自主研发660MW超临界机组介绍
660MW超临界空冷汽轮机

迷宫式汽封中蒸汽压力下降图
蒸汽在迷宫式汽封中的膨胀过程
各汽源的调节阀压力整定值
在正常运行时,靠高中压缸两端轴封 漏汽作为低压缸两端的轴封供汽,不 需另供轴封用汽,这种系统叫做自密 封系统。
下降,油膜将难以形成;
但粘度太大,会使油的
分布不均匀,增大摩擦
二、径向支撑轴承
损失 ,减小偏心距。
F
G为重力; F为油膜
F’ F2 F1
o
支撑的合
力。
o1
G=F
G
G
一旦出现扰动,则合垂直方向,前者使轴回到原中心 位置,而后者使轴颈绕原中心位置o涡动,经计算其涡动 频率为转速的一半
大型汽轮机汽缸结构
一、采用双层缸结构
双层缸的优缺点: 缸壁内外表面之间的温度差较小。 气缸壁和法兰厚度较薄。 贵重金属材料消耗少。 结构复杂,零件增多。 内缸承受蒸汽的温差小、压差大,而外缸承受的温差大、压
差小。因此内缸壁中温度梯度不大,引起的热应力较小;外 缸承受大温差,但由于缸壁承压小,在工况变化过程中,能 承受较大的热应力。 将一定压力的蒸汽引入夹层,使蒸汽的总压差、温差分别由 内、外壁承担。减小单层汽缸壁厚、法兰厚度,减小热应力
汽缸
汽缸的作用是将汽轮机的通流部分与大气隔开,将蒸 汽包容在汽缸中膨胀做功,完成其能量转换过程。
汽缸内部装有喷嘴室、喷嘴、隔板套、隔板和汽封等部 件。分成高压缸、中压缸和低压缸。
一般汽缸都是上下缸结构,中间通过法兰螺栓连接 但大机组、尤其是超临界机组高压缸为了减小热应力,采用 了一些其它方式。 西门子公司: 外缸为圆筒形结构;内缸有中分面,用螺栓固 定;内缸受外缸约束、定位。 石洞口二电厂(ABB)、元宝山电厂等 内缸无法兰螺栓,而采用7只钢套环将上下缸热套紧箍成一圆 筒,仅在进汽部分加四只螺栓来加强密封。 同时外缸可采用较薄的法兰和细螺栓,减小对汽机启停的限 制。
660MW超超临界汽轮机(三缸)

冷却室可以在汽轮机停机后降低汽轮机上缸的金 属温度,进而就能防止上缸和下缸之间出现大的温差。 停机后满足以下三个条件,才可提供冷却空气 :
a.上缸和下缸之间的金属温度差≥0℃; b.盘车运行; c.调节级出口金属温度≥250℃。
1029mm末级动叶片的低压缸模块
末级静叶采用弯扭加前掠 弯扭静叶片
转子冷却蒸汽系统
转子蒸汽冷却试验
调节级喷嘴
子午面收缩 表面渗硼 固粒腐蚀下降为原材料0.2
焊接喷嘴 刚性好热应力小 热膨胀性好
高中压缸结构特点:
调节级动叶片
三胞叶片,高强度
多层缸设计
弹性密封
热膨胀性能好 运行时无泄漏
高 压 进 汽
全三维反动式自带围带叶片
静叶
动叶
上汽缸冷却系统
汽轮机停机以后,由于下缸冷却较快,故上缸和 下缸之间存在温差,会引起引汽缸变形,俗称“猫 背”。由于汽缸下半向上变形,转子轴向中央部位附 近和汽缸下半发生接触,导致汽封齿碰磨。特别是多 次启停机组后会导致机组下半汽封片磨损严重,甚至 引起转子的磨损,导致通流间隙不断增大,进而影响 机组效率。因此为了降低停机后汽缸上下温差,在汽 缸上半设置了冷却腔室,如下图所示:
mm
17 通流级数:
18 高压缸
级
19 中压缸
级
20 低压缸
级
21 机组外型尺寸(长、宽、高)
660MW超临界空冷汽轮机及运行简洁范本

660MW超临界空冷汽轮机及运行660MW超临界空冷汽轮机及运行概述结构660MW超临界空冷汽轮机由压气机、燃烧室、高压涡轮机、中压涡轮机、低压涡轮机和空冷设备等组成。
压气机负责将空气压缩,通过燃烧室与燃料混合燃烧产生高温高压燃气。
高压涡轮机、中压涡轮机和低压涡轮机将燃气的能量转化为转动机械能,最终带动发电机发电。
空冷设备用于将汽轮机排出的废热通过空气冷却,提高装置的热效率。
超临界空冷技术可以有效降低冷却塔和水泵等设备的使用数量,减少水资源的消耗。
原理超临界空冷汽轮机采用超临界循环技术,利用高温高压的态势增加了汽轮机的发电效率。
超临界循环是一种介于常规汽轮机循环与超临界循环之间的状态,具有较高的过热温度和较高的过热压力。
超临界循环的特点是在液相区域具有较高的比熵,使得过热器的温差减小,进而降低了对锅炉管材的性能要求。
由于工质在液相时有较高的比熵,故压缩度小,外排温度升高,进而降低了冷却水的使用量。
空冷技术则通过利用环境空气对汽轮机的散热进行冷却,减少了对水资源的依赖。
相比传统的湿冷循环,空冷技术具有热效率高、环境保护性好的优势。
运行情况660MW超临界空冷汽轮机的运行情况非常良好。
其高效率和环保性使得其在电力行业得到了广泛的应用。
超临界空冷汽轮机的高效率使得发电成本得到了降低,进一步促进了可持续发展。
空冷技术的应用也减少了对水资源的压力,提升了能源的可持续利用性。
除此之外,超临界空冷汽轮机还具有运行稳定、可靠性好等特点。
其高负荷运行和快速启停的能力满足了电力行业对供电的需求。
,660MW超临界空冷汽轮机以其高效率、环保性以及运行稳定性,将成为电力行业的重要发展方向。
660MW汽轮机技术介绍

通流部分叶片级的详 细逐级热力计算 汽轮机热力系统热平 衡计算 供通流部分叶片级设 计用参数 机电炉参数协调 用户及电厂设计
信息输出 热平衡图自动绘制 性统
通流部分自动 优化设计系统 叶型及叶片 数据库 典型的结构 设计准则 各种气动及 强度程序 通流部分自动设计程序 自动决定尺寸及叶型 各种叶片气动及 强度计算程序 叶片及隔板参数化 CAD程序
STC引进并形成的现代汽轮机技术开发体系
两个15年向三菱技术转让 90年代十年的联合开发 西门子-西 屋公司现 代汽轮机 技术体系 1996-2005年 所有超临界技术产品 向STC技术转让 日本三 菱MHI
MHI600MW超临界 等四个产品-1998年 STC合 资公司
高效超临界汽轮机产品发展的技术路线
三 三 技 技 术 术 路 路 线 线 结 结 构 构 特 特 点 点
世界超临界汽轮机的发展
第一次大规模发展
美国西屋,GE首先发展超临界机组(50-70年代) 1959年,GE公司第一台125MW 31/621/566/538 1975年已停运。 1959年,西屋310MW-34.5/649/566/566,至今仍在 运行。世界运行时间最长的超临界机组。 西屋共计生产了60余台,其中11台为两次再热,5台 温度达到593°C以上。
低压通流部分
LP:BB0474C
7 级压力级,整体围带动叶片 静叶片全马刀型设计,前端动叶马刀 全三元气动设计
马刀型静叶片与隔板
全三元气动 设计技术
低压缸设计特点 (双流)
改进的单层低压内缸 设计,加强内缸刚性 1050mm末级叶片
更合理的撑筋支撑,加强外缸刚性
低压长叶片采用ILB设计
典型设计参数:
组(1987-1997的JDP计划Join Development Program):
660MW超超临界汽轮机(三缸)

660MW超超临界汽轮机(三缸)随着能源需求的不断增长,传统的火力发电已经无法满足能源供应的需求。
超超临界汽轮机作为一种新型的发电设备,具有高效率、低排放的特点,成为发电行业的重要方向之一。
超超临界技术简介超超临界技术是指在常规火力发电设备的基础上,通过提高工作流体的压力和温度,使其达到超过临界点的状态。
这种状态下的工作流体具有更高的热效率和更低的排放。
超超临界汽轮机在提高发电效率的,还能减少二氧化碳等有害气体的排放。
660MW超超临界汽轮机(三缸)的特点660MW超超临界汽轮机是一种三缸式的发电设备,具有以下特点:1. 高效率:通过采用超超临界技术,该汽轮机可以达到更高的热效率,提高发电效率,降低燃料消耗。
2. 低排放:超超临界汽轮机在燃烧过程中排放的二氧化碳等有害气体较少,对环境的影响较小。
3. 稳定性好:该汽轮机采用三缸式结构,可以更好地平衡各个缸的工作状态,提高整机的稳定性和可靠性。
4. 减少水的消耗:超超临界汽轮机采用闭式循环,可以减少对水的消耗,更加环保节能。
5. 多用途:超超临界汽轮机不仅可以用于发电,还可以用于工业生产过程中的动力输出。
应用前景660MW超超临界汽轮机的应用前景广阔。
随着国内外能源需求的持续增长,超超临界汽轮机将成为发电行业的主流技术。
其高效率、低排放的特点符合环境保护的要求,也能够满足能源供应的需求。
小结660MW超超临界汽轮机(三缸)是一种具有高效率、低排放的发电设备。
通过提高工作流体的压力和温度,它能够达到超过临界点的状态,提高发电效率,降低燃料消耗。
超超临界汽轮机在发电行业的应用前景广阔,将成为推动清洁能源发展的重要技术之一。
660MW机组介绍ppt (3)

各控制站调节阀整定和运行情况
汽封母管 压力 MPa 0.124 0.127 0.130 0.118 0.118 高压汽源 控 制站 关闭 关闭 关闭 打开并调 节 打开并调 节 辅助汽源 控 制站 打开并调 节 打开并调 节 关闭 关闭 关闭 溢流控制 站 关闭 关闭 打开并调 节 关闭 关闭
运行状态
约95~99kPa(a)
高低压缸轴端密封示意图
低压缸轴端平齿汽封
高中压间轴封
高压后轴封
4.自密封系统及运行 系统组成及主要设备 : 轴封系统对辅助蒸汽参数的要求: 蒸汽压力:0.588~0.784 MPa 温度:冷态启动约150~260℃;热态启动约 208~375℃ 轴封系统的启动 : 1)盘车、冲转及低负荷阶段 :汽封供汽来自辅 汽,供汽母管压力维持在0.124MPa(a) 2)25%-60%TRL负荷阶段 :由再热冷段提 供,也可以继续使用辅助蒸汽,并自动维持供汽 母管压力0.127MPa(a)。
欧共体制定了“THERMIE AD 700” 先进燃煤火电机组的发展计 划,联合开发 37.5MPa/700/700℃的超超临界火电机组,其效 率达52-55%。重点是高温镍基合金的研发,解决高温强度、高温 腐蚀、高温氧化难题 。
超临界机组的经济性 • 16.7/538/538 亚临界机组供电热效率为38%,发 电煤耗为325 g/KW.h • 24.1/538/538 超临界机组供电热效率为41%,发 电煤耗为310 g/KW.h • 玉环 26.25/600/600 超超临界机组供电热效率为 45.4%,发电煤耗为270.6 g/KW.h 。
3)60%TRL以上 :当蒸汽母管压力升至 0.130MPa(a)时,所有供汽站的调节阀自动关闭, 溢流站调节阀自动打开,将多余的蒸汽通过溢流 控制站排至汽机侧8#低压加热器。若8#低压加热 器事故或停运,可将多余蒸汽排至凝汽器。至此, 汽封系统进入自密封状态,母管压力维持在 0.130MPa(a),正常运行时应关闭再热冷段管路上 电动截止阀。 4)机组甩负荷时 :用符合温度要求的备用辅助 汽源 ,否则用主汽汽源 。 5)所有运行工况下的温度调节:维持低压汽封 温度在121~177℃。
东汽高效超超临界660MW空冷机组技术介绍
措施
母型机 优化高效型
新叶型
传统日立型 DEC优化型
通流优化 速比、反动度、攻角优化
焓降分配 流道光顺 排汽优化
根径优化
加级、焓降分 配优化
1299.2 6
1376 9【10】
——缸效率提高1.2%,热耗降 提高相对叶高 1.4~2.32
1.6~3.0
低19KJ/KW.h
中压转子冷却
有
无
17
☆ 低压模块优化——排汽优化
优化
0.00%
660MW 1000MW
采用切向全周进汽后,调阀由原来的4个变为2个,结构简化 结构与气动优化,阀门损失更小,阀门损失下降0.5%,热耗降低3kJ/kW.h。
14
☆ 高压模块优化
2.2 优化措施
进汽端优化 母型 全周切向进汽
总压损系数
1
0.48
热耗降低 1 kJ/kW.h
排汽端优化 总压损系数
正交吹风试验优化导流环型 线、改善扩压效果。 数值分析优化排汽缸径向和 轴向尺寸、轴承圆锥体、导流 板线型和支撑布置,降低流动 损失。 ——低压排汽缸静压恢复能力 提高38%
低压排汽缸
静压恢复系数(%)
原始模型 4.8
2.2 优化措施
优化模型 42.6
18
☆低压模块优化——抽口非对称布置
2.2 优化措施
86.5%
全三维通流优化:缸效率提高4.8%、 热耗降低58KJ/kW.h
16
2.2 优化措施
☆ 中压模块优化
排汽端数值分析与优化 单独中压排汽腔室 单独中低压连通管 末叶耦合排汽室及连通管 —中排总压损失系数下降36%
排汽端 优化
原始 模型
总压损系数
660MW超临界空冷汽轮机及运行
660MW超临界空冷汽轮机及运行随着社会对能源需求的日益增长,汽轮机作为重要的能源转换设备,其效率和可靠性对于满足人们的能源需求至关重要。
本文将重点介绍660MW超临界空冷汽轮机及其运行。
一、超临界空冷汽轮机简介超临界空冷汽轮机是一种高效、清洁的能源转换设备,它采用了超临界蒸汽技术,可以在高温高压下提高蒸汽的效率,从而实现能源的高效利用。
这种汽轮机主要应用于大型火力发电厂、石油化工等领域,为工业生产和人们的生活提供稳定的电力供应。
二、660MW超临界空冷汽轮机结构及特点1、结构:660MW超临界空冷汽轮机主要由进汽系统、主轴、叶片、发电机、控制系统等组成。
其中,进汽系统负责将锅炉产生的蒸汽引入汽轮机,主轴是支撑整个机组的核心部件,叶片则用于将蒸汽的动能转化为机械能,发电机将机械能转化为电能,控制系统则对整个机组进行监控和调节。
2、特点:660MW超临界空冷汽轮机具有效率高、容量大、可靠性强的特点。
其采用超临界蒸汽技术,可以在高温高压下运行,提高蒸汽的效率。
该汽轮机还采用了先进的密封技术和控制系统,保证了设备的可靠性和稳定性。
三、660MW超临界空冷汽轮机的运行1、启动:在启动660MW超临界空冷汽轮机之前,需要进行全面的检查和准备工作,包括确认设备状态良好、控制系统正常等。
启动后,汽轮机需要经过暖机、加速等阶段,直至达到额定转速。
2、运行:在正常运行过程中,660MW超临界空冷汽轮机需要保持稳定的转速和负荷,以实现高效的能源转换。
同时,需要对设备进行定期检查和维护,确保设备的正常运行。
3、停机:在停机时,需要进行逐步减速、停机等操作,同时进行设备的检查和维护。
还需要对设备进行定期的保养和维护,以延长设备的使用寿命。
四、结论660MW超临界空冷汽轮机作为一种高效、清洁的能源转换设备,对于满足人们的能源需求至关重要。
在实际运行中,需要采取科学合理的措施进行设备的监控和维护,以确保设备的稳定性和可靠性。
660MW超超临界汽轮机设备及系统介绍
机组外形布置图
发电机 低压缸
中低压连通管
中压缸
中调门
高压缸
中主门 高调门 补汽阀管 主汽门
主要设计参数
• 单流高压缸通流为20级反动式,包括1 级 低反动度级和19级扭转叶片级 • M型双流中压缸: 发电机侧:通流为16级 反动式,包括1 级低反动度和15级扭转叶 片级。 汽机侧:通流为16级反动式,包括 1级 低反动度和15级扭转叶片级 • 双流低压缸每侧通流为5级反动式,包 括2 级扭转叶片级和标准低压末3级
(2)辐(周)流式:蒸汽沿着转子轮周方向流动;
二、汽轮机型号 Δ ×××—×××/×××/×××
例如:NJK660-27/600/610
额定功率为600MW的间接空冷凝汽式汽轮机,主 蒸汽压力为27MPa,温度为600ºC,再热蒸汽温 代 。 度610ºC 型式 代号 型式 号 N 凝汽式 CB 抽汽背压式
超超临界660MW汽轮机设备及 系统介绍培训课件
生产准备部
2016.12.31
汽轮机设备介绍
火电厂概述分类 电力生产过程 汽轮机的基本概念 汽轮机工作原理 汽轮机组成 本厂汽轮机介绍
火力发电厂的分类
火力(热力)发电厂:通过燃料燃烧将化学能变为电能。
1
按火电厂供电、供热的产品分 按使用的一次能源分 按火电厂的服务规模分
高加内部结构图一
高加内部结构图二
660MW机组本体结构及主要部件
• 1-1汽轮机简介: ####发电有限公司2×660MW超超临界汽轮 机由上海汽轮机有限公司(STC)与西门子西屋 公司联合设计制造。本汽轮机型号为:NJK66027/600/610型间接空冷汽轮机,汽轮机型式:超 超临界、一次中间再热、三缸两排汽、单轴、间 接空冷凝汽式机组、八级回热抽汽;额定出力 660MW;机组设计寿命不少于30年。机组采用复 合变压运行方式,汽轮机的额定转速为3000转/分。 机组外形图演示。
中电国际芜湖电厂超超临界660MW介绍
锅炉汽水系统 锅炉启动系统
To Turbine
Furnace Roof
Convection Pass Superheater Superheater Enclosure Interstage Attemperat Vertical or (three Seperator stages) s
LT
Water Collecti ng Tank
(1)高加进口三通阀机构损坏。原因为高加进口阀前 的压力波动太大,做连锁试验,使该阀突然关闭,之后 发现操作机构损坏。 现已用#2机的阀进行更换。 (2)厂用6kV母线应保护据动而越级跳闸。原因为二 次保护接线存在问题所致。 (3)大幅度降负荷时,由于没有及时开高缸通风阀, 使得在低负荷切缸时,高压缸排汽温度高而跳机。 (4)机组跳闸后,启动阶段用直接使用等离子点火时 由于磨煤机内存煤太多,直接点火后发生爆燃,炉膛压 力高MFT。 (5)因干式捞渣机冷却风调节不当,使得炉底漏风太 大,锅炉在480MW负荷时分离器过热度温度只有3℃, 进行调整后参数正常。
与 平 电 二 期 相 比 区 别
(1)、凝泵一拖二方式,且在45HZ左右泵 体几乎没有异常的振动发生; (2)、过热器有三级减温水,炉水泵在锅炉 3米层,分离器有给水泵出口母管去的过冷水 且分离器溢流能到过热器二级减温器; (3)、等离子燃烧器的机构已简化,且点火 燃烧非常容易,捞渣机采用干式密封,不容 易卡塞。汽机高低加阀门是气动装置,操作 不卡塞;
序号单位数据发电功率mw660年发电量10kwh363汽轮发电机组保证热耗tha工况kjkwh7414发电厂热耗率kjkwh799156发电设计标准煤耗gkwh273010供电效率426111供电设计标准煤耗gkwh288612每万千瓦容量的发电厂人数包括脱硫人mw026513每百万千瓦容量耗水量含脱硫系统时s1000mw0099电厂设计运行指标数据1凝泵一拖二方式且在45hz左右泵体几乎没有异常的振动发生
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e lu i e c ie e p p r n o ae i r an a d B a i S p r r ia n t . a n t i d s r d i t a e ,a d c mp r d w t B ti n rzl u eC i c lu i ss b n h h i t s Ke r s b i r u c o ;c aa tr t ;S p rC i c lu i ;i d p n e t s n y wo d : ol ;fn t n h r cei i e i s c u e r a n t n e e d n i i t s De g
工作。
燃 料 中水 份和氢燃 烧 损失
0 95 .3 %
维普资讯
20 年第 5期 ( 08 总第 15期 ) 2
应用 能源 技术
空气 中水份 热损 失 hn A
未燃尽 碳 热损失 hc
0o % .9
05 . %
烬。英巴采用前后墙布 置, 冲燃烧。炉膛 内无 对 旋转气流 , 因此从 风粉 混合和延 长煤粉在炉膛 内
0 引言
印度 某 电站 3×60 W 超 临 界 机组 工 程 , 6M 于
行时, 燃料 为重 油 ; 助燃 用油 为重 油 。 12 机 组汽 水参数 . 过热 蒸汽 :
20 年 2月 与 哈尔 滨锅 炉 厂 签 订 合 同。锅 炉 全 08
部采用 国 产 超 临界 技 术设 计 。工 程 装 设 三 台 60 W超临界参数燃煤汽轮发 电机组 , 6M 锅炉为超 临界参数变压直流炉、 一次再热、 园燃烧、 切 平衡
收 稿 日期 :20 —0 —1 08 3 1 修 订 稿 日期 :20 —0 —1 08 3 5
进 口/ 口蒸 汽压 力 ( MC ) 出 T R
4. 3 , 3 9MPa. 5 9 4. 5 g
进 口/ 口蒸 汽 温度 ( 出 B—M R 38659 C ) 2 ./6℃ 进 口/ 口蒸 汽 温度 (MC ) 出 T R 给水温度 ( B—MC ) R
g 10 4 ,C ia , 50 6 hn )
Ab ta t F n t n a d s cue c aa trs c a o tid p n e td sg e t rs o 6 sr c : u ci n  ̄ tr h r ceit b u n e e d n e in fa u e f6 0 MW u eCrf— o i Spr 能 ; 点 ; 临界 ; 锅 性 特 超 自主研发 中图分 类号 :K 2 . T 292 文献标 识 码 : B 文章编 号 :09—33 【08o — 04 2 10 2o2o )5 02 —0
I t o u t n f r I d p n e tDe i n o n r d c i o n e e d n sg f o
燃料 消耗 量
炉膛 上 部设 置分 隔屏 , 用来 切割 烟气 , 平衡 炉 宽 方 向的烟 气分 布 。避 免温度 阎炉 宽方 向 的分 布 不 均 。英 巴炉膛 上部 没 有分 隔屏 。
维普资讯
应 用能 源技 术
20 O8年第 5 ( 期 总第 15 ) 2期
自主研发 60 W 超临 界机组介 绍 6M
黄
f
超 , 双男 , 胡 王伟 来
( 尔滨锅炉厂有限责任公 司, 尔滨 1 06 哈 哈 5 4) 0
摘 要: 介绍哈 尔滨锅 炉厂 自主研 发 的超 临界 6 o万千 瓦等级 机 组的性 能 和 结构特 点 , 同时
流 动路程 的 角度看 , 还不 如切 向燃烧 。
3 2 屏 式 过热 器 .
辐射 及对 流热损 失 L R
不可 测量热 损失 L A u
0 1% .6
0 3 % .0
计算 热效 率 8 .5 按 A MEPC 1 算 ) 52 %( S TA. 计 计算 热效 率 ( 低位 发热 量 ) 按
通风 、 露天 、 固态 排 渣 、 钢 构 架 、 悬 吊结 构 I 全 全 I
型锅 炉 。
最大 连续 蒸发 量 ( B—M R C) 汽机 最大 连续蒸 发 量 (MC ) T R
额定 蒸汽 压力
2l 5. / l 5 th 1 9 2 th 9 4. 5/
2 4 5. MPa. g 5 1 C 7o
6 0 W u r rtc lUl t 6M S p c iia l s e i
HUANG a Ch o,HU h a g—n n,W ANG i Su n a We —hi
( m' nB i rC . t .,H r i H U  ̄ H b ol o L d i e abn, e o
13锅炉 热 力特性 ( . B—MC R工况 ) :
干 烟气 热损失 L G 5 39 .9 %
32859 2 .,6 ℃ 226287 9 ./8 .℃
作 者 简 介 :黄 超 (99~)男 , 族 , 宁 省 本 溪 人 , 理 工 17 , 汉 辽 助
程师 ,O3年 毕业 于 东北 大学 , 事 锅 炉设 计 2O 从
额定蒸 汽 温度
再热 蒸汽 : 蒸 汽流量 ( B—MC ) R 进 口/ 口蒸 汽压 力 ( 出 B—M R C)
1 基本数据
1 1 自然 条件 和煤质 .
1 4. th 71 9 /
4. 9 / 6 MPa g 7 44. 04 .
年平 均 温度 :6 8C 2 . ̄年 平 均气压 :.1Br 103 a 地 震烈 度 : 5级 煤 质为 印尼 煤 锅 炉启 动 时所 用 的燃料 为轻柴 油 。低负荷 运