终于可用于模拟智能行为了,或者看起来是这样。
在这之后的40年中,虽然面临过许多困难和阻碍,AI已由最初只有十几位研究人员参与发展到现在有几千名工程师和专家们共同致力于研究;从最初的只能下西洋跳棋的程序发展到今天已设计出可以诊断疾病的系统。
AI技术始终站在计算机科学的前沿。
先进的计算机语言,以及计算机接口和文字处理软件都要归功于人工智能的研究。
AI研究引出的理论和认识将为未来的计算机科技发展指明方向。
虽然现在所制造出的AI产品仅仅只能反应不久的将来研发出的产品的一小部分功能,但是它们迈出了走向未来人工智能的一步。
随着人们的不断探索和追求,人工智能已经影响,也将继续影响我们的工作、教育和生活。
课文参考译文 (14)-信息科学与电子工程专业英语(第2版)-吴雅婷-清华大学出版社

Unit 14 计算机和网络Unit 14-1第一部分:计算机的进展计算机和信息技术的进展计算机和信息技术的诞生可以追溯到许多世纪以前。
数学的发展引起了计算工具的发展。
据说17世纪法国的Blaise Pascal构建了第一台计算机。
在19世纪,常被推崇为计算之父的英国人Charles Babbage设计了第一台“分析机”。
该机器有一个机械的计算“工厂”,类似于19世纪早期的提花织布机,采用穿孔卡片来存储数字和处理要求。
Ada Lovelace和他(Charles Babbage)致力于设计并提出了指令序列的概念——程序。
到1871年Babbage逝世,这台机器还没有完成。
将近一个世纪以后,随着电子机械计算机的发展(程序)这一概念再次出现。
1890年,Herman Hollerith采用穿孔卡片帮助美国人口普查局分类信息。
与此同时,电报电话的发明为通信和真空管的发展奠定了基础。
这一电子器件能够用于存储二进制形式的信息,即开或关,1或0。
第一台数字电子计算机ENIAC(电子计数积分计算机,见图14.1)是为美国军队开发的,并于1946年完成。
普林斯顿的数学教授V on Neumann对(程序)这一概念作了进一步深入的研究,加入了存储计算机程序的思想。
这就是存储在计算机内存中的指令序列,计算机执行这些指令完成程序控制的任务。
图14.1 ENIAC:第一台数字化电子计算机从这一阶段开始,计算机和计算机编程技术迅速发展。
从真空管发展到晶体管,大大减小了机器(计算机)的尺寸和成本,并提高了可靠性。
接着,集成电路技术的出现又减小了计算机的尺寸(和成本)。
20世纪60年代,典型的计算机是基于晶体管的机器,价值50万美金,并需要一个大空调房和一名现场工程师。
现在相同性能的计算机只要2000美元,并且放在桌上(就可使用了)。
随着计算机越来越小,越来越便宜,计算速度也更快——通过叫做芯片的单个集成电路来实现。
微处理器和微型计算机的发展微型计算机随着集成电路(或芯片)技术的发展而发展。
课文参考译文 (5)-信息科学与电子工程专业英语(第2版)-吴雅婷-清华大学出版社

Unit 5 多址技术Unit 5-1第一部分:多址技术:频分多址、时分多址、码分多址多址方案用于使许多用户同时使用同一个固定带宽的无线电频谱。
在任何无线电系统中分配的带宽总是有限的。
移动电话系统的典型总带宽是50MHz,它被分成两半用以提供系统的前向和反向连接。
任何无线网络为了提高用户容量都需要共享频谱。
频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA)是无线系统中由众多用户共享可用带宽的三种主要方法。
这些方法又有许多扩展和混合技术,例如正交频分复用(OFDM),以及混合时分和频分多址系统。
不过要了解任何扩展技术首先要求对三种主要方法的理解。
频分多址在FDMA中,可用带宽被分为许多个较窄的频带。
每一用户被分配一个独特的频带用于发送和接收。
在一次通话中其他用户不能使用同一频带。
每个用户分配到一个由基站到移动电话的前向信道以及一个返回基站的反向信道,每个信道都是一个单向连接。
在每个信道中传输信号是连续的,以便进行模拟通信。
FDMA信道的带宽一般较小(30kHz),每个信道只支持一个用户。
FDMA作为大多数多信道系统的一部分用于初步分割分配到的宽频带。
将可用带宽分配给几个信道的情况见图5.1和图5.2。
时分多址TDMA将可用频谱分成多个时隙,通过分配给每一个用户一个时隙以便在其中发送或接收。
图5.3显示如何以一种循环复用的方式把时隙分配给用户,每个用户每帧分得一个时隙。
TDMA以缓冲和爆发方式发送数据。
因此每个信道的发射是不连续的。
待发送的输入数据在前一帧期间被缓存,在分配给该信道的时隙中以较高速率爆发式发送出去。
TDMA不能直接传送模拟信号因为它需要使用缓冲,因而只能用于传输数字形式的数据。
由于通常发送速率很高,TDMA会受到多径效应的影响。
这导致多径信号引起码间干扰。
TDMA一般与FDMA结合使用,将可用的全部带宽划分为若干信道。
这是为了减少每个信道上的用户数以便使用较低的数据速率。
电子信息科学专业英语翻译

1-1Introduction to MicroelectronicsPara. 1对太空的探索以及人造地球卫星的发展,增强了人们对减少电子电路的重量和体积的重要性的认识。
另外,即使电流在计算机中流得相当快,但是由于电子元器件之间的互联所导致的信号的时间延迟是不能不考虑的。
如果这种互联在尺寸上能减小,无疑会使计算机的运行速度更快。
Para. 2微电子学主要是使常规电路微型化。
比如一个运算放大器,包括许多彼此互连的分立器件,有二极管,电阻,象这样一个完整的电路,可以制作在一个很小的基片上。
这个完整的微型化的电路就称之为集成电路(IC)。
Para. 3IC体积小,重量轻,坚固耐用,稳定可靠。
它们比同等宏观电路(分立元件电路)需要更少的功耗和更低的电压。
因此,它们可以工作在更低的温度下,而在这种温度下,分立器件可能都不能正常工作,因为温度没有达到正常工作温度范围。
相应地,几乎不会产生寄生电容和延时,因为在IC中,器件之间地互联非常短。
维护起来跟简单,因为,如果在一个IC里边地器件坏了,通常用一个新的IC来替换坏的。
表面技术的大规模生产技术已经降低了许多IC的成本,因此,它们就跟单个晶体管一样便宜。
最后的结果就是,大部分常用的分立器件电路被IC所取代。
Para. 4有两种基本类型的IC:一种是独立IC,一种是薄或厚的膜状IC. 独立IC是构建在单个的半导体晶体的基片里边,通常用的是硅。
薄或厚的膜状IC是形成在一种绝缘材料的表面,像玻璃或者陶器。
还有一种混合的IC所包含的不仅仅是单个的基片。
在这里,这个词“混合”同样也指独立IC和薄或厚的膜状IC结合体。
Para. 5也可根据其功能不同对集成电路进行分类。
数字IC(也称为逻辑IC)通常用作开关,表示接通或关闭。
在计算机中,接通和关闭状态分别对应0或1。
另一种IC被称为线性或模拟IC。
集成电路可以用双极或单极晶体管来生产。
然而,在许多方面,场效应管优于双极晶体管。
电子信息类专业英语第五单元译文 李白萍主编

电子信息类专业英语(第二版)李白萍主编第五单元译文第五单元A compact disc (CD) is a laser-read (also termed “optically read”) data storage device on which audio, video, or textual material can be stored. Although it has been used primarily to record stereophonic sound and has supplanted the long-playing PHONOGRAPH record as the principal medium for music storage, it offers a huge potential as the medium for the storage of massive amounts of many types of information.[1]一个光盘(CD)是在其上的音频,视频或文本材料可被存储在激光读取(也称为“光学读取”)数据存储设备。
虽然它被主要用来记录立体声声音,并已经取代了留声机成为了主要的音乐存储媒体,但它作为能存储大量多种信息的媒体仍具有巨大的潜力。
Unlike the conventional phonograph record, the CD stores information in digital form. Stereophonic (two-channel) sound signals are digitally sampled at a rate of 44,100 times per second per channel. Each sample is expressed as a binary number value consisting of 16 binary digits, or bits. The sampled digital values, along with error correction data, tracking codes, and cueing data, are recorded on a digital tape, which is used to make compression-molded plastic discs 12 cm (4.72in) in diameter, each covered by a thin, reflective metallic layer and protected by a clear plastic coating.[2] During playback, a low-powered laser beam reads the digital data through the reflective rear surface of the disk.[1]与传统的照片记录不同,光盘以数字形式存储的信息。
电子信息类专业英语 李白萍编 第二版译文

第19章B 光纤通信的优点利用一根玻璃光纤引导的光载波通信有许多突出的优点,其中的一些优点在最初构思这种技术时就已经显而易见了。
然而,当今的技术发展已经超越了当初最乐观的预测,产生了另外一些优势。
因此,有必要考虑光纤通信与许多传统电子通信相比带来的优点和专业特色。
本文先介绍最初预想的优点,接着介绍随着科技发展而出现的另外的突出优点。
a)巨大的潜在带宽:频率为1013到1016 Hz(通常接近大约1014Hz红外线的频率)的光载波产生比金属电缆系统(如同轴电缆的带宽最高为500MHz)甚至毫米波无线电系统(例如系统当前工作在700MHz调制带宽)大得多的潜在传输带宽。
目前,光纤系统可以用带宽并没有被完全利用,但是,不需要中继器而传输100Km的几Ghz的调制和传输300km的几百Mhz的调制是可能的。
光纤系统的信息携带能力远优于最好的铜电缆系统。
比较而言,宽带同轴电缆系统在100Mhz以上带宽内的损耗将传输距离限制在只有几千米的范围内。
虽然可以利用的光纤带宽可以被进一步扩展到光载波频率,但是很明显这一参数(可用带宽)被单个光载波信号所限制。
因此,通过在同一个光纤中并行传输几个工作在不同的中心波长的光信号可以实现带宽利用率的很大提高。
利用波分复用技术,尤其是密集波复用(或者说,实质上的频分复用)使得光纤的信息载容量超过电缆或者宽带无线系统好多个数量级。
b)小尺寸和轻重量:光纤的直径非常小,通常比头发丝的直径还要细。
因此,就算这些光纤被涂覆层包裹时,它们都要比铜电缆直径更小并且重量更轻。
这对于缓解城市的管道拥挤而言占有很大的优势,并且允许在移动体(如飞机、卫星甚至船舶)内进行信号传输。
c)电绝缘:由玻璃或者塑料聚合物制造的光纤是电绝缘体,因此与其他对应的金属物不同,它们不存在接地循环与接口问题。
而且,该优点使得光纤十分适宜于在对电子比较敏感的危险环境中的通信,因为光纤在受侵蚀或者短路的情况下不会产生电弧或者电火花的危险。
课文参考译文 (1)-信息科学与电子工程专业英语(第2版)-吴雅婷-清华大学出版社

Unit 1 电子学:模拟和数字Unit 1-1第一部分:理想运算放大器和实际限制为了讨论运算放大器的理想参数,我们必须首先定义一些指标项,然后对这些指标项讲述我们所认为的理想值。
第一眼看运算放大器的性能指标表,感觉好像列出了大量的数值,有些是陌生的单位,有些是相关的,经常使那些对运放不熟悉的人感到迷惑。
如果没有对每一项性能指标有一个真正的评价,设计人员必将失败。
目标是能够依据公布的数据设计电路,并确认构建的样机将具有预计的功能。
对于线性电路而言,它们与现在的复杂逻辑电路结构相比看起来较为简单,(因而在设计中)太容易忽视具体的性能参数了,而这些参数可极大地削弱预期性能。
现在让我们来看一个简单但很引人注意的例子。
考虑对于一个在50kHz频率上电压增益为10的放大器驱动10k 负载时的要求。
选择一个普通的带有内部频率补偿的低价运放,它在闭环增益为10时具有所要求的带宽,并且看起来满足了价格要求。
器件连接后,发现有正确地增益。
但是它只能产生几伏的电压变化范围,然而数据却清楚地显示输出应该能驱动达到电源电压范围以内2到3伏。
设计人员忽视了最大输出电压变化范围是受频率严格限制的,而且最大低频输出变化范围大约在10 kHz受到限制。
当然,事实上这个信息也在数据表上,但是它的实用性并没有受到重视。
这种问题经常发生在那些缺乏经验的设计人员身上。
所以这个例子的寓意十分明显:在开始设计之前总要花上必要的时间来描写全部的工作要求。
关注性能指标的详情总是有益的。
建议下面列出的具体的性能指标应该考虑:1. 在温度,时间和供给电压下的闭环增益的精确性和稳定性2. 电源要求,电源和负载阻抗,功率消耗3. 输入误差电压和偏置电流,输入输出电阻,随着时间和温度的漂移4. 频率响应,相位偏移,输出变化范围,瞬态响应,电压转换速率,频率稳定性,电容性负载驱动,过载恢复5. 线性,失真和噪声6. 输入,输出或电源保护要求,输入电压范围,共模抑制7. 外部补偿调整要求不是所有的指标项都是有关的,但要记住最初就考虑它们会更好,而不要被迫返工。
课文参考译文 (2)-信息科学与电子工程专业英语(第2版)-吴雅婷-清华大学出版社

Unit 2 集成电路Unit 2-1第一部分:集成电路数字逻辑和电子电路由称为晶体管的电子开关得到它们的(各种)功能。
粗略地说,晶体管好似一种电子控制阀,由此加在阀一端的能量可以使能量在另外两个连接端之间流动。
通过多个晶体管的组合就可以构成数字逻辑模块,如与门和触发电路等。
而晶体管是由半导体构成的。
查阅大学化学书中的元素周期表,你会查到半导体是介于金属与非金属之间的一类元素。
它们之所以被叫做半导体是由于它们表现出来的性质类似于金属和非金属。
可使半导体像金属那样导电,或者像非金属那样绝缘。
通过半导体和少量其它元素的混合可以精确地控制这些不同的电特性,这种混合技术称之为“半导体掺杂”。
半导体通过掺杂可以包含更多的电子(N型)或更少的电子(P型)。
常用的半导体是硅和锗,N型硅半导体掺入磷元素,而P型硅半导体掺入硼元素。
不同掺杂的半导体层形成的三明治状夹层结构可以构成一个晶体管,最常见的两类晶体管是双极型晶体管(BJT)和场效应晶体管(FET),图 2.1给出了它们的图示。
图中给出了这些晶体管的硅结构,以及它们用于电路图中的符号。
BJT是NPN晶体管,因为由N—P—N掺杂硅三层构成。
当小电流注入基极时,可使较大的电流从集电极流向发射极。
图示的FET是N沟道的场效应型晶体管,它由两块被P型基底分离的N型组成。
将电压加在绝缘的栅极上时,可使电流由漏极流向源极。
它被叫做N沟道是因为栅极电压诱导基底上的N通道,使电流能在两个N区域之间流动。
图2.1所示的另一个基本的半导体结构是二极管,由N型和P型硅连接而成的结组成。
二极管的作用就像一个单向阀门,由于电流只能从P流向N。
可以构建一些特殊二极管,在加电压时可以发光,这些器件非常合适地被叫做发光二极管或LED。
这种小灯泡数以百万计地被制造出来,有各种各样的应用,从电话机到交通灯。
半导体材料上制作晶体管或二极管所形成的小芯片用塑料封装以防损伤和被外界污染。
在这封装里一些短线连接半导体夹层和从封装内伸出的插脚以便与(使用该晶体管的)电路其余部分连接。