人教版九年级上册数学期末考试总复习提纲

合集下载

有哪些人教版九年级数学上册复习提纲

有哪些人教版九年级数学上册复习提纲

有哪些人教版九年级数学上册复习提纲第二章一元二次方程重点判断一元二次方程,解一元二次方程,利用根与系数的关系解题,一元二次方程的应用难点解一元二次方程,利用根与系数的关系解题,一元二次方程的应用知识点1、只含有一个未知数的整式方程,且都可以化为ax2+bx+c=0a、b、c为常数,a≠0的形式,这样的方程叫一元二次方程。

ax2+bx+c=0a、b、c为常数,a≠0为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。

2、解一元二次方程的方法:①配方法 <即将其变为x+m2=0的形式>基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方;⑤把方程转化成x+m2②公式法x=2a=0的形式;⑥两边开方求其根。

第三章证明三重点掌握平行四边形、特殊四边形的性质定理和判定定理;根据性质定理和判定定理来解决相关问题难点根据性质定理和判定定理来解决相关问题知识点1、平行四边形定义:两线对边分别平行的四边形叫做平行四边形性质:平行四边形的对边相等,对角相等,对角线互相平分。

判定:1.两组对边分别平行的四边形是平行四边形。

2.两组对边分别相等的四边形是平行四边形。

3.一组对边平行且相等的四边形是平行四边形。

4.两条对角线互相平分的四边形是平行四边形。

2、特殊四边形矩形的定义:有一个角是直角的平行四边形叫矩形。

矩形是特殊的平行四边形。

矩形的性质:具有平行四边形的性质,四个角都是直角,对角线相等。

矩形是轴对称图形,两条对称轴矩形的判定:1.有一个内角是直角的平行四边形叫矩形根据定义。

2.对角线相等的平行四边形是矩形。

3.四个角都相等的四边形是矩形。

推论:直角三角形斜边上的中线等于斜边的一半。

菱形的定义:一组邻边相等的平行四边形叫做菱形。

菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

九年级数学总复习提纲-人教新课标版

九年级数学总复习提纲-人教新课标版

第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负数均为0。

实数 无理数(无限不循环小数)有理数正分数 负分数 正整数 0 负整数 (有限或无限循环性整数分数 正无理数负无理数0 实数 负数 整数 分数无理数有理数 正数 整数 分数无理数有理数 │a │ 2a a (a ≥(a 为一切实数)3.倒数: ①定义及表示法②性质:≠1/a (a ≠±1);a 中,a ≠0;<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法②性质:≠0时,a ≠-a;与-a 在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律)a(a≥-a(a<0)│a │=3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。

三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │=b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。

2019秋人教版数学九年级上册期末复习提纲word下载

2019秋人教版数学九年级上册期末复习提纲word下载

九年级(上)数学复习1第二十一章 二次根式•知识网络图表••习题练习•1.2)x > 2.0=,求x 、y 的值。

3..已知0b >4.a b ==a 、b 表示为多少?5.-6.=x 的取值范围是多少? 7.当x=_____时3的值最小,最小值是:_______. 8.在实数范围内分解因式:425x -(0,ab a b ≥a b ab =(a a a =9.计算2 1)+(2).22--10.等式:x y-=:________11.下列二次根式中,最简二次根式是( )12.下列各式中,( )13.3x=-成立,则x的取值范围为( )A.2x≥ B.3x≤ C.23x≤≤ D.23x<<14.计算结果是:( )A.15.数5的整数部分是x, 小数部分是y, 则x-2y的值是( )A.1B.1-1 D.1--16.已知a b==()A.5 B.6 C.3 D.417.若2x-有意义,则x的取值范围是:_________18.实数a在数轴上的位置如图,化简:1a-19.0=九年级(上)数学复习2第二十二章一元二次方程•知识网络图表••1.下列关于x 的方程中:①20ax bx c ++=,②2560k k ++=,③310342x x --=,④22(3)20m x +-=.是关于x 的一元二次方程的是:______(只填序号) 2.关于x 的方程1(3)50a a xx --++=是一元二次方程,则a =_______.3.如果210x x +-=,那么代数式3227x x +-的值为:____________. 4.已知m 是方程210x x --=的一个根,则代数式2m m -的值为多少? 5.用配方法解方程2410x x ++=,经过配方得:_____________6.对于二次三项式21036,x x -+小明同学得出如下的结论:无论x 取何值什么实数时,它12cx =的值都不可能等于11。

完整word版,初三数学上册期末复习提纲

完整word版,初三数学上册期末复习提纲

九年级数学上册期末复习提纲第21章 二次根式知识梳理:1. 本章知识提练整理第22章 一元二次方程1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。

2、一元二次方程的解法(1) 直接开平方法 (也可以使用因式分解法)①2(0)x a a =≥ 解为:x = ②2()(0)x a b b +=≥ 解为:x a +=(2) 因式分解法:提公因式分,平方公式,平方差,十字相乘法如:20(,0)()0ax bx a b x ax b +=≠⇔+= 适合提公因式,而且其中一个根为0 290(3)(3)0x x x -=⇔+-= 230(3)0x x x x -=⇔-=注意:提取整个因式的方法非常常见,解题的过程中一定要认真观察。

22694(3)4x x x -+=⇔-= 2241290(23)0x x x -+=⇔-=十字相乘法非常实用,注意在解题的过程中多考虑。

(3) 配方法①二次项的系数为“1”的时候:直接将一次项的系数除于2进行配方,如下所示:2220()()022P P x Px q x q ++=⇔+-+=示例:22233310()()1022x x x -+=⇔--+= ②二次项的系数不为“1”的时候:先提取二次项的系数,之后的方法同上: 22220 (0)()0 ()()022b b b ax bx c a a x x c a x a c a a a ++=≠++=⇒-⇒++=g 222224()()2424b b b b ac a x c x a a a a -⇒+=-⇒+= 示例: 22221111210(4)10(2)2102222x x x x x --=⇔--=⇔--⨯-=(4)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,22b x a -= ② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240b ac ∆=-<时,右端是负数.因此,方程没有实根。

人教版初中九年级数学上册数学期末总复习(全面)精品课件

人教版初中九年级数学上册数学期末总复习(全面)精品课件
2
一元二次方程根与系数的关系 (韦达定理)
若方程ax bx c 0(a 0)的两根为x1 , x2 ,
2
b c 则x1 x2 , x1 x2 a a
特别地:
2
若方程x px q 0的两根为x1 , x2, 则:x1 x2 p, x1 x2 q
(1)确定对称中心; (2)确定关键点; (3)作关键点的关于对称中心的 对称点; (4)连结各点,得到所需图形.
7、关于原点对称的点的坐标:
( -a,-b) (a,b)关于原点的对称点是 ______
例、点P(-1,3)关于原点对称的点 的坐标是 ; 点P(-1,3)绕着原点顺时针旋转 90o与P’重合,则P’的坐标为 ______
解得
- 5≤x<3
题型2:二次根式的非负性的应用.
4.已知:
x4 +
2x y
=0,求 x-y 的值.
解:由题意,得 解得
x-4=0 且 2x+y=0 x=4,y=-8
x-y=4-(-8)= 4+ 8 =12 5.(2005.湖北黄冈市)已知x,y为实数,且
2 =0,则x-y的值为( +3(y-2) x 1
.
4、已知一元二次方程 2 x2 + b x + c = 0的两个根是 – 1 、3 ,则 b= ,c= .
二、选择 2 1、若方程x m x n 0 中有一个根为零,另一个根非零,则m, n 的值为 ( ) A m 0, n 0 B m 0, n 0 C m 0, n 0 D mn 0
2、垂径定理的逆定理
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.

新人教版九年级上册数学期末复习资料知识点归纳

新人教版九年级上册数学期末复习资料知识点归纳

新人教版九年级上册数学期末复习资料知识点归纳二次根式1.二次根式是指形如 $\sqrt{a}$ ($a\geq 0$)的式子。

1)下列哪些式子是二次根式?① $m^2+1$。

② $3-8$。

③ $x-1$。

④ $5$。

⑤ $\pi$2)当 $x$ 取何值时,下列各式在实数范围内有意义?2.最简二次根式最简二次根式是指同时满足以下两个条件的二次根式:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式。

1)下列哪些式子是最简的二次根式?8y^2x^2+1$。

422)若 $18-n$ 是整数,求自然数 $n$ 的值。

3)若 $24n$ 是整数,求正整数 $n$ 的最小值。

3.同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式。

1)若 $\sqrt{a+4\sqrt{3}b-1}$ 和 $\sqrt{a+4}$ 是同类二次根式,则 $a=\_\_\_\_$,$b=\_\_\_\_$。

2)若 $\sqrt{3x-1}$ 和 $\frac{x}{\sqrt{3}}$ 是同类二次根式,则 $x=\_\_\_\_$。

4.二次根式的性质① $(\sqrt{a})^2=a$ ($a\geq 0$);② $\sqrt{a^2}=|a|$,即当 $a\geq 0$ 时,$\sqrt{a^2}=a$,当 $a<0$ 时,$\sqrt{a^2}=-a$。

1)化简 $x-1+1-x=$ ______。

2)若 $a<0$,化简 $a-3-a^2=$ ______。

3)要使 $3-x+\frac{1}{2x-1}$ 有意义,则 $x$ 的取值范围是 $\_\_\_\_$。

5.二次根式的运算① $\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$ ($a\geq 0$,$b\geq 0$);② $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$ ($a\geq 0$,$b>0$)。

九年级数学总复习提纲-人教新课标版

九年级数学总复习提纲-人教新课标版

第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a>1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)实数 无理数(无限不循环小数)正分数 负分数正整数 0负整数 (有限或无限循环性数) 整数分数 正无理数 负无理数 0 实数 负数整数 分数 无理数有理数正数整数 分数 无理数有理数│a │2a a (a ≥0)(a 为一切实数)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。

三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │ =b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。

新人教版九年级上册数学期末复习资料

新人教版九年级上册数学期末复习资料
0)叫做二次根式.1、下列各式①-m21②8③x1④5⑤π是二次根式的是2、x为怎么样的值时,下列各式在实数范围b知识点6.二次根式的运算a≥0,b≥0);b≥0,a&gt;0).1、、2 3、1 4、(1)一元二次方程知识点1.一元二次方程的判断标准:(1)方程是整式方程(2)只有一个未知数——(一元)(3)未知数的最高次数是2——(二次)三个条件同时满足的方程就是一元二次方程1、下面关于x的方程中:①ax2+bx+c=0;②3x2-2x=1;③x+3=1x;④x2-y=0;④(x+1)2= x2-1.一元二次方程的个数是.2、若方程kx2+x=3x2+1是一元二次方程,则k的取值范围是_________.3、若关于x的方程xk22k1x50是一元二2、用配方法解方程次方程,则k的取值范围是_________.|m|+14、若方程(m-1)x-2x=4是一元二次方程,则m=______.知识点2.一元二次方程一般形式及有关概念一般地,任何一个关于x的一元二次方程,经过整理,x22x10 x24x30 3、用公式法解方程都能化成一元二次方程的一般形式ax2bxc0 (a0),ax2是二次项,a为二次项系数,bx是一次项,b为一次项系数,c为常数项。注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号1、将一元二次方程3x(x1)5(x2)化成一般形式为_____________,其中二次项系数a=________,一次项系数b=__________,常数项c=__________知识点3.完全平方式1、说明代数式2x24x1总大于x22x42、已知a1a求a1a的值.3、若x2+mx+9是一个完全平方式,则m=,若x2+6x+m2是一个完全平方式,则m的值是。若4x2kx9是完全平方式,则k知识点4.整体运算1、已知x2+3x+5的值为11,则代数式3x2+9x+12的值为2、已知实数x满足x2x10则代数式3x23x7的值为____________知识点5.方程的解1、已知关于x的方程x2+3x+k2=0的一个根是x=-1,则k=_ __.2、求以x11,x23为两根的关于x的一元二次方程。知识点6.方程的解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法;⑤十字相乘法;⑵关键点:降次1、直接开方解法方程(x6)230 12(x3)222x27x30 x2x10 4、用因式分解法解方程3x(x2)2x4 (2x4)2(x5)2 5、用十字相乘法解方程x2x900 2x2x100知识点7.一元二次方程根的判别式:b24ac 1、关于x的一元二次方程x2(m2)x2m10.求证:方程有两个不相等的实数根2、若关于x的方程x22kx10有两个不相等的实数根,则k的取值范围是。3、关于x的方程m1x22mxm0有实数根,则m的取值范围是知识点8.韦达定理xba,xc1x21x2a(a≠0, Δ=b2-4ac≥0)使用的前提:(1)不是一般式的要先化成一般式;(2)定理成立的条件01、已知方程5x2mx6=0的一个根为x=3,求它的另一个根及m的值。2、已知2x24x30的两根是x1 ,x2,利用根于系数的关系求下列各式的值112xx21x2(x11)(x21) (x1x2)2 1x2 3、已知关于x的一元二次方程x2-(m+2)x+14m2-2=0.(1)当m为何值时,这个方程有两个的实数根.(2)如果这个方程的两个实数根x221,x2满足x1+x2=18,求m的值.知识点9.一元二次方程与实际问题1、病毒传播问题2、树干问题3、握手问题(单循环问题)4、贺卡问题(双循环问题)5、围栏问题6、几何图形(道路、做水箱)7、增长率、折旧、降价率问题8、利润问题(注意减少库存、让顾客受惠等字样)9、数字问题10、折扣问题旋转知识点1.旋转:在平面,旋转角度为度(2)△AD D′的形状是。2、16:50的时候,时针和分针的夹角是度知识点2.旋转的性质:1、图形中的每一点都绕着旋转中心旋转了同样大小的角度;2、每一对对应点到旋转中心的距离相等;3、每一对对应点与旋转中心的连线所成的夹角为旋转角;4、旋转只改变图形的位置,旋转前后的图形全等;1、如图,AOB90°,B30°,△AOB可以看作是由△AOB绕点O顺时针旋转角度得到的.若点A在AB上。(1)求旋转角大小;(2)判断OB与AB的位置关系,并说明理由。BABA O 2、将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15后得到△ABC,则图中阴影部分的面积是多少?B3、如图,在△ABC中,CAB70.在同一平面图6 5、△ABC中,∠BAC=90°,P是△ABC内一点,将△ABP绕点A逆时针旋转一定角度后能与△ACQ重合,AP=3.(1)求△APQ的面积;(2)判断BQ与CQ的位置关系,并说明理由。6、如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.7、如图,在Rt△ABC中,ABAC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90后,得到△AFB,连接EF,证明①△AED≌△AEF②BE2DC2DE2 8、如图(1),点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.(1)求∠AEB的大小;(2)如图(2),ΔOAB固定不动,保持ΔOCD的形状和大小不变,将ΔOCD绕着点O旋转(ΔOAB和ΔOCD不能重叠),求∠AEB的大小.知识点3.旋转对称:一个平面图形绕着某一定点旋转一定角度(小于周角)后能与自身重合,这样的图形叫做旋转对称图形,这个定点叫做旋转中心。1、如图,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____________次旋转而得到,每一次旋转_______度.2、如图,点O是正六边形ABCDEF的中心,问此正六边形绕正六边形的中心O旋转___ ___度能与自身重合。3则旋转的角度可能是__知识点4.中心对称和中心对称图形1、如图,下列4个数字有(心对称图形.A.1 B.2 C.3 D.42.下列图形中不是中心对称图形的是()A、①③B、②④C、②③D、①④知识点5.作图1、网格旋转90°(注意旋转的方向),中心对称,关于原点对称。结合直角坐标系写出对称后坐标2、找出旋转对称中心(两条对应线段垂直平分线的交点),中心对称中心(两组对应点连线的交点)1、已知A(-1,-1),B(-4,-3)C(-4,-1)(1)作△A1B1C1,使它与△ABC关于原点O中心对称;写出A1,B1,C1点坐标;(3)将△ABC绕原点O逆时针旋转90º后得到△A3B3C3,画出△A3B3C3,并写出A3,B3,C3的坐标2、如图,网格中有一个四边形和两个三角形.(1)请你画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形的对称轴有条;这个整体图形至少旋转度与自身重合知识点6.旋转割补法如图,四边形ABCD中,∠BAD=∠C=90º,AB=AD,AE⊥BC于E,若线段AE=5,求S四边形ABCD(提示:将四边形ABCD割补为正方形)A DBEC知识点7.关于原点对称填空:⑴点A(-2,1)关于x轴的对称点为A′(,);⑵点B(1,-3)与点B(1,3)关于的对称。⑶C(-4,-2)关于y轴的对称点为C(′,);⑷点D(5,0)关于原点的对称点为D′(,)。圆【考点1】和圆有关的概念(1)等弦对等圆心角()(2)在同圆或等圆中,等弦对等圆心角()(3)等弧对等弦( )(4)等弦对等弧()(5)等弧对等圆心角()(6)直径是圆的对称轴()【考点2】垂径定理及其推论如果一条直线满足(1)过圆心(2)垂直弦(3)平分弦(4)平分弧(优弧和劣弧)(5)平分圆心角知之其中两个条件可以推出三个当选择过圆心和平分弦时,必须强调该弦不是直径。(1)平分弦的直径垂直于弦.()(2)垂直于弦的直径平分弦.()1、如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.2、如图,⊙O中,OE⊥弦AB于E,OF⊥弦CD于F,OE=OF,(1)求证:AB=CD (2)如果AB&gt;CD,则OF 3.如图所示,污水水面宽度为60 cm,水面至管道顶部距离为10 cm,问修理人员应准备=3CB⌒圆心角证弧) 4.AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CFBF;(2)若AD2,⊙O的半径为3,求BC的长.【考点4】:直径所对的圆90°1.已知△ABC中,AB=AC,AB为⊙O的直径,BC交⊙O于D,求证:点D为BC中点【考点5】知识点(4)圆内接四边形对角互补1、如图,AB、
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级上册数学期末考试总复习提纲
有些学生不想做很多数学题。

其实学习不在于做题多少,而在于做题的质量如何。

下面小编给大家分享一些人教版九年级上册数学复习提纲,希望能够帮助大家,欢迎阅读
人教版九年级上册数学复习提纲
一、相似三角形(7个考点)
考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:(1)理解相似形的概念;(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小.
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算.
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用.
考点3:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义.
考点4:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用.
考点5:三角形的重心
考核要求:知道重心的定义并初步应用.
考点6:向量的有关概念
考点7:向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算
二、锐角三角比(2个考点)
考点8:锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值.
考点9:解直角三角形及其应用
考核要求:(1)理解解直角三角形的意义;(2)会用锐角互余、锐
角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤
其应当熟练运用特殊锐角的三角比的值解直角三角形.
三、二次函数(4个考点)
考点10:函数以及函数的定义域、函数值等有关概念,函数的
表示法,常值函数
考核要求:(1)通过实例认识变量、自变量、因变量,知道函数
以及函数的定义域、函数值等概念;(2)知道常值函数;(3)知道函数的
表示方法,知道符号的意义.
考点11:用待定系数法求二次函数的解析式
考核要求:(1)掌握求函数解析式的方法;(2)在求函数解析式中
熟练运用待定系数法.
注意求函数解析式的步骤:一设、二代、三列、四还原.
考点12:画二次函数的图像
考核要求:(1)知道函数图像的意义,会在平面直角坐标系中用
描点法画函数图像;(2)理解二次函数的图像,体会数形结合思想;(3)
会画二次函数的大致图像.
考点13:二次函数的图像及其基本性质
考核要求:(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;(2)会用配方法求二
次函数的顶点坐标,并说出二次函数的有关性质.
注意:(1)解题时要数形结合;(2)二次函数的平移要化成顶点式.
四、圆的相关概念(6个考点)
考点14:圆心角、弦、弦心距的概念
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这
些概念作出正确的判断.
考点15:圆心角、弧、弦、弦心距之间的关系
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解
有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明.
考点16:垂径定理及其推论
垂径定理及其推论是圆这一板块中最重要的知识点之一.
考点17:直线与圆、圆与圆的位置关系及其相应的数量关系
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映.在圆与圆的位置关系中,常需要分类讨论求解.
考点18:正多边形的有关概念和基本性质
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题.
考点19:画正三、四、六边形.
考核要求:能用基本作图工具,正确作出正三、四、六边形.
快速提高数学成绩的方法
1.掌握正确做题方法
数学学习离不开做题,对于大多数学生来说很难做到举一反三,既然做不到我们就需要用用大量的题来弥补,但是做题也不能盲目的去做。

第一,做题要由易到难,第二,做题要先专题后限时模考,第三,做题要学会整理错题,第四,做题要学会分析试题,第五,做题要会猜题。

2.巩固基础知识
掌握初中数学知识点是由浅入深的,只有在掌握了基础知识的前提下,识记理解公式、定理,运用公式、定理分析解决问题,才能对数学问题进一步深化与提高。

3.发现规律
在做题的过程中要多发现规律,不要总是硬套公式,可以尝试一下思维的转换,这样可能给自己带了不一样的转机,其实数学和其他的科目是一样,可以用其他的话代替,但是意思并没有转变,数学的公式也是一样,最终的答案是一个。

4.保持好心态
心态问题是影响考试的最重要的原因。

走进考场就要有舍我其
谁的霸气。

要信心十足,要相信自己已经读了一千天的初中,进行了三百多天的复习,做了三千至四千道题,养兵千日,用兵一时,现在是收获的时候,自己会取得好成绩的。

反过来,如果进考场就底气不足,必定会影响自己的发挥。

5.总结梳理,提炼方法
数学复习的最后阶段,对于知识点的总结梳理,应重视教材,立足基础,在准确理解基本概念,掌握公式、法则、定理的实质及其基本运用的基础上,弄清概念之间的联系与区别。

对于题型的总结梳理,应摆脱盲目的题海战术,对重点习题进行归类,找出解题规律,要关注解题的思路、方法、技巧。

数学学习经验
要学会整合知识点。

把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡片,会让你的大脑、思维条理清醒,方便记忆、温习、掌握。

同时,要学会把新知识和已学知识联系起来,不断糅合、完善你的知识体系。

这样能够促进理解,加深记忆。

练习是为了巩固和运用课上我们学习的知识点。

课后要针对课堂上学习的相关知识点,来找相关的练习题,在做练习之前,建议大家要先复习一下相关的知识,然后再通过做这些题的过程来理解定理的考查方式和常用的比较实用的解题技巧。

千万不能边做题边看书,这样收获真的不大。

人教版九年级上册数学复习提纲。

相关文档
最新文档