小学六年级正反比例解题技巧
人教版六年级数学下册第四单元《正比例和反比例》(复习课件)

汽车所行路程与相应耗油量是两种相关联的量,耗油量
随着所行路程的变化而变化。所行路程增加,耗油量随
着增加;所行路程减少,耗油量随着减少。
4.已知y与x成正比例关系,在下表的空格中填写合
适的数。(选题源于教材P49第4题)
5
15
8
3
12.5
25
50
5.同一时间、同一地点测得3棵树的树高及其影长如
下表。(选题源于教材P50第5题)
长劲鹿:0.8×18=14.4(千米)
答:斑马18分钟跑了21.6千米,
长颈鹿跑了14.4千米。
下面的图象表示斑马和长颈鹿的奔跑情况。
(3)从图象上看,斑马跑得快还是长颈鹿跑得快?
从图像上看,10分钟时,斑马跑了
12千米,长劲鹿跑了8千米。
答:斑马跑得快。
判断下面各题中的两种量是否成反比例关系,并说明理由。
面积与所需地砖数量如下表。
所需地砖数量与每块地砖的面积是否成反比例?
为什么?(选题源于教材P51第8题)
成反比例关系。
因为所需地砖数量与每块地砖的面积的乘
积等于教室的面积,而教室的面积一定,
所以所需地砖数量与每块地砖的面积成反
比例关系。
2.食品加工厂准备把一批新酿的醋装瓶运往商店。
所装瓶数与每瓶容量是否成反比例关系?为什么?
有x、y、z三个相关联的量,并有xy=z。
(1)当z一定时,x与y成
比例关系。
反
xy=z
(一定) 即xy的积一定,则xy成反比例。
正
(2)当x一定时,z与y成
比例关系。
z
=x
xy=z
则zy成正比例。
y (一定),
正 比例关系。
正反比例应用题的解题技巧

正反比例应用题的解题技巧正反比例是数学中的一个重要概念,经常在各种应用题中出现。
解决正反比例应用题可以帮助我们理解数学知识,并提高解题能力。
以下是一些解题技巧,帮助你更好地应对正反比例应用题。
1. 理解正反比例关系首先,我们需要理解什么是正反比例关系。
在正反比例中,当一个变量的值增加时,另一个变量的值会相应地减少,反之亦然。
这种关系可以用一个简单的数学表达式来表示:y = k/x,其中k是一个常数。
2. 分析问题在解决正反比例应用题时,我们首先需要仔细阅读问题,理解问题所给的条件和要求。
然后,我们可以将问题中涉及的变量和其它相关信息列出来,以便更好地理清思路。
3. 建立数学模型接下来,我们需要根据问题中的信息建立数学模型。
根据正反比例的特性,我们可以使用y = k/x的公式来表示变量之间的关系。
根据问题中给出的具体条件,我们可以确定常数k的值,并将其代入公式中。
4. 进行计算有了数学模型后,我们可以根据问题中给出的具体数值进行计算。
根据所求的变量,我们可以代入已知数值来求解未知数。
5. 检查答案最后,我们需要检查我们的答案是否符合问题的要求。
我们可以将求解出的变量代入原始问题中,检查是否满足正反比例关系以及其它给定条件。
通过以上步骤,我们可以解决正反比例应用题,并得出正确的答案。
在解题过程中,需要注意细节,避免计算错误。
同时,也可以通过多做题目来加深对正反比例的理解,提高解题的准确性和速度。
希望以上解题技巧对您有所帮助!。
正反比例六年级上册知识点

正反比例六年级上册知识点正反比例是数学中的重要概念,它在我们日常生活中也有着广泛的应用。
在六年级上册的学习中,我们将接触到正反比例的相关知识。
本文将就正反比例的基本概念、性质以及解题方法进行详细介绍。
一、正反比例的基本概念正反比例是指两个量之间的变化关系,其中一个量的增大或减小,对应的另一个量也会按照相同的比例进行减小或增大。
正反比例通常以“倍数”来描述,也可以用分数来表示。
例如,小明每天骑自行车上学的时间是20分钟,而他的速度是每分钟骑行1公里。
我们可以发现,小明的骑车时间和他的速度成正反比例关系。
当小明的骑车时间增加到40分钟时,他的速度将会降低到每分钟的一半,即0.5公里。
二、正反比例的性质1. 存在一个常数k,使得两个量的比值始终相等。
即y/x=k,其中y和x分别代表两个量,k为常数。
2. 当一个量增加n倍时,另一个量也会按照相同的比例增加n 倍;当一个量减少n倍时,另一个量也会按照相同的比例减少n 倍。
三、正反比例的解题方法在解决正反比例问题时,可以运用如下两种方法。
1. 列表法通过列出两个量的对应关系列表,找出它们之间的规律,从而确定它们之间的关系是正反比例。
例如,我们可以列出小明速度与骑车时间的对应关系列表:骑车时间(分钟)速度(公里/分钟)20 140 0.560 0.3380 0.25从上面的列表中可以看出,骑车时间每增加20分钟,速度就减少一半。
因此,小明速度和骑车时间成反比例关系。
2. 公式法在一些情况下,我们可以通过建立数学模型来解决正反比例问题。
其中,y代表一个量,x代表另一个量,k为常数。
我们可以列出如下公式:y = k/x通过这个公式,我们可以根据已知条件求解未知量。
例如,当x=20分钟时,根据已知条件y=1公里/分钟,带入公式可以求得:1 = k/20通过解方程可得k=20。
这样,我们就可以基于公式计算其他未知量的数值。
综上所述,正反比例是六年级上册的重要知识点之一。
六年级数学课件正比例和反比例

正比例的意义
定义:两个量之间的比值相等 性质:当一个量增加时,另一个量也按相同的比例增加 举例:速度、路程和时间之间的关系 应用:在生活和生产中的实际应用
正比例的应用
定义:两个量之间 的比值保持不变, 即为正比例关系
应用场景:速度、 时间、距离等
Hale Waihona Puke 实例:汽车匀速行 驶,速度与时间成 正比
数学模型:y=kx ,其中k为比例系 数
题目:一辆汽车从甲地开往乙地,3小时行了150千米。照这样的速度,再行5小时到达乙地, 甲地到乙地相距多少千米?
反比例的练习题及解析
题目:一个工厂生产了200台机器,每台机器需要10个零件。如果该工厂决定生产更多的机器,但零件数量不变,那么每台新机器的 成本将会如何变化?
解析:这道题目考察了反比例的概念。当一个变量增加时,如果另一个变量保持不变,那么第一个变量与第二个变量之间 的比率将会保持不变。因此,如果该工厂生产的机器数量增加,但零件数量保持不变,那么每台新机器的成本将会降低。
生活中的反比例实例
汽车油箱:油箱容 量固定,行驶距离 与耗油量成反比
速度与时间:速度 越快,所需时间越 短,成反比关系
价格与需求量:价 格上涨,需求量减 少,成反比关系
杠杆原理:动力×动 力臂=阻力×阻力臂 ,当动力臂增加, 阻力臂减少时,动 力作用效果越不明 显
正比例和反比例在数学中的应用实例
化
反比例:两个 量之间的乘积 是一定的,当 一个量变化时, 另一个量也按 相反的比例变
化
区别:正比例 是比值一定, 反比例是乘积
一定
联系:正反比 例都是成比例 关系,当其中 一个量变化时, 另一个量也按 一定的比例变
化
应用上的区别与联系
正反比例判断及比例解应用题(讲义) 六年级下册数学人教版

正反比例的判断技巧学完正、反比例这部分内容以后,很多同学感到枯燥难学,具体到判断正反比例关系的题目准确性不高。
其实只要统一正反比例思路,总结正反比例的内在联系,判断正反比例就可迎刃而解。
成正、反比例的两种量必须符合三个条件:有关联;能变化;比值或乘积一定。
口诀:正反比例莫慌乱,一找二写三细看;是商是积最关键,商正积反好判断。
步骤:“一找”是指首先找出两种变量,即相关联的量,也就是要判断成什么比例的量。
其次找出一定的量,或暗含着一定的量。
“二写”是指根据三种量的关系写出合情合理的分数形式或乘积形式的等式,即x/y=k, xy=k,此为关键也是难点。
如果写不出关系式或写不出乘法的关系式就不成比例。
这需要学生多记一些数量关系式。
如:总价=单价×数量;工作总量=工作效率×工作时间等;还要会相互转换。
“三细看”是指根据关系式,结合叙述,甚至有时候经过计算,来确定一定的量是哪一个。
解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。
定量等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。
判断下列各题中两个变化的量成什么比例,并说明理由。
1、圆的面积和圆的半径。
2、圆的面积和圆的半径的平方。
3、3、圆的面积和圆的周长的平方。
4、4、正方形的面积和边长。
5、5、正方形的周长和边长。
6、6、长方形的面积一定时,长和宽。
7、7、长方形的周长一定时,长和宽。
8、8、三角形的面积一定时,底和高。
9、9、梯形的面积一定时,上底和下底的和与高。
10、10、圆的周长和圆的半径。
11、11、路程一定,速度和时间。
12、12、一堆煤的总量不变,烧去的煤与剩下的煤。
13、13、花生的出油率一定,花生的重量与榨出花生油的重量。
14、平行四边形的面积不变,它的底与高。
15、比例尺一定,图上距离与实际距离。
16、圆的面积一定,直径与圆周率。
小学数学“正反比例问题、 按比例分配问题、百分数问题”总结+解题思路+例题整理(经典应用题10收藏!)

小学数学“正反比例问题、按比例分配问题、百分数问题”总结+解题思路+例题整理一、正反比例问题【含义】两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例应用题是正比例意义和解比例等知识的综合运用。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
反比例应用题是反比例的意义和解比例等知识的综合运用。
【数量关系】判断正比例或反比例关系是解这类应用题的关键。
许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。
【解题思路和方法】解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。
正反比例问题与前面讲过的倍比问题基本类似。
例1修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?解:由条件知,公路总长不变。
原已修长度∶总长度=1∶(1+3)=1∶4=3∶12现已修长度∶总长度=1∶(1+2)=1∶3=4∶12比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公路总长为300÷(4-3)×12=3600(米)答:这条公路总长3600米。
例2张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?解:做题效率一定,做题数量与做题时间成正比例关系设91分钟可以做X应用题则有28∶4=91∶X28X=91×4X=91×4÷28X=13答:91分钟可以做13道应用题。
例3孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?解:书的页数一定,每天看的页数与需要的天数成反比例关系设X天可以看完,就有24∶36=X∶1536X=24×15X=10答:10天就可以看完。
第17课正反比例巧解题
一对互相咬合的齿轮,大轮有100个齿, 每分钟转90转。要使小轮每分钟转300转, 那么从小轮应有多少个齿?(用比例解答)
两轮转动的总齿数相等。
总齿数=每圈齿数×圈数
1、大、小两个互相咬合的齿轮转的圈数比
为3 : 5。那么两个齿轮的齿数比是多少?已 知大齿轮有45个齿,小齿轮有多少个齿?
2每 那、分么一钟小对总转轮一互齿1应定0相数有0咬转=多合。少每的要个圈齿使齿齿轮小成?数,轮反(大×每用比圈轮分比数有钟例2转解005答个0转)齿,,
②按图上距离的大小分:
缩小比例尺
扩大比例尺
1:100000
500:1
—— 本周校内重点题自测
1、北京到沈阳实际距离300千米,在比
例尺是1:5000000的地图上,两地图上
距离是多少?
缩小比例尺
2、一种细菌长0.24毫米,画在400:1
的示意上,图上距离有多少?
扩大比例尺
解比例
外内 内外 项项 项项
判断是正比例关系还是反比例关系? 解:设能订x本。
24x=20×600 x=500
1、爸爸开车带优优去某地旅游,去时每小 时行驶70千米,行驶了4个小时,回来时行 驶了3.5小时,回来时每小时行驶多少千米 ?(用比例解答)
2、工程队要挖一条水渠,原计划每天挖36 米,30天能够挖完,如果每天多挖4米,多 少天能够完成?(用比例解答)
40x=21×7000
x=3675
12、1巨0巨0 买千3克本黄同豆样可的以日榨记油本1用3了千5克.4,元 照。这优样优计想算买,同要样榨的豆日油记本6.55本吨,,需需要黄多 豆少多元少钱吨??(用(比用例比解例答解)答)
一批纸张,订成20页一本的练习本, 能订600本。如果订成24页一本的练 习本,能订多少本?(用比例解答)
六年级正反比例知识点
六年级正反比例知识点
六年级数学正反比例的知识点如下:
比例的基本性质:设一个数为x,另一数为y,则有(x-a)/(y-b)=(x-1)/(y-2);
比例的四则运算:分子不变,分母改变时,比值不变;
利用“整体反推法”求解比例问题:当已知两个数的比,求第三个数时,先用第二个数除以第一个数,得到一个新的比例,再把这个新比例的倒数作为第三个数即可。
解比例方程的方法:从整体上看,根据题目中的条件列方程;从部分上看,根据个别数和全体数的关系列方程;最后写出符合题意的式子。
反比例的性质:当整体小于部分时,反比等于1;当整体大于部分时,反比小于1。
反比例的应用:在生产、生活中,可以通过反比例来判断事物发展的方向是否正确。
—— 1 —1 —。
六年级正比例和反比例知识点总结(共10篇)
六年级正比例和反比例知识点总结(共10篇) 反比例正比例知识点正比例和反比例判断正比例反比例的题正比例反比例应用题篇一:六年级下册正比例和反比例的知识点知识点:1变化的量:一种量变化,另一种量也随着变化。
2正比例:意义两种相关的量一种量变化另外一种量也随着变化,如果它们的的比值一定(也就是商一定),那么它们之间就成正比例关系。
A÷B=K(一定)除法关系A=K(一定) B3判断正比例的关系两种相关的量,一种量随着另一种的变化而变化(同时扩大或者同时缩小)当它们比值一定时,成正比例正比例的图像是:一条直线4.反比例意义:两种相关的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例关系。
5判断反比例的方法两种相关的量,一种量变化另一种量随着变化(一种量增加另一种量随着缩小)相反的积一定当它们的乘积一定时,成反比例关系反比例的图像是:一条曲线6比例尺比例尺:图上距离和实际距离的比,叫做这幅图的比例尺图上距离÷实际距离=比例尺(注意:单位)图上距离÷比例尺=实际距离实际距离×比例尺=图上距离7比例尺的分类线段比例尺数值比例尺(根据比例尺扩大的就×根据比例尺缩小就÷)篇二:六年级下册正比例和反比例的知识点六年级下册第二单元知识点1变化的量:一种量变化,另一种量也随着变化。
2正比例:意义两种相关的量一种量变化另外一种量也随着变化,如果它们的的比值一定(也就是商一定),那么它们之间就成正比例关系。
A÷B=K(一定)除法关系3判断正比例的关系两种相关的量,一种量随着另一种的变化而变化(同时扩大或者同时缩小)当它们比值一定时,成正比例正比例的图像是:一条直线4.反比例意义:两种相关的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例关系。
5判断反比例的方法两种相关的量,一种量变化另一种量随着变化(一种量增加另一种量随着缩小)相反的积一定当它们的乘积一定时,成反比例关系反比例的图像是:一条曲线6比例尺比例尺:图上距离和实际距离的比,叫做这幅图的比例尺图上距离÷实际距离=比例尺(注意:单位)图上距离÷比例尺=实际距离实际距离×比例尺=图上距离A=K(一定) B7比例尺的分类线段比例尺数值比例尺(根据比例尺扩大的就×根据比例尺缩小就÷)篇三:正比例和反比例的意义知识点总结加典型例题正比例和反比例的意义知识点一:正比例和反比例的意义(1)正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量变叫做成正比例的量,它们的关系叫做正比例关系。
六年级比例的应用题解题技巧
六年级比例的应用题解题技巧一、比例应用题解题技巧总结。
1. 理解比例的概念。
- 比例表示两个比相等的式子,如a:b = c:d,可以写成(a)/(b)=(c)/(d)(b、d≠0)。
- 比例的基本性质是ad = bc,这个性质在解比例应用题时经常用到。
2. 分析题目中的比例关系。
- 找出题目中给出的比例关系,确定已知量和未知量。
- 例如:已知甲、乙两数的比是3:5,甲是15,求乙。
这里已知比例关系3:5和甲的值,求乙。
3. 设未知数。
- 根据题目中的未知量设未知数。
通常设一份为x,或者直接设所求的量为x。
- 在上面的例子中,可以设乙为x,根据比例关系得到(15)/(x)=(3)/(5)。
4. 列比例式。
- 根据题目中的数量关系列出比例式。
- 如:路程一定时,速度和时间成反比例。
已知甲速度v_1,乙速度v_2,甲时间t_1,乙时间t_2,因为v_1t_1 = v_2t_2,如果已知v_1、v_2、t_1求t_2,则可列出比例式(v_1)/(v_2)=(t_2)/(t_1)。
5. 解比例式。
- 利用比例的基本性质解比例式。
- 对于(15)/(x)=(3)/(5),根据3x = 15×5,解得x = 25。
二、20道比例应用题及解析。
1. 题目。
- 学校图书馆进了一批新书,按3:4的比例分给五、六年级。
五年级分得90本,六年级分得多少本?- 解析。
- 设六年级分得x本。
- 因为五、六年级书本数量的比是3:4,已知五年级分得90本,所以可列出比例式(90)/(x)=(3)/(4)。
- 根据比例的基本性质3x = 90×4,解得x = 120本。
2. 题目。
- 一辆汽车从甲地到乙地,前2小时行驶了120千米,照这样的速度,再行驶3小时到达乙地。
甲乙两地相距多少千米?- 解析。
- 设甲乙两地相距x千米。
- 因为速度一定,路程和时间成正比例。
汽车行驶的速度为120÷2 = 60(千米/小时)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、运用正、饭反比例知识解决实际问题:
(1)解答正、反比例应用题用以正、反比例的意义为依据;
(2)解答正、反比例应用题的一般步骤:
先确定题中三种数量关系中的定量,然后分析两个变量是比值一定,还是乘积一定,从而确定两个变量是正比例关系,还是反比例关系;
5、甲、乙两地相距510千米,一列货车和一辆客车同时从两地相对开出,5小时后相遇。货车和客车的速度比是8:9,货车和客车的速度各是多少?
经典例题3修路队修一条公路,已修部分与未修部分的比是5:3,又知已修部分比未修部分长600米,这条路长多少米?
变式训练3一项工程原计划42人工作,14天可以做完。现在要求提前2天完成,需要增加多少人?
(能力提升)每条男领带20元,每支女胸花10元,某个体商店进领带与胸花件数的比是3∶2,共值4000元。领带与胸花各多少?
设未知数x;
根基题意列出等式,正比例列成比例式,反比例列成乘积相等的等式。
解答并检验。
【注】解答正、反比例应用题的关键是正确判断两种相关联的量是成什么比例,判断的方法是:
= (一定) 正比例 = (一定) 反比例
重要知识点讲解:
用正、反比例知识解决实际问题
经典例题1修路队修一条长120千米的公路,前4天修了20千米;照这样的速度,修完全路共需要多少天?(用比例方法解答)
随堂练习
1、一个车间装配一批电视机,如果每天装50台,60天完成任务;如果要40天完成任务,每天应装多少台?
2、生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,,可以提前几天完成任务?
3、用4台拖拉机每天可耕地32公顷,如果用9台同样的拖拉机,每天可耕地多少公顷?
4、一辆汽车从A地开往B地,4小时行驶144千米,用同样的速度,再行3小时到达B地。A、B两地相距多少千米?
变式训练1印刷厂装订一批图书,原计划每天装订500本,30天完成;实际只用了25天就完成了任务,实际每天装订多少本?(用比例方法解答)
经典例题2学校图书馆的科技书、文艺书和故事书共12000本,其中科技书占 ,科技书与故事书的比是2:3,故事书有多少本?
变式训练2小明读一本书,已经读了全书的 ,如果再读15页,则读过的页数与未读的页数的比是2:3,这本书有多少页?
小学六年级正反比例解题技巧
授课题目:正比例和反比例(二)——用正、反比例知识解决实际问题
重点难点:(重点)理解比例的意义和基本性质,会用比例知识解答比较容易的应用题;
(难点)理解正、反比例的意义,能够正确判断成正、反比例的量,用比例知识解答比较容易的应用题。
课前回顾:
1、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成比例的量,它们之间的关系叫做比例关系。
如果用字母 和 分别表示两种相关联的量,用 表示它们的比值,正比例关系可以用这样的式子来表示: = (一定)。
2、用“描点法”可以得到正、反比例的图像,比例的图像是一条直线,比例的图ቤተ መጻሕፍቲ ባይዱ是一条曲线。对照图像,能根据一种量的值,估计另一种量相对应的值。
3、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
如果用字母 和 分别表示两种相关联的量,用 表示它们的积,反比例关系可以用这样的式子来表示: = (一定)。
4、两个变量的一定,这两个变量成正比例;两个变量的一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。
5、比例尺:比例尺图上距离:实际距离=比例尺
要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。