鸡蛋蛋壳生物矿化和力学特性调控的研究进展

合集下载

细菌介导生物矿化的研究进展

细菌介导生物矿化的研究进展

㊀第40卷㊀第11期2021年11月中国材料进展MATERIALS CHINAVol.40㊀No.11Nov.2021收稿日期:2020-02-23㊀㊀修回日期:2020-05-04基金项目:国家自然科学基金项目(81722015,81870805,81870787);陕西高校青年创新团队项目第一作者:王婉蓉,女,1992年生,医师秦㊀雯,女,1998年生,在读本科生(八年制)通讯作者:牛丽娜,女,1983年生,教授,博士生导师,Email:niulina831013@ 焦㊀凯,男,1982年生,副教授,博士生导师,Email:kjiao1@DOI :10.7502/j.issn.1674-3962.202002009细菌介导生物矿化的研究进展王婉蓉1,秦㊀雯1,顾俊婷1,郑秀丽1,唐笑怡2,焦㊀凯1,牛丽娜1(1.军事口腔医学国家重点实验室口腔疾病国家临床医学研究中心陕西省口腔医学重点实验室第四军医大学口腔医院修复科,陕西西安710032)(2.中国人民解放军联勤保障部队第九二ʻ医院(昆明医科大学教学医院),云南昆明650032)摘㊀要:生物矿物因其高度有序的结构和良好的机械性能成为诸多学科研究的热点㊂对细菌㊁真菌㊁病毒等微生物介导生物矿化的深入研究,不仅能使学者更加系统地认识生命演化过程,而且能为新材料的研发提供思路㊂其中,细菌诱导的矿化因其潜在的应用价值而深受研究者的青睐㊂首先介绍了细菌介导的钙化㊁硅化㊁铁矿化3种不同的生物矿化类型,其次讨论了细菌介导生物矿物形成的可能机制,最后阐述了生物矿物在环境㊁工业及医疗领域的应用,为进一步的生物矿化研究奠定基础㊂关键词:生物矿化;生物矿物;细菌;环境;工业;医药中图分类号:R783.1㊀㊀文献标志码:A㊀㊀文章编号:1674-3962(2021)11-0930-08Progress of Bacteria-Mediated BiomineralizationWANG Wanrong 1,QIN Wen 1,GU Junting 1,ZHENG Xiuli 1,TANG Xiaoyi 2,JIAO Kai 1,NIU Lina 1(1.State Key Laboratory of Military Stomatology &National Clinical Research Center for Oral Diseases &Shaanxi Key Laboratory of Stomatology &Department of Prosthodontics,School of Stomatology,The Fourth Military Medical University,Xi a n 710032,China)(2.Kunming Medical University,920th Hospital of Joint Logistics Support Force,Kunming 650032,China)Abstract :Biominerals have become hotspots in many disciplines due to their highly ordered structure and good mechanicalproperties.The research on microbe-mediated biomineralization can help us to understand the evolution process of life more systematically,and provide new ideas for the development of new materials.Among them,bacteria-mediated biomineraliza-tion is favored by researchers for its potential value.Firstly,this article introduces the processes of calcification,silicifica-tion and iron mineralization induced by bacterial.Then,we discuss the possible mechanisms for bacterial-mediated biologi-cal mineral formation.Finally,we describe the application of biominerals in the environmental,industrial,and medical fields.It is expected that this study may help the further development of biomineralization.Key words :biomineralization;biominerals;bacterial;environment;industry;medicine1㊀前㊀言生物矿化是指生物体通过蛋白质等生物大分子调控无机矿物形成的过程㊂在此过程中形成的具有纳米级结构的生物矿物,不仅具备极佳的强度和断裂韧性,也呈现出良好的生物相容性㊂迄今为止,已从生物中鉴定出60多种不同的矿物质㊂这些矿物对于自然界的物质循环起着重要作用[1]㊂细菌作为自然界最活跃的微生物之一,在生物矿物的形成中发挥着重要的作用㊂目前已经发现了大量由细菌介导生成的矿物,例如有研究发现嗜盐菌及枝芽孢菌可以促进白云石的形成;球形芽孢杆菌有助博看网 . All Rights Reserved.㊀第11期王婉蓉等:细菌介导生物矿化的研究进展于碳酸钙晶体的形成[2]㊂细菌介导的矿化与生命演变息息相关㊂在原始环境下最早出现的是原核生物矿化,这表明细菌-矿物相互作用是生命史早期的一个重要现象㊂这种相互作用对于古老地球环境的研究以及寻找其他行星表面生命都有着重大意义[3]㊂当外界环境转变至有利于矿化发生时,细菌通常有着多种不同的应答方式,例如通过形成生物膜避免被矿化或在保存细菌活性的前提下嵌入矿物中,甚至可在矿物形成过程中控制其形态㊂此种现象说明细菌的进化与周围环境的改变息息相关[4]㊂相比于化学合成的方式,细菌合成矿物不仅绿色经济环保,且操作较为方便,因此细菌介导的生物矿化在环境净化㊁工业生产和医药研究等领域的潜在应用已成为目前研究的热点㊂例如一些由微生物矿化引起的疾病有可能通过对细菌的干预进而治愈[5];由于生物矿物具有良好的生物相容性,因此可作为药物载体应用在肿瘤疾病的靶向治疗中[6];除此之外,可通过化学交联和基因编辑等方式修饰细菌蛋白,使生物矿物的形态和大小根据工业需要进行合成[7]㊂本文综述了细菌介导生物矿化的类型㊁作用机理及应用,为进一步的生物矿化研究提供参考㊂2㊀细菌介导生物矿化的类型2.1㊀钙化细菌介导的钙化存在于天然矿物和生物体内㊂研究发现好氧菌如Salinivibrio和Virgibacillus有助于MgCa-(CO3)2的形成,而MgCa(CO3)2被认为是天然矿物白云石的前体[8]㊂甲壳类动物㊁海洋生物㊁植物甚至人体组织均可见由细菌介导的钙化发生㊂甲壳类动物是指虾㊁蟹等有坚硬外壳保护的动物,其外壳由甲壳质㊁结合蛋白和碳酸钙构成,具有排泄㊁感知和保护的作用[9]㊂研究发现甲壳类动物Titanethes albus的钙体内存在大量细菌,且钙体的中心存在结晶晶核[10]㊂海绵是一种海洋无脊椎动物,体内存在多种钙化细菌,这些细菌可产生钙化小球覆盖在海绵表面,模拟外周骨骼结构,保护海绵免受外界的伤害,从而提高海绵存活率[9,11]㊂细菌介导的钙化也存在于人体组织中㊂有研究证实尿路结石的发生可能与假单胞菌㊁乳酸菌及肠杆科菌有关㊂细菌导致尿路结石产生的可能机制有以下3种:细菌选择性地聚集在草酸钙晶体上使钙盐增长变快;细菌释放柠檬酸裂解酶,降低尿液中柠檬酸水平的同时提高草酸盐浓度,从而导致尿液过饱和,致使结晶形成;细菌-晶体聚集体可与肾小管上皮结合,导致肾小管上皮或炎性细胞中结石基质蛋白的表达,从而形成结石[5]㊂细菌诱导的钙化也可发生在极端环境下㊂Planococcus halocryophilus Or1在-15ħ时可使调控碳酸钙矿化的碳酸酐酶表达升高,导致更多的碳酸钙沉积在细菌细胞膜中[12]㊂2.2㊀硅化除钙化之外,细菌亦参与了自然界的硅化过程㊂据报道,在ImawarìYeuta洞穴中发现的无定形二氧化硅是由丝状细菌蓝藻介导产生的㊂蓝藻的代谢产物使洞穴环境pH值升高,致岩石溶解㊂溶解产生的二氧化硅可在细菌细胞膜上以无定形的形式重新沉淀[13],形成管状及丝状的岩石结构㊂另外,蓝藻的硅化作用有助于化石在形成过程中保存完好的细胞结构,使考古学家可以获得更多有关古生物的生命信息[14]㊂2.3㊀铁矿化多种细菌都可介导产生四氧化三铁(Fe3O4)和硫化铁(Fe3S4㊁Fe1-x S㊁Fe9S8),其中趋磁细菌(magnetotactic bacteria,MTB)是目前研究的热点㊂MTB是一种能够沿着地球磁场运动或排列的原核生物[15]㊂目前已知的多数MTB属于α-蛋白菌㊁δ-蛋白菌㊁γ-蛋白菌和硝化螺菌类[16],均为革兰氏阴性细菌,有球形㊁弧形㊁杆形及螺旋形等多种形态㊂MTB中负责趋磁运动的细胞器是由细菌生物矿化合成的磁小体㊂磁小体由脂质双分子膜包裹的纳米级磁铁矿晶体构成[17],是淡水沉积物中的重要天然磁性元素㊂这些磁性纳米晶体具有粒度均一㊁纯度高㊁磁性强和生物相容性良好等特点㊂磁性纳米颗粒在自然界中发挥着重要作用㊂由于产生胶黄铁矿的MTB需要硫才能合成磁小体,因此胶黄铁矿被认为是地质历史上停滞缺氧状态(一种无氧状态,由于游离H2S水平升高而呈硫化物状态)的指标[18]㊂此外,在微生物的进化过程中,环境中氧气的出现给微生物带来了源于活性氧的毒性,而嗜热性嗜酸菌Sulfolobus solfa-taricus能够通过氧化作用将Fe2+氧化成Fe3+形成铁矿物,这可以认为是原始生命对于氧气环境的适应[19]㊂另外人体组织中的磁性纳米颗粒与众多疾病的发生发展有关㊂有研究在多种人体器官中均发现了磁性纳米颗粒的存在,其中小脑和脑干分布较多[20]㊂由于这些磁性颗粒与MTB 产生的晶体较为相似,因此被认为其来源为MTB㊂研究发现磁性氧化铁纳米颗粒在中枢神经系统细胞(尤其是星形胶质细胞)的过度积累可能导致正常的铁代谢紊乱,这是神经退行性疾病产生的一个标志性特征,但具体的机制有待于更进一步的研究[21]㊂3㊀细菌介导生物矿化的发生机制自然界的生物矿化可分为生物诱导矿化和生物控制矿化㊂生物诱导矿化是由生物的生理代谢活动引起环境139博看网 . All Rights Reserved.中国材料进展第40卷条件变化而发生的矿化,其中,生物不能直接控制沉淀物的产生位置或产生方式(图1a)㊂生物控制矿化是由生物的生理活动引起的,可产生高度有序的沉淀物,且沉淀物大小㊁质地和方向受生物体控制(图1b)[22]㊂图1㊀生物诱导矿化(a)和生物控制矿化(b)的示意图[22]Fig.1㊀Schematic representation of biologically induced mineralization (a)and biologically controlled mineralization (b)[22]㊀㊀根据发生位置的不同,细菌介导的矿化可分为细胞外矿化和细胞内矿化㊂细胞外矿化是指发生在细胞周围基质中的矿化㊂细胞可通过细胞膜上的蛋白质将阳离子泵出,或通过分泌含有阳离子的囊泡,介导周围基质的矿化㊂细胞内矿化则是指由细胞的代谢活动介导的胞内囊泡矿化㊂细胞内矿化的产物可以存在于细胞内(如MTB),也可以通过胞吐作用释放到胞外(如硅藻)㊂矿化的基本化学反应过程为羧基㊁磷酸基团㊁胺基和羟基等带负电荷的基团与金属阳离子结合,形成矿物㊂以钙化物羟基磷灰石(hydroxyapatite,HAP)为例,其基本的化学反应过程如下:10Ca(OH)2+6H 3PO 4ңCa 10(PO 4)6(OH)2+18H 2O3.1㊀细胞外矿化3.1.1㊀初始矿化细胞外矿化发生的首要条件是细菌周围有足够的可溶性离子㊂研究发现,细菌可通过多种不同机制增加可溶性离子的浓度,例如大肠杆菌在碱性磷酸酶的作用下可以释放磷酸根离子[23],浮生细菌可以通过分泌酸(羧酸㊁盐酸等)降低环境中的pH 值,从而溶解无机磷酸盐㊁增加可溶性离子[24]㊂初始矿化阶段可由经典结晶理论和非经典结晶理论来解释(图2)[25]㊂经典结晶理论认为,成核是相变的开始,这个过程是不可逆的㊂在细菌矿化过程中,成核位点位于胞外聚合物(extracellular polymeric substances,EPS)或细菌表面蛋白质上㊂EPS 由细菌分泌的大分子构成,包含了多糖㊁蛋白质㊁DNA㊁脂类等物质㊂由于EPS 中的大分子物质含有羧基㊁磷酸基团㊁胺基和羟基等带负电荷的基团,EPS 降解后,可与局部过饱和的阳离子相互结合引起矿物沉淀[26]㊂当成核位点位于细菌表面蛋白质上时,金属阳离子如铁离子可直接与细菌表面蛋白质中的羧基和羟基反应,通过金属氧化反应形成金属-蛋白质复合物[27]㊂图2㊀经典结晶理论及非经典结晶理论示意图[25]Fig.2㊀Schematic diagram of classical nucleation theory and non-classical nucleation theory [25]239博看网 . All Rights Reserved.㊀第11期王婉蓉等:细菌介导生物矿化的研究进展㊀㊀而非经典结晶理论认为晶体的形成是以粒子为媒介,由动力学控制的㊁与相分离无关的结晶过程㊂在溶液中首先形成具有弥散边界的无定形离子簇,称之为预成核簇(pre-nucleation clusters,PNC)㊂PNC是热力学稳定的聚集体,可存在于各种不饱和或超饱和溶液中[28]㊂接着,PNC聚集形成无定形矿物前体,在碳酸钙形成过程中的无定形矿化前体为无定形碳酸钙(amorphous calcium carbonate,ACC)[29],在磷酸钙形成过程中的无定形矿化前体为无定形磷酸钙(amorphous calcium phosphate, ACP)[30],继而无定形矿化前体失去结合水,经过固态转化结晶[31]㊂更进一步的研究认为,这种生物矿化过程发生在由特定蛋白质形成的水凝胶环境中,其特有的内部孔隙充当 有限体积的反应容器 ,可以促进无定形矿化前体的形成[32]㊂3.1.2㊀晶体生长晶体生长过程决定了最终晶体的大小和形态㊂和初始矿化相似,晶体生长也可以通过经典结晶理论和非经典结晶理论来解释㊂经典结晶理论认为,在高过饱和溶液中以成核为主,而在低过饱和溶液中晶体生长占主导地位[33]㊂在这一过程中依据的是奥斯瓦尔德现象,即在溶液过饱和的情况下,热力学能量驱动单个原子或分子沉积在成核部位,使材料有序排列生长成稳定的晶体结构㊂溶液中不同的添加剂和物理参数会导致每个单晶面的生长速率不同,从而形成形态各异㊁大小不一的晶体[34]㊂非经典结晶理论认为,矿化前体无定形碳酸钙或无定形磷酸钙通过定向附着形成介晶结构,继而在蛋白质的引导下组装聚集成为晶体结构㊂在此过程中,蛋白质发挥着重要作用㊂例如海胆脊椎基质蛋白SPSM50不仅可增强无定形矿化前体的稳定性,而且以介晶结构的形式诱导了晶体的定向生长[35]㊂3.2㊀细胞内矿化细胞内矿化是指用于细胞内矿化的离子在转运蛋白的作用下被富集至囊泡中,继而发生矿化[36]㊂细胞内矿化与细胞外矿化最大的不同在于有囊泡的参与㊂在此过程中,囊泡膜上的蛋白质以及囊泡内的蛋白质不仅为矿化提供成核位点,也形成了一个 有限体积 以实现蛋白质等分子的集中,称为分子拥挤(molecular crowding)㊂在结晶发生前,一些分子(如聚乙二醇)会抑制矿物前体的形成和自我聚集;在结晶发生时另一些大分子(如牛血清白蛋白)则会促进矿化前体的聚集[37]㊂这一过程也是仿生矿化中的研究热点㊂MTB诱导的铁矿化是细胞内矿化的典型代表㊂其在磁小体内产生纳米级别铁磁性颗粒的可能机制如下(图3)[38]:首先细胞质膜(图3a)内陷形成囊泡(图3b),其次转铁蛋白将铁离子(经细胞)转运到囊泡中㊂包裹Fe2+图3㊀磁小体的形成过程[38]Fig.3㊀The formation process of magnetosomes[38]339博看网 . All Rights Reserved.中国材料进展第40卷的囊泡与细胞骨架接触时,Fe2+氧化成为Fe3+,膜上的蛋白质启动成核,并且调控囊泡内矿化形成磁铁矿晶体(图3c),称之为磁小体㊂磁小体膜上的蛋白质可与肌动蛋白相互作用,使磁小体成链状排列(图3d)㊂随后,在细胞分裂过程中细胞壁通过弯曲磁小体链减少磁力,促进磁小体均匀地分离到子细胞中(图3e和3f)㊂研究表明,MTB基因组上有一段特殊的区域,称为磁小体岛(图3g),该基因岛与磁小体的形成密切相关㊂相关基因如mms及mam家族可调控铁磁性颗粒的形状和大小[39]㊂另有研究发现,磁小体内铁磁性颗粒的形态可能与MTB 的来源有一定的关联㊂例如来自α-蛋白菌和γ-蛋白菌菌属的MTB常产生各向同性生长的八面体棱柱形的铁磁矿,而硝化螺菌菌属的MTB常产生各向异性生长的子弹型铁磁矿[40]㊂4㊀细菌介导生物矿化的应用4.1㊀环境应用随着工业化的快速发展,大量的有毒金属及放射性核素被排放至环境中,对人类健康造成了极大的威胁㊂如何快速有效地回收环境中的污染物是学者们亟需解决的问题㊂随着细菌介导矿化研究的进一步深入,有学者提出可通过耐重金属细菌诱导有毒金属矿化来回收环境中的锶㊁镍㊁铬㊁铅㊁铀㊁镉等有毒金属,改善环境质量[41]㊂虽然高浓度的金属离子可导致多数细菌核酸紊乱及渗透压失衡,但对于这些损伤,细菌已进化出了精妙的抗重金属机制,如金属离子的跨膜运输㊁形成胞内外沉淀㊁与胞内金属硫蛋白的螯合作用等均可将有毒金属离子转化为无毒或毒性较小的物质(图4)[42]㊂由于细菌的大部分抗重金属基因位于质粒上,因此可通过基因操作得到基因编辑细菌,从而用于生物修复[43]㊂例如,研究发现趋磁细菌UPB-MAG05菌株对重金属镉具有高度耐受性,可介导污染水源中镉的矿化沉积,继而在外界磁场的作用下通过磁分离去除,从而净化水质[44]㊂磷酸盐增溶芽孢杆菌可分解含磷酸盐的有机化合物,在其细胞表面产生磷酸盐基团,并与铅离子沉淀为稳定的Pb3(PO4)2,从而达到清除铅离子的目的[45]㊂相较于传统的物理化学修复方法,通过细菌矿化重金属修复污染环境的方法具有成本低廉㊁后期处理简单等优点,但细菌矿化重金属的长期有效性尚未得到证明,已经结合的重金属在环境变化的条件下可能重新活化,回到环境中㊂图4㊀细菌抗多种有毒金属的机制[42]Fig.4㊀The mechanism of bacterial resistance to toxic metals[42]4.2㊀工业应用细菌介导的矿化也可以用于电化学领域的能源存储㊂研究发现铁氧化细菌Acidovorax可介导γ-FeOOH发生矿化,形成保留细菌大小和形状的α-Fe2O3纳米晶体㊂α-Fe2O3纳米晶体组装形成中空多孔的壳,导电性强,在与锂反应时有更强的电化学可逆性㊂此种生成纳米晶体的方法不仅具有生态友好性,也可实现工业上的规模化生产[46]㊂由电化学活性细菌Shewanella oneidensis介导合成的高度分散的钯金合金纳米粒子可用作液体燃料电池的电催化剂[47]㊂研究发现,通过基因技术使大肠杆菌表面表达硅藻silaffin蛋白的重复片段,其调控合成的纳米二氧化钛锐钛矿具有出色的锂储存性能,可用作锂离子电池的阳极[48]㊂混凝土是目前广泛使用的建筑材料,但随着时间的流逝,混凝土内部产生的裂缝会降低建筑结构的机械性能,缩短建筑物使用年限㊂有研究提出可在混凝土中加入能够介导碳酸盐沉淀的细菌,其产生的碳酸钙可增强混凝土对氯离子和渗透水的抵抗力,提高混凝土耐久性439博看网 . All Rights Reserved.㊀第11期王婉蓉等:细菌介导生物矿化的研究进展和强度;同时碳酸钙可填补裂缝,形成自修复混凝土,增加建筑的使用寿命(图5)[49]㊂研究证实,当初始裂缝宽度不大于0.5mm 时,使用自修复混凝土时大部分裂缝可完全愈合[47]㊂但由于混凝土由硅酸盐水泥制成,水化后可产生氢氧化钙,使混凝土呈强碱性,且混凝土基质中的孔隙尺寸小于1μm,而细菌的大小为1~4μm,这些条件都不利于细菌存活[50]㊂因此如何提高细菌在混凝土基质中的生存能力是目前的研究热点㊂有学者提出可使用微胶囊技术来保护细菌,使细菌在合适的环境下介导碳酸盐沉淀[51]㊂图5㊀通过细菌诱导碳酸钙沉淀修复混凝土开裂的示意图[49]Fig.5㊀Schematic of bacteria induced calcium carbonate precipitation to repair concrete cracking [49]4.3㊀生物医学应用4.3.1㊀医疗成像设备和诊断磁共振成像(magnetic resonance imaging,MRI)技术由于具有良好的空间分辨率和软组织对比度,是临床上常用的影像检查手段之一㊂研究发现MTB 产生的磁性纳米颗粒具有较强磁性,可作为造影剂增强组织中质子共振吸收,使局部组织图像得到增强,从而提高检查的灵敏度和特异性[52]㊂除增强成像对比度之外,功能化的磁性纳米颗粒芯片还可用于食源性病原物的检测,如大肠杆菌㊁霍乱弧菌㊁空肠弯曲菌㊁金黄色葡萄球菌等[53]㊂如图6所示,趋磁细菌MO-1功能化之后可与金黄色葡萄球菌表面的A 蛋白结合,从而实现靶向功能[54]㊂目前可以通过化学修饰和基因工程的方法生产功能化磁小体㊂化学修饰作用于磁小体中的Mam㊁Mms 等蛋白上,有以下结合方式:①通过磁小体膜上的氨基或羧基进行功能化修饰,例如经肽P75修饰的磁小体可与人表皮生长因子受体和上皮生长因子受体2结合[55];②使用葡萄球菌蛋白A 用作融合标签,葡萄球菌蛋白A 作为一种免疫球蛋白G 结合蛋白,可与MamC㊁MamF 以及免疫球蛋白Fc 区结合,从而介导磁小体-葡萄球菌蛋白A 复合物与抗体结合[56];③利用磁小体膜上的 NH 2基团与抗体的 NH 2或 SH 基团之间的反应进行化学修饰;④用生物素/链霉亲和素进行修饰;⑤利用正负电荷之间的相互作用进行修饰,磁小体膜上的磷脂带有负电荷,可与带正电荷的抗癌重组质粒热激蛋白㊁70-polo 样激酶1短发夹RNA 以及阿霉素结合[57]㊂另外还可通过基因工程改造对磁小体进行功能化修图6㊀趋磁细菌靶向金黄色葡萄球菌的微机器人系统的构建[54]Fig.6㊀Construction of a microrobot system using magnetotactic bacteria for targeting Staphylococcus aureus [54]539博看网 . All Rights Reserved.中国材料进展第40卷饰㊂将表达功能蛋白的基因与mms16,mam13等膜蛋白基因融合,再将融合基因转移到MTB中,从而可实现目标蛋白的表达㊂例如,将磁小体和翡翠绿色荧光蛋白(EmGFP)或生物素修饰的烟草花叶病毒(tobacco mosaic virus,TMV)共同培养,可生成表达这些蛋白的磁性纳米链[58]㊂由于化学修饰可能引入有毒物质,且在MTB中引入外来活性蛋白质的基因的操作比较复杂,因此最近的研究中提出了一种新的修饰方法㊂首先通过基因技术在大肠肝菌中表达与磁小体MamC蛋白融合的抗人表皮生长因子受体2(human epidermal growth factor receptor-2, HER2),然后去除磁小体膜中的磷脂双层中的膜蛋白,以利于从大肠肝菌中提取的基因工程产物抗HER2与磁小体上的MamC蛋白结合,从而实现HER2阳性乳腺癌在磁共振成像中的检测[59]㊂这种技术有望成为无创检测肿瘤的手段,具有较大的临床应用价值㊂4.3.2㊀抗肿瘤方法高温疗法可通过多种机制作用于癌细胞上使其变性坏死,但目前该疗法缺乏特异性,难以区分健康细胞与癌细胞㊂遂有研究提出 生物靶向磁性热疗 的概念,意为在外源交变磁场的作用下加热磁性颗粒,由于磁滞损耗或松弛损耗产生不同程度的升温现象,可在磁性颗粒聚集的地方选择性地抑制癌细胞增殖[60]㊂由MTB产生的磁小体由于磁性较强,可在交变磁场中产生较大的热量;同时由于磁小体呈链状排列,不易聚集,可使肿瘤细胞均匀升温,有效抑制其增殖[61],因此磁小体在磁热疗领域有较大的应用前景㊂研究表明,聚赖氨酸包裹的磁小体具有更好的生物相容性,在胶质母细胞瘤小鼠模型的实验性磁热疗中,可显著抑制肿瘤细胞的生长[6]㊂但是到目前为止,多数关于磁小体抗肿瘤治疗的研究都是使用肿瘤细胞株进行实验的,未进行动物实验研究或人类临床试验,因此磁小体的临床抗肿瘤能力还需进一步验证㊂4.3.3㊀药物输送系统靶向给药是指将药物选择性地传输定位于病变位置,从而发挥药理作用的给药方式㊂在肿瘤微环境中,由于细胞的大量增殖消耗氧气,肿瘤组织周围氧气缺乏㊂目前使用的纳米药物载体,如脂质体㊁胶束㊁聚合物纳米颗粒难以到达缺氧区域,靶向率低㊂而MTB适合厌氧生长,故目前有研究通过MTB和磁小体构建纳米机器人,在外磁场的作用下,纳米机器人可聚集于病变部位,提高病变部位的药物浓度,改善治疗效果[62]㊂例如,将载有药物的纳米脂质体交联至海洋趋磁细菌MC-1表面,并将其注射到实验小鼠的肿瘤组织周围,在外磁场的作用下,有高达55%的MC-1细胞渗透到肿瘤缺氧区[63]㊂5㊀结㊀语综上所述,相比于物理和化学合成方法,细菌介导生成的矿物在环境㊁工业及生物医学领域均发挥着重要的作用㊂虽然目前对细菌介导的生物矿化的研究已经取得部分进展,但仍有许多关键的科学问题亟待解决㊂由于多数细菌介导矿物生成的实验室培养条件并不适宜工业化生产,所以如何将实验室阶段的科学成果转化为可规模化生产的具体技术是限制其应用的关键瓶颈㊂其次,虽然纳米机器人在肿瘤治疗领域有较大的应用前景,但人体免疫系统对其会有如何反应目前尚不完全清楚[64]㊂为了实现细菌介导生物矿化的大规模应用,还需进一步地研究以解决上述问题㊂参考文献㊀References[1]㊀ALSENZ H,ILLNER P,ASHCKENAZI-POLIVODA S,et al.Geo-chemical Transactions[J],2015,16(1):2.[2]㊀DHAMI N K,REDDY M S,MUKHERJEE A.Frontiers in Microbiolo-gy[J],2014,5:304.[3]㊀PERRY R S,MCLOUGHLIN N,LYNNE B Y,et al.Sedimentary Ge-ology[J],2007,201(1/2):157-179.[4]㊀PETERS S E,GAINES R R.Nature[J],2012,484(7394):363-366.[5]㊀SCHWADERER A L,WOLFE A J.Annals of Translational Medicine[J],2017,5(2):32-37.[6]㊀LE FÈVRE R,DURAND-DUBIEF M,CHEBBI I,et al.Theranostics[J],2017,7(18):4618-4631.[7]㊀LOHßE A,KOLINKO I,RASCHDORF O,et al.Applied and Envi-ronmental Microbiology[J],2016,82(10):3032-3041. [8]㊀AL DISI Z A,JAOUA S,BONTOGNALI T R,et al.Frontiers in En-vironmental Science[J],2017,5:1.[9]㊀BENTOV S,ABEHSERA S,SAGI A.The Mineralized Exoskeletons ofCrustaceans[M]//COHEN E,MOUSSIAN B.Extracellular Composite Matrices in Arthropods.Cham:Springer International Publishing, 2016:137-163.[10]VITTORI M,ŽNIDARŠI N,ŽAGAR K,et al.Journal of Structural Biology[J],2012,180(1):216-225.[11]URIZ M J,AGELL G,BLANQUER A,et al.Evolution[J],2012,66(10):2993-2999.[12]MYKYTCZUK N,LAWRENCE J R,OMELON C R,et al.Polar Biol-ogy[J],2016,39(4):701-712.[13]SAURO F,CAPPELLETTI M,GHEZZI D,et al.Scientific Reports[J],2018,8(1):17569.[14]KREMER B,KAZMIERCZAK J,LUKOMSKA-KOWALCZYK M,etal.Astrobiology[J],2012,12(6):535-548.[15]CHEN Y R,ZHANG W Y,ZHOU K,et al.Environmental Microbiol-ogy Reports[J],2016,8(2):218-226.639博看网 . All Rights Reserved.。

优质 鸡蛋生产的营养调控关键技术研究与应用

优质 鸡蛋生产的营养调控关键技术研究与应用

《优质鸡蛋生产的营养调控关键技术研究与应用》1. 引言优质鸡蛋一直以来都备受消费者追捧,它不仅是营养丰富的食物,而且对人体健康有着重要的作用。

然而,要生产出真正优质的鸡蛋并非易事,需要运用先进的技术和科学的管理方法。

本文将从营养调控的关键技术角度深入探讨优质鸡蛋生产的相关研究与应用。

2. 鸡蛋营养成分分析在探讨优质鸡蛋生产的关键技术之前,我们首先需要了解鸡蛋的营养成分。

鸡蛋含有丰富的蛋白质、脂肪、维生素和矿物质,其中蛋白质是其最为重要的营养成分之一。

鸡蛋蛋黄中还富含卵磷脂、胆固醇和胡萝卜素等营养物质,这些成分对人体健康具有重要意义。

3. 饲料营养配方优化优质饲料是生产高品质鸡蛋的基础,饲料中的营养成分直接影响着鸡蛋的质量。

饲料营养配方的优化是提高鸡蛋品质的关键技术之一。

科学家们通过对不同饲料原料的营养成分进行分析和评估,结合鸡只生长发育的需要,不断改进饲料配方,并在实际生产中进行验证,以确保饲料中的营养成分能够满足鸡只生长和鸡蛋产量的要求。

4. 环境控制与管理除了饲料营养配方的优化外,优质鸡蛋生产还需要合理的环境控制与管理。

包括温度、湿度、光照等方面的调控,这些因素影响着鸡只的生长发育和产蛋质量。

合理的环境控制和管理能够提高鸡只的抗病能力和产蛋率,从而保证鸡蛋的品质。

5. 营养调控与鸡蛋品质优质鸡蛋的生产需要通过对营养成分的调控来实现。

科学家们在饲料中添加了丰富的营养素,如氨基酸、维生素和矿物质等,以提高鸡蛋中蛋白质含量和品质。

针对不同市场需求,可以通过调整饲料中脂肪和胆固醇等成分的含量,来生产出符合消费者需求的优质鸡蛋。

6. 结论与展望优质鸡蛋的生产离不开营养调控的关键技术。

通过优化饲料配方、合理的环境控制与管理以及营养素的调控,可以生产出营养丰富、品质优良的鸡蛋,满足市场和消费者的需求。

未来,随着科技的不断发展,相信会有更多的创新技术应用到鸡蛋生产中,为人类带来更多健康、美味的优质鸡蛋。

个人观点作为一名饲料营养学的研究者,我深知营养调控对鸡蛋品质的重要性。

2024年《蛋壳的秘密》大班优秀科学教案

2024年《蛋壳的秘密》大班优秀科学教案

2024年《蛋壳的秘密》大班优秀科学教案一、教学目标1.了解蛋壳的组成和特点,认识蛋壳的坚硬与脆弱。

2.通过实验,探究蛋壳的秘密,激发对科学探索的兴趣。

3.培养观察、分析、合作、表达的能力。

二、教学重点1.认识蛋壳的组成和特点。

2.探究蛋壳的秘密。

三、教学难点1.蛋壳的坚硬与脆弱的关系。

2.实验过程中的观察与分析。

四、教学准备1.教具:鸡蛋、玻璃杯、醋、小苏打、勺子、放大镜、镊子。

2.学具:每组一套实验材料(鸡蛋、玻璃杯、醋、小苏打、勺子、放大镜、镊子)。

五、教学过程(一)导入1.教师出示鸡蛋,引导学生观察蛋壳的颜色、形状。

2.学生分享观察到的蛋壳特点。

(二)新课1.蛋壳的组成a.教师简要介绍蛋壳的组成。

b.学生通过触摸、观察,感受蛋壳的质地。

c.学生分享观察到的蛋壳质地特点。

2.蛋壳的秘密a.教师出示实验材料,引导学生预测蛋壳与醋的反应。

b.学生分组进行实验,观察蛋壳与醋的反应。

c.学生记录实验结果,分析蛋壳的秘密。

3.蛋壳的坚硬与脆弱a.教师出示实验材料,引导学生预测蛋壳的坚硬与脆弱程度。

b.学生分组进行实验,观察蛋壳在不同条件下的坚硬与脆弱程度。

c.学生记录实验结果,分析蛋壳的坚硬与脆弱原因。

(三)巩固1.学生分组进行实验,验证蛋壳的秘密。

2.学生记录实验结果,分享实验过程与感受。

1.教师引导学生回顾本节课的学习内容。

2.学生分享学习心得与收获。

六、课后作业1.学生回家后,与家长一起进行蛋壳实验,观察蛋壳的秘密。

2.学生将实验过程与结果以绘画或文字形式记录下来,下节课分享。

七、教学反思本节课通过引导学生观察、实验、分析,让学生深入了解蛋壳的组成、特点以及蛋壳的秘密。

在教学过程中,注重培养学生的观察、分析、合作、表达能力,激发学生对科学的兴趣。

课后作业的设置,有助于学生将所学知识运用到实际生活中,增强学生的实践能力。

总体来说,本节课达到了预期的教学效果。

重难点补充:1.蛋壳的坚硬与脆弱的关系补充对话:教师:“同学们,你们觉得蛋壳为什么既能保护里面的宝宝,又那么容易碎呢?”学生:“因为它既硬又脆。

鸡蛋蛋壳品质营养调控关键技术创新

鸡蛋蛋壳品质营养调控关键技术创新

鸡蛋蛋壳品质营养调控关键技术创新鸡蛋是人们日常生活中非常常见并且重要的食品之一,蛋壳是鸡蛋的保护壳,具有很高的强度和抗击破性能。

传统上,蛋壳被认为是一种不可食用的废弃物。

然而,近年来,随着人们对营养和环保的关注,对蛋壳的利用价值被重新认识和发掘。

蛋壳含有丰富的蛋白质、钙、磷等营养成分,可以用于食品、医药、化学工业的生产。

本文将重点介绍鸡蛋蛋壳品质和营养的调控关键技术创新。

首先,鸡蛋蛋壳品质的关键技术创新主要涉及蛋壳温度和湿度的调控。

蛋壳品质的好坏主要取决于蛋壳的硬度和厚度。

温度和湿度是影响蛋壳品质的关键因素。

研究表明,适宜的温度和湿度可以促进蛋壳的形成和硬度的增加。

因此,在生产过程中,通过调控孵化鸡蛋的温度和湿度,可以提高蛋壳的品质。

其次,鸡蛋蛋壳营养的关键技术创新主要涉及饲料和饮水中钙、磷的加入。

蛋壳中的主要成分是钙和磷,它们是人体生长和发育的必需元素。

饲料中的钙和磷含量越高,鸡蛋中钙和磷的含量也越高。

因此,在饲料中添加适量的钙和磷,可以增加鸡蛋蛋壳中钙和磷的含量,提高鸡蛋蛋壳的营养价值。

此外,利用基因编辑技术进行鸡蛋蛋壳品质和营养的调控也是重要的技术创新方向之一。

基因编辑技术可以对鸡蛋蛋壳相关基因进行精确编辑,从而改变蛋壳的硬度和厚度。

通过基因编辑技术,可以提高蛋壳的品质和营养价值,满足消费者对高品质鸡蛋的需求。

此外,高效利用鸡蛋蛋壳的技术创新也是非常重要的研究方向之一。

蛋壳中的蛋白质、钙和磷等营养成分可以用于食品、医药、化学工业的生产。

利用鸡蛋蛋壳制备食品添加剂、制药原料和钙镁肥料等产品,不仅可以提高蛋壳的利用价值,还可以减少资源的浪费,促进循环经济的发展。

综上所述,鸡蛋蛋壳品质和营养调控的关键技术创新对于提高蛋壳的品质和营养价值,提高鸡蛋的市场竞争力,推动农业可持续发展具有重要意义。

通过调控温度和湿度、饲料和饮水中钙、磷的添加以及基因编辑等技术创新,可以改善蛋壳的品质和营养,并且高效利用蛋壳的研究也非常有意义。

影响鸡蛋蛋壳质量的因素分析与对策

影响鸡蛋蛋壳质量的因素分析与对策

摘要:蛋壳质量是衡量鸡蛋的重要指标。

蛋壳质量问题会造成严重的经济损失。

本文就鸡蛋蛋壳质量的影响因素进行分析,包括品种、日龄、疾病等,并提出相应的对策。

关键词:蛋壳;质量;鸡蛋;对策;影响因素影响鸡蛋蛋壳质量的因素分析与对策张精海(山东省邹平市黛溪街道畜牧兽医站山东滨州256200)收稿日期:2023-06-20doi:10.3969/j.issn.1008-4754.2024.04.047家禽养殖业规模化发展过程中,蛋壳质量问题可造成每年10%~15%的经济损失。

蛋壳质量下降会导致种蛋孵化率降低。

销售过程中蛋壳颜色、比重、大小、完整性等影响消费者的购买行为。

因此,研究鸡蛋蛋壳质量具有非常重要的现实意义。

1鸡蛋的结构鸡蛋蛋壳从内到外共有5层结构,分别为内膜、外膜、乳头层、栅状层和蛋壳膜。

不同结构的主要构成元素不同。

例如,乳头层主要构成元素为锰元素;栅状层主要构成元素为镁元素和碳酸钙。

乳头层和栅状层共同决定鸡蛋蛋壳的厚度和硬度。

一个质量良好的蛋壳应衡量多个指标。

例如,厚度、强度、变形值等。

正常蛋壳厚度应维持在0.3mm 左右,蛋壳越厚,破损率越低。

蛋壳强度值在6~8磅左右,且强度越高,质量越好,破损率越低。

变形值通常情况下维持在15~16μm 。

2影响蛋壳质量的因素2.1环境温度和光照是影响蛋壳质量的主要环境因素。

蛋鸡适宜生长温度在20~25℃左右,鸡舍内环境温度超过30℃时,蛋鸡表现为呼吸加快、采食量减少、产蛋率下降、蛋重减小、蛋壳变弱、表面粗糙、破蛋率增加。

当环境温度低于15℃时,蛋鸡采食量增加、蛋重增大、蛋壳变薄、破蛋率增加。

另外,光照时间和强度也会影响蛋壳质量。

当光照强度增加时,蛋壳质量下降。

若蛋壳形成前光照强度和时间增加,会导致蛋壳表面暗纹数量增多。

因此,光照强度低利于蛋壳的形成。

除此之外,鸡舍内环境湿度大、饲养密度高、通风不良等也会导致蛋壳质量下降。

2.2日龄刚开产的蛋鸡产蛋量低,蛋壳小、薄,容易出现破蛋。

生物矿化机制研究进展

生物矿化机制研究进展

石 墨烯 量化制备及高性 能超级 电容器
中科院 电工研 究所马衍伟研究 团队提 出以二氧化碳为原料 采用 自蔓 延高温合成技术 .实现 了兼具高导电性和高 比表面 积石墨烯粉体 的快速 、绿色 、低成本制备 。相 关论文发表于 《 先进材料》 。石墨烯是近年来备 受各国重视 的新型材料 .但是
基 础
原位缠绕超长碳纳米 管制备单色碳纳米管线 团
清华大学魏飞 教授课题组利用声辅助 组装单根单色超长碳宏观长 度 的单 根超长碳纳米 管缠 绕成大面积线 团 .为制备 高密度 、手性一致碳纳 米管这一难题提供 了新路线 ,相关研究成果 已发表于 《 科 学进展》 。伴 随着可移动智能设备 、云存 储和大数据处理 的广 泛应 用 ,快速发展 的信息产 业对下一代更快 、更节 能的半 导体 材料提 出了更高的要求 。碳纳米管 电子空穴高迁移率与本征 半导体 结构使其具有优异 的电学性能 有望取代硅成 为下一 代碳基集成 电路 的核心 材料 。目前制 约高性能碳纳米管晶体管规模 化应 用的关键在于制备 大量 手性一致 、高 密度 的碳 纳米管 材料。
料) )。生物矿化是牙 、骨等硬 组织特有的发育过程 .在天 然骨组织的形成过程 中 非胶原蛋 白调控着整个矿化 的进程。这些 非胶 原蛋 白最主要 的特征是 富含 羧基 ,呈阴离子特性 。传 统的仿生矿化机制认 为 .带负电的非胶原蛋 白 ( 或 其类似物 )可稳 定钙 磷溶液 ,形成带 负电荷 的矿化前体。新的研究发现 了一种新的能够诱导纤维 内矿化的聚阳离子 ,提 出并证实了基于渗透 压和 电荷平衡 的纤维 内仿生矿化理论 对传统观念提出 了挑战。
新 型 材 料
生物 矿化机 制研究进展
第 四军 医大 学 1 : 3 腔 医学院 陈吉华教 授课题 组与 国内外科 学家合 作开展 渗透压一电荷平衡导 致 的胶 原纤维 内矿化 研究 .

鸡蛋壳品质的饲料营养调控技术

鸡蛋壳品质的饲料营养调控技术

鸡蛋壳品质的饲料营养调控技术董平祥【摘要】鸡蛋壳品质的饲料营养调控是以饲养标准为基础,结合鸡群生产、健康水平、饲养条件和环境变化,通过日粮中增加大颗粒钙质供应、利用生物学效价高的微量元素氨基酸螯合物和增加维生素D3、降低过多的氯元素、减少应激影响,并以有效磷调控日粮钙磷比例、按鸡群体况调整饲料营养,为产蛋鸡提供有利于健康和改善蛋壳品质的饲料营养保障,增加经济效益.【期刊名称】《饲料博览》【年(卷),期】2016(000)007【总页数】3页(P40-42)【关键词】蛋壳;品质;营养;调控【作者】董平祥【作者单位】广东省肇庆工程技术学校,广东肇庆 526070【正文语种】中文【中图分类】S831;S816.8我国蛋鸡产业虽然起步较晚,但发展迅速。

目前全国鸡蛋产量已经达到平均年产2 436万t,约占世界鸡蛋总产量的40%[1]。

鸡蛋质量也在逐步提升,特别是与鸡蛋质量密切相关的蛋壳品质正在不断引起养鸡行业的高度关注。

这是由于蛋壳品质已经是衡量种鸡、蛋鸡生产成绩好坏的一项关键指标,与种鸡的种蛋入孵率、孵化效果、雏鸡质量以及商品蛋鸡的鲜蛋程度、生产效益、市场竞争价值等直接关联。

因此如何通过调控饲料营养技术来改善鸡的蛋壳强度、减少蛋品破损、有效提高蛋壳品质对养鸡生产意义重大。

饲料营养调控就是要对产蛋鸡最大限度的消除和减少各种危及蛋壳品质的有害因素,为产蛋鸡提供有利于健康和维持产蛋品质的饲料营养保障,降低成本,增加效益。

在适应鸡的生理和产蛋需要的前提下,应根据饲养管理条件和鸡群状况的变化,及时调整产蛋鸡日粮中有效营养元素的组成。

产蛋鸡的体重低于标准,采食量少,产蛋率低,蛋壳品质较差,这是鸡群体况不好的表现。

应及时提高饲料营养水平,特别是蛋白质含量应提高1%~2%,多种维生素应提高0.02%。

以鱼粉等富含高效优质可消化蛋白质供应为佳。

赖氨酸含量适宜的饲粮能促进钙、磷的吸收,增强骨骼钙化,更不可缺乏。

同时,要保障饲料的适口性和产蛋鸡的采食量,使产蛋鸡群全群体况维持在一个较高的水平。

鸡蛋壳的开发应用研究

鸡蛋壳的开发应用研究

鸡蛋壳的开发应用研究作者:***来源:《中国食品》2024年第12期据统计,2023年我国鸡蛋总产量达到了2940万吨,约占全球产量的37.5%。

随着鸡蛋产量的增加,蛋壳废弃量也在随之增大。

目前,鸡蛋壳的回收利用并不理想,大量鸡蛋壳当作垃圾被填埋,或被直接丢弃。

其实,鸡蛋壳是一种生物材料,具有丰富的钙质成分和良好的生物相容性,在农牧业、临床医学、环境保护等领域具有广阔的应用潜力。

本文综述了鸡蛋壳的加工利用现状,以期为鸡蛋壳的深加工提供参考。

一、鸡蛋壳的成分鸡蛋壳是鸡蛋外部的硬壳,主要由无机物和有机物组成。

无机物占鸡蛋壳总质量的94%-97%,主要成分是碳酸钙,占无机物质量的93%左右,这使鸡蛋壳具有良好的稳定性和机械强度,增强了鸡蛋壳的稳定性和耐用性。

鸡蛋壳中的有机物主要是基质蛋白质,虽然占比不高,但在鸡蛋壳的形成及其稳定性的保持中起着重要的作用。

基质蛋白质为无机物沉积提供了模板,能使碳酸钙以有序的方式沉积和结晶,从而形成坚硬的鸡蛋壳。

此外,基质蛋白质还会参与鸡蛋壳的修复和再生过程,有助于维持鸡蛋壳的完整性。

鸡蛋壳中还含有锌、铜、锰、铁、硒等微量元素,这些微量元素虽然含量不高,但在保持人体健康和为人体提供营养方面具有重要作用。

二、鸡蛋壳在补钙产品中的应用雞蛋壳入药可追溯至五代,首见于《大明本草》,其后历代的中医药著作对其均有记载。

我国民间一直都有食用鸡蛋壳的法子,比如,将鸡蛋壳洗净、捣碎、炒黄后磨粉冲水服用,食用泡过鸡蛋的醋等,主要用于补钙。

现如今,人们对鸡蛋壳的补钙作用已经不再重视,鸡蛋壳主要送往养殖场,作为饲料为动物补钙。

鸡蛋壳中碳酸钙约为88%,成本低廉,且重金属生物富集少,是一种钙剂开发的优质原料。

据了解,国外已出现100%用天然蛋壳研发的新型补钙产品,我国也有不少人开始研究以鸡蛋壳为原料制备钙剂。

比如,李涛等人以蛋壳为原料,利用二次反应法制备丙酸钙,在最佳工艺条件下(温度77.7℃、料液比1:17.4、一次反应时间18h、二次反应时间55.8min),丙酸钙的得率为98.26%、纯度为96.52%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡蛋蛋壳生物矿化和力学特性调控的研究进展
齐广海;王晶
【期刊名称】《动物营养学报》
【年(卷),期】2023(35)1
【摘要】我国是世界鸡蛋生产和消费大国,并且以壳蛋消费为主。

由于蛋壳力学特性下降导致的破损问题给禽蛋产业带来巨大的经济损失,改善蛋壳品质对促进产业发展和提高蛋鸡养殖效益具有重要意义。

鸡蛋蛋壳是以碳酸钙为矿化材料形成的生物矿化物,其力学特性取决于材料组成、结构特征等因素。

蛋壳分级结构及其生物矿化形成机制的研究为解析力学特性下降和研发调控措施打开了新的视角。

本文综述了蛋壳的分级结构与生物矿化形成、力学特性下降以及调控方面的最新研究进展,旨在为通过营养干预措施改善产蛋后期蛋壳品质提供参考。

【总页数】12页(P1-12)
【作者】齐广海;王晶
【作者单位】中国农业科学院饲料研究所(北京)
【正文语种】中文
【中图分类】S816.7
【相关文献】
1.鸡蛋壳生物力学特性分析及试验研究
2.矿物元素对鸡蛋蛋壳质量的营养调控研究进展
3.微量元素调控鸡蛋蛋壳品质的研究进展
4.甲壳素和壳聚糖在生物矿化和模拟矿化过程中的调控作用研究进展
5.鸡蛋蛋壳品质的营养调控研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。

相关文档
最新文档