平面向量易错题解析
(规避易错题系列)第六章 平面向量及其应用 集(解析版)

【正解】BD
【详解】
解:根据 ,
选项A: , , , ,则 , ,无解,故选项A不能;
选项B: , , , ,则 , ,解得, , ,故选项B能.
【详解】
对A, 不能用 表示,故 不共线,所以符合
对B, ,所以 共线,故不符合
对C, 不能用 表示,故 不共线,所以符合
对D,, 不能用 表示,故 不共线,所以符合
故选:ACD
易错点7.记反了向量减法运算差向量的方向
例题1.(2021·全国·高三专题练习)正三角形 边长为 ,设 , ,则 _____.
A:因为零向量与任何向量都共线,故 , 不可做基底;
B: ,即 、 共线,不可作基底;
C: 、 不共线,可作基底;
D: ,即 、 共线,不可作基底;
故选:ABD
2.(多选)(2021·浙江·高二期末)设 是平面内两个不共线的向量,则以下 可作为该平面内一组基底的()
A. B.
C. D.
【答案】ACD
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】A
【详解】
因向量 , 为非零向量,则当向量 , 的夹角为180°时, 与 方向相反,即 成立,
当 时, 与 方向相同或者方向相反,即向量 , 的夹角为0°或者180°,可以不为180°,
所以“向量 , 的夹角为180°”是“ Nhomakorabea”的充分不必要条件.
【常见错解】因为 ,所以点 是 的中点,所以 ,
,所以 ,所以
平面向量典型易错题分析

平 面 向量 典 型 易错 题分 析
南 京 大 学 附属 中学 单铭 成
但 两条 直线 平行 不 包 含两 在平 面 向量 的学 习 中 , 同学 们 如 果 不 能 含两 个 向量共 线 , 正 确理解 平 面 向量 的基 础 知 识 , 或 在 某 些 概 条 直线 重合 , 所 以 A, B, C, D 可能 四点共 线 , 念及 公式 的理 解 上模 糊 不 清 , 就 会 造 成 一些 此 为 易 错 处 . 表 面上看 起来 正 确 而 实 际上 错 误 的 判 断 , 使 解 题思 路走 入误 区. 反 之④ 则正 确. ⑤ 正确 , 向量 的相 等具有 传递 性. ⑥ 对 于零 向量 的有关 概念 不 清 , 零 向量 的方 向是任 意 的 , 并 且 规 定 零 向量 和任 何 向
量 平行 .
膏 一、向量的基本概念不清
例 1 下列命题 : ① 若l n【 一l 6 l , 贝 4 口 一6 ;
答 案 ④ ⑤ 向量 的概 念 较 多 , 且 容易混淆 , 在学 习
理 解 各 概 念 的实 质 , 注 意 区 分 共 ② 两个 向量 相 等 的 等 价 条 件 是 它 们 的 中要分 清 、 线 向量 、 平 行 向 量 、 同 向 向量 、 反 向向量、 零 起 点相 同, 终点相 同;
2 O New Uni v e r s i t y En t r an c e Ex am i n at i o n
) , 点 P在 直线AB上 , 且l 能两边 同除以一个 向量 , 即两 边不 能约去 一个 2
向量( 如第⑤题) , 切记两 向量不能相 除( 相约) ; 求 点 P 的 坐标 . ( 2 )向 量 的 “ 乘 法” 不 满 足 结合 律 , 即
高中数学 考前归纳总结 平面向量易错题剖析

在平面向量的复习中,首先要掌握其基本概念与运算.如果不能正确理解向量的基础知识,或在某些概念及公式的理解上存在模糊认识,就会造成一些表面看起来正确而实际上错误的判断,使解题思路走入误区,现例举如下:1.已知2,3a b ==,a 与b 的夹角为45°,当向量a b λ+与a b λ+的夹角为锐角 时,求实数A 的范围.错解:由已知cos 453a b a b ==,∵a b λ+与a b λ+的夹角为锐角,∴()()0a b a b λλ++>,即222(1)0a b a b λλλ+++=,2293(1)0λλλ+++>解得λ>λ<∴实数λ的范围是1111()(,66--+∞-∞ 分析:解题时忽视了a b λ+与a b λ+的夹角为0的情况,也就是()()0a b a b λλ++>既 包括了a b λ+与a b λ+的夹角为锐角,也包括了a b λ+与a b λ+的夹角为0,而a b λ+与a b λ+的夹角为0不合题意. 正解:由已知cos 453a b a b ==,又a b λ+与a b λ+的夹角为锐角∴()()0a b a b λλ++>,且()a b a b λμλ+≠+,由()()0a b a b λλ++>,即222(1)0a b a b λλλ+++=,231130λλ++>解得λ>或λ< 由()a b a b λμλ+≠+得1,μλμλ≠≠,即1λ≠,综上所述实数λ的范围是(1,)(,6+∞-∞。
2.已知O 为ABC ∆所在平面内一点且满足230OA OB OC ++=,则AOB ∆与AOC ∆的 面积之比为 ( )A .1 B.32.23C D .2错解:0,2OA OB OC OB OC ++=∴=- ∴O 在BC 边上,且2OB OC =,又△AOB 与△AOC 高相等,∴AOB ∆与AOC ∆的 面积之比为2,∴选D .分析: 缺乏联想能力,将常用结论记错是本题错误的原因,实际上只有O 为△ABC 的重心的情况下,才有0OA OB OC ++=,而本题无此已知条件.正解: 在AB 上取一点D ,使2AD DB =,D ∴分AB 的比2λ=,得1233OD OA OB =+,又由已知12,33OC OA OB OD OC =-∴=-,∴O 为CD 的中点,不妨设AOC S S ∆=,则AOD S S =(∵两者等底同高),2AD BD =, 13,22BOD AOB S S S S ∆∆∴==,△AOB 的面积与△AOC 的面积之比为3:2,选B . 3. 在边长为1的正三角形ABC 中,求AB BC BC CA CA AB ++的值.错解:cos60cos60AB BC BC CA CA AB AB BC BC CA ++=+1113cos602222CA AB +=++=. 分析:两向量夹角的定义的前提是其起点要重合.向量AB 与BC ,BC 与CA ,CA 与 AB 的夹角通过平移后发现都不是60°,而是120°.这是由于对两向量夹角的定 义理解不透造成的.正解:cos120cos120cos120AB BC BC CA CA AB AB BC BC CA CA AB ++=++1113()()()2222=-+-+-=-. 注意:向量a 与b 的夹角为锐角的充要条件是0a b >且a 与b 不共线.这里,a 与b 不 共线不能忽略.4. 向量a 、b 都是非零向量,且向量3a +b 与7-5a b 垂直,4-a b 与7-2a b 垂直,求a 与b 的夹角.错解:由题意,得(3)(7)0-5=a +b a b ,① ()(7)0-4-2=a b a b ,②将①、②展开并相减,得24623a b =b ,③∵≠0b ,故12a =b ,④ 将④代入②,得22=a b ,则=a b , 设a 与b 夹角为θ,则2112cos 2θ2===b a b a b b. ∵0180θ≤≤,∴60θ=.分析:上面解法表面上是正确的,但却存在着一个理解上的错误,即由③得到④,错把 数的乘法的消去律运用在向量的数量积运算上.由于向量的数量积不满足消去 律,所以即使≠0b ,也不能随便约去.正解:设向量a 、b 的夹角为θ,由上面解法有22a b =b ,代入①式、②式均可得 22=a b ,则=a b ,∴1cos 2θ==a b a b . 又∵0θ≤≤180,∴60θ=.5. 已知,,A B C 三点的坐标分别为(12)-,,(35)-,,(52)-,,试判断ABC ∆的形状。
平面向量典型易错题分析.doc

平面向量典型易错题分析综观近年高考数学试题,平面向量问题一般出现两次,一次在小题中,主要考查向量的基础知识及小综合,一次在大题中,作为知识的交汇点考查与三角函数、解析几何的综合应用.作为一种导向,今年高考卷中仍会重视向量的考查,本文就对同学们在向量复习中会遇到的常见错误进行分析,希望对你的复习有所帮助.一、概念理解错误例1已知a r 是以点(3,1)A -为起点,且与向量(3,4)b =-r 平行的单位向量,则向量a r 的终点坐标是 .方法一 设向量a r 的终点坐标是(,)x y ,则a r (3,1)x y =-+,则由题意可知224(3)3(1)0(3)(1)1x y x y -++=⎧⎨-++=⎩解得 2.40.2x y =⎧⎨=-⎩或 3.61.8x y =⎧⎨=-⎩,故填(2.4,0.2)-或(3.6, 1.8)- 方法二 与向量(3,4)b =-r 平行的单位向量是(0.6,0.8)±-,故可得a r =(0.6,0.8)±-,从而向量a r 的终点坐标是(,)x y =a r (3,1)--,便可得结果.易错警示:(1)向量的概念较多,且容易混淆,在学习中要分清、理解各概念的实质,注意区分共线向量、平行向量、同向向量、反向向量、单位向量等概念. (2)与a r 平行的单位向量a e a=±r r r 例2.设两个向量1e ρ、2e ρ,满足2||1=e ρ,1||2=e ρ,1e ρ、2e ρ的夹角为3π,若向量2172e e t ρρ+与向量21e t e ρρ+的夹角为钝角,求实数t 的取值范围.解:421=e ρ,122=e ρ,121=⋅e e ρρ ∴ 71527)72(2)()72(222212212121++=+⋅++=+⋅+t t e t e e t e t e t e e e t ρρρρρρρρ ∴ 071522<++t t ,217-<<-t ,设)(722121e t e e e ρρρρ+=+λ)0(<λ 14,21472722-=-=⇒=⇒⎩⎨⎧==⇒λλλt t t t ∴ -=t 214时,2172e e t ρρ+与21e t e ρρ+的夹角为π, ∴ t 的取值范围是)21,214()214,7(----Y .易错警示:向量2172e e t ρρ+与向量21e t e ρρ+的夹角为钝角,可得1212(27)()0te e e te +⋅+<u r u u r u r u u r ,但由1212(27)()0te e e te +⋅+<u r u u r u r u u r ,并不能推出向量2172e e t ρρ+与向量21e t e ρρ+的夹角为钝角,如-=t 214时,1212(27)()0te e e te +⋅+<u r u u r u r u u r ,而2172e e t ρρ+与21e t e ρρ+的夹角为π,所以1212(27)()0te e e te +⋅+<u r u u r u r u u r 仅是向量2172e e t ρρ+与向量21e t e ρρ+的夹角为钝角的必要条件,而不是充分条件.二、公式应用错误例 3. 四边形ABCD 中,AB a =u u u r r ,BC b =u u u r r ,CD c =u u u r r ,DA d =u u u r u r ,且a b b c c d d a ⋅=⋅=⋅=⋅r r r r r u r u r r ,试问四边形ABCD 是什么四边形?分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角关系。
高考数学复习平面向量易错题选及解析

高考数学复习平面向量易错题选及解析一、选择题:1.在ABC ∆中,︒===60,8,5C b a ,则CA BC ⋅的值为 ( )A 20B 20-C 320D 320-错误分析:错误认为︒==60C ,从而出错. 答案: B略解: ︒=120,故CA BC ⋅202185-=⎪⎭⎫⎝⎛-⨯⨯=⋅. 2.关于非零向量a ρ和b ρ,有下列四个命题:(1)“b a b a ρρρρ+=+”的充要条件是“a ρ和b ρ的方向相同”; (2)“b a b a ρρρρ-=+” 的充要条件是“a ρ和b ρ的方向相反”; (3)“b a b a ρρρρ-=+” 的充要条件是“a ρ和b ρ有相等的模”; (4)“b a b a ρρρρ-=-” 的充要条件是“a ρ和b ρ的方向相同”;其中真命题的个数是 ( )A 1B 2C 3D 4错误分析:对不等式b a b a b a ρρρρρρ+≤±≤-的认识不清.答案: B.3.已知O 、A 、B 三点的坐标分别为O(0,0),A(3,0),B(0,3),是P 线段AB 上且 =t(0≤t ≤1)则· 的最大值为 ()A .3B .6C .9D .12正确答案:C 错因:学生不能借助数形结合直观得到当|OP |cos α最大时,· 即为最大。
4.若向量 =(cos α,sin α) , =()ββsin ,cos , 与不共线,则与一定满足( )A . a 与b 的夹角等于α-βB .a ∥bC .(a +b )⊥(a -b )D . a ⊥b正确答案:C 错因:学生不能把a 、b 的终点看成是上单位圆上的点,用四边形法则来处理问题。
5.已知向量 =(2cos ϕ,2sin ϕ),ϕ∈(ππ,2), =(0,-1),则 与 的夹角为( )A .π32-ϕB .2π+ϕ C .ϕ-2π D .ϕ正确答案:A 错因:学生忽略考虑与夹角的取值范围在[0,π]。
2024届高考数学易错题专项(平面向量) 练习(附答案)

2024届高考数学易错题专项(平面向量) 练习易错点一:注意零向量书写及三角形与平行四边形适用前提(平面向量线性运算)1.已知a 、b为不共线的向量,5AB a b =+ ,28BC a b =-+ ,()3CD a b =-uu u r r r ,则( )A .1233AB AD -+C .15AB AD -A .43a +23b C .23a 43-b1.在梯形ABCD 中,//AB CD ,2AB CD =,E ,F 分别是AB ,CD 的中点,AC 与BD 交于M ,设AB a =,,则下列结论正确的是()A .1233AE AB AC =+ B .若0AB AC ⋅= ,则易错点三:忽视数量积不满足结合律(平面向量的数量积及其应用)1.如图,在三棱柱111ABC A B C -中,M ,N 分别是1A B ,11B C 上的点,且12BM A M =,112C N B N =.设AB a=,AC b = ,1AA c = ,若90BAC ∠= ,1160BAA CAA ∠=∠=,11AB AC AA ===,则( )A .112333MN a b c =++C .11AB BC ⊥A .1AC BD ⊥ C .185BD =10.(多选)下列说法中正确的是(参考答案易错点一:注意零向量书写及三角形与平行四边形适用前提(平面向量线性运算)1.已知a 、b为不共线的向量,5AB a b =+ ,28BC a b =-+ ,()3CD a b =-uu u r r r ,则( ) A .1233AB AD -+C .15AB AD -A.43a+23bC.23a43 -b故选:B.y= 10.已知抛物线C:24∵3FA FB = ,由ABH 与△AFM ∵||2MF =,∴2||23BH =⨯=由抛物线定义得||||BF BH =,∴即4AF = ,3AF BH =,故故选:BC .易错点二:忽略基底选取原则(平面向量的基本定理及坐标表示)【答案详解】由题意可得,12AC AD DC b a=+=+,故A112对于A ,12||||||OF OF OA ==,因此对于B ,直线2:1AF y x =-,由⎧⎨⎩A .1233AE AB AC =+ B .若0AB AC ⋅= ,则易错点三:忽视数量积不满足结合律(平面向量的数量积及其应用)1.如图,在三棱柱111ABC A B C -中,M ,N 分别是1A B ,11B C 上的点,且12BM A M =,112C N B N =.设AB a=,AC b = ,1AA c = ,若90BAC ∠= ,1160BAA CAA ∠=∠=,11AB AC AA ===,则( )A .112333MN a b c =++C .11AB BC ⊥7.已知向量()()2,11,,,1a b c ==-=A .a 与b的夹角为钝角B .向量a 在b 方向上的投影为C .24m n +=对于C ,由PA PB PB PC ⋅=⋅ ,得(PA - 所以点P 是ABC 的垂心,故C 正确;A .1AC BD ⊥ C .185BD =【答案】AB由题意得,2216AB AD == ,1AA cos 4AB AD AB AD BAD ⋅=⋅∠=⨯111cos 4AB AA AB AA BAA ⋅=⋅∠=,其中四边形ABDC 为平行四边形,因为又|OA |=|CA|=|OC |,所以所以∠ACB=60°,且BC。
平面向量(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错(原卷版)

专题07平面向量易错点一:注意零向量书写及三角形与平行四边形适用前提(平面向量线性运算)1.向量的有关概念(1)定义:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)向量的模:向量AB 的大小,也就是向量AB的长度,记作||AB .(3)特殊向量:①零向量:长度为0的向量,其方向是任意的.②单位向量:长度等于1个单位的向量.③平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.④相等向量:长度相等且方向相同的向量.⑤相反向量:长度相等且方向相反的向量.2.向量的线性运算和向量共线定理(1)向量的线性运算运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则①交换律a b b a +=+ ②结合律()a b c ++ =()a b c ++减法求a 与b 的相反向量b -的和的运算叫做a与b的差三角形法则()a b a b -=+-数乘求实数λ与向量a的积的运算(1)||||||a a λλ=(2)当0λ>时,a λ 与a的方向相同;当0λ<时,a λ 与a的方向相同;当0λ=时,0a λ=()()a a λμλμ= ()a a aλμλμ+=+()a b a bλλλ+=+共线向量定理向量()0a a ≠ 与b 共线,当且仅当有唯一的一个实数λ,使得b a λ=.共线向量定理的主要应用:(1)证明向量共线:对于非零向量a ,b ,若存在实数λ,使a b λ=,则a 与b 共线.(2)证明三点共线:若存在实数λ,使AB AC λ=,则A ,B ,C 三点共线.(3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值.平面向量线性运算问题的求解策略:(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.解决向量的概念问题应关注以下七点:(1)正确理解向量的相关概念及其含义是解题的关键.(2)相等向量具有传递性,非零向量的平行也具有传递性.(3)共线向量即平行向量,它们均与起点无关.(4)相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量未必是相等向量.(5)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(6)非零向量a 与||a a 的关系:||a a是a方向上的单位向量.(7)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小易错提醒:(1)向量表达式中的零向量写成0,而不能写成0.(2)两个向量共线要区别与两条直线共线,两个向量共线满足的条件是:两个向量所在直线平行或重合,而在直线中,两条直线重合与平行是两种不同的关系.(3)要注意三角形法则和平行四边形法则适用的条件,运用平行四边形法则时两个向量的起点必须重合,和向量与差向量分别是平行四边形的两条对角线所对应的向量;运用三角形法则时两个向量必须首尾相接,否则就要把向量进行平移,使之符合条件.(4)向量加法和减法几何运算应该更广泛、灵活如:OA OB BA -= ,AM AN NM -= ,+OA OB CA OA OB CA BA CA BA AC BC =⇔-=⇔-=+=.A .AB AD AC+= C .AB AD CD AD++=uu u r uuu r uu u r uuu r 变式1:给出下列命题,其中正确的命题为(A .若AB CD = ,则必有B .若1233AD AC AB =+ C .若Q 为ABC 的重心,则D .非零向量a ,b ,c 变式2:如图所示,在平行四边形(1)试用向量,a b来表示DN (2)AM 交DN 于O 点,求AO 变式3:如图所示,在矩形1.已知a 、b为不共线的向量,5AB a b =+ ,28BC a b =-+ ,()3CD a b =-uu u r r r ,则()A .ABC ,,三点共线C .A BD ,,三点共线2.如图,在平行四边形ABCD A .1233AB AD-+C .1536AB AD - 3.在四边形ABCD 中,若AC AB = A .四边形ABCD 是平行四边形C .四边形ABCD 是菱形4.已知,AD BE 分别为ABC 的边A .43a +23bC .23a 43-b 5.如果21,e e是平面α内两个不共线的向量,那么下列说法中不正确的是(①(12,R a e e λμλμ=+∈②对于平面α内任一向量③若向量1112e e λμ+ 与λ④若实数λ、μ使得1e λ+ A .①②B 6.给出下列各式:①AB 对这些式子进行化简,则其化简结果为A .4B 7.已知平面向量a ,bA .若a b ∥,则a = C .若a b ∥,b c ∥,则8.设1e 与2e 是两个不共线的向量,k 的值为()41.平面向量基本定理和性质(1)共线向量基本定理如果()a b R λλ=∈ ,则//a b ;反之,如果//a b 且0b ≠ ,则一定存在唯一的实数λ,使a b λ=.(口诀:数乘即得平行,平行必有数乘).(2)平面向量基本定理如果1e 和2e 是同一个平面内的两个不共线向量,那么对于该平面内的任一向量a,都存在唯一的一对实数12,λλ,使得1122a e e λλ=+,我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记为{}12,e e ,1122e e λλ+ 叫做向量a关于基底{}12,e e 的分解式.注意:由平面向量基本定理可知:只要向量1e 与2e 不共线,平面内的任一向量a都可以分解成形如1122a e e λλ=+的形式,并且这样的分解是唯一的.1122e e λλ+ 叫做1e ,2e 的一个线性组合.平面向量基本定理又叫平面向量分解定理,是平面向量正交分解的理论依据,也是向量的坐标表示的基础.推论1:若11223142a e e e e λλλλ=+=+,则1324,λλλλ==.推论2:若11220a e e λλ=+=,则120λλ==.(3)线段定比分点的向量表达式如图所示,在ABC △中,若点D 是边BC 上的点,且BD DC λ=(1λ≠-),则向量1AB AC AD λλ+=+ .在向量线性表示(运算)有关的问题中,若能熟练利用此结论,往往能有“化腐朽为神奇”之功效,建议熟练掌握.DACB(4)三点共线定理平面内三点A ,B ,C 共线的充要条件是:存在实数,λμ,使OC OA OB λμ=+,其中1λμ+=,O 为平面内一点.此定理在向量问题中经常用到,应熟练掌握.A 、B 、C 三点共线⇔存在唯一的实数λ,使得AC AB λ=;⇔存在唯一的实数λ,使得OC OA AB λ=+;⇔存在唯一的实数λ,使得(1)OC OA OB λλ=-+;⇔存在1λμ+=,使得OC OA OB λμ=+.(5)中线向量定理如图所示,在ABC △中,若点D 是边BC 的中点,则中线向量1(2AD AB =+ )AC,反之亦正确.DACB2.平面向量的坐标表示及坐标运算(1)平面向量的坐标表示.在平面直角坐标中,分别取与x 轴,y 轴正半轴方向相同的两个单位向量,i j作为基底,那么由平面向量基本定理可知,对于平面内的一个向量a,有且只有一对实数,x y 使a xi yj =+ ,我们把有序实数对(,)x y 叫做向量a的坐标,记作(,)a x y = .(2)向量的坐标表示和以坐标原点为起点的向量是一一对应的,即有向量(,)x y 一一对应向量OA 一一对应点(,)A x y .(3)设11(,)a x y = ,22(,)b x y = ,则1212(,)a b x x y y +=++ ,1212(,)a b x x y y -=--,即两个向量的和与差的坐标分别等于这两个向量相应坐标的和与差.若(,)a x y = ,λ为实数,则(,)a x y λλλ=,即实数与向量的积的坐标,等于用该实数乘原来向量的相应坐标.(4)设11(,)A x y ,22(,)B x y ,则AB OB OA =-=12(,x x -12)y y -,即一个向量的坐标等于该向量的有向线段的终点的坐标减去始点坐标.3.平面向量的直角坐标运算①已知点11()A x y ,,22()B x y ,,则2121()AB x x y y =--,,||AB ②已知11(,)a x y = ,22(,)b x y = ,则a b ±1212()x x y y =±±,,11(,)a x y λλλ= ,∥12211212向量共线(平行)的坐标表示1.利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a共线的向量时,可设所求向量为a λ (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入a λ 即可得到所求的向量.2.利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,则利用“若11(),a x y =,22(),b x y = ,则a b∥的充要条件是1221x y x y =”解题比较方便.3.三点共线问题.A ,B ,C 三点共线等价于AB与AC 共线.4.利用向量共线的坐标运算求三角函数值:利用向量共线的坐标运算转化为三角方程,再利用三角恒等变换求解.用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.易错提醒:(1)平面向量基本定理中的基底必须是两个不共线的向量.(2)选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示(3)强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相。
平面向量典型易错题分析

二、向量的运算律理解不透
① a ・(b — c)=a ・ b~a ・ c; ② !・(b・c$ = (a・b)・c; ③ (a — b)2= | a | 2 —2 | a | ・ |b | + | b |=; ④ 若a・b = 0,则a = #或b = 0; ⑤ 若 a・b = c・b,则U a = c; ⑥ | a\2 =a2;
答案 由3为锐角,得cos 3>0且cos 3 *1,
即有a・"=| a \ | b \ cos 3>0恒成立, 故a・b>0,即2 + 9入〉0 , 解得入〉一22•
又因为若a不平行于b,则1・入一2X9 *0,即 $*6.
9
综上,$〉一2且$*6.
、 四 分类讨论、数形结合思想不
善运用
例 5 已知R ,(9, — 4)与 R B(-1, 2), R 7在直线上,且|7& = 2 |7衣| , 求R 7的坐标.
新高普数学 微专题突破
&面向量易+题分析
江苏单铭成
在平面向量的学习中,同学们首先要掌 握其基本概念与运算•如果不能正确理解平 面向量的基础知识,或在某些概念及公式的 理解上模糊不清,就会造成一些表面上看起 来正确而实际上错误的判断,使解题思路走 入误区•本文将对同学们在向量学习中会遇 到的常见典型错误进行分析,希望对你的学 习有所帮助•
③ 首先相等向量一定是共线向量,向量 共线也称向量平行,两个向量平行与两条直 线平行是不同的两个概念:两个向量平行包 含两个向量共线,但两条直线平行不包含两
条直线重合,所以a,b,c,d可能四点共线,
此为易错处• 反之④则正确• ⑤ 正确,向量的相等具有传递性. ⑥ 对于零向量的有关概念不清,零向量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量易错题解析1.你熟悉平面向量的运算(和、差、实数与向量的积、数量积)、运算性质和运算的几何意义吗?2.你通常是如何处理有关向量的模(长度)的问题?(利用22||→→=a a ;22||y x a +=)3.你知道解决向量问题有哪两种途径? (①向量运算;②向量的坐标运算)4.你弄清“02121=+⇔⊥→→y y x x b a ”与“0//1221=-⇔→→y x y x b a ”了吗?[问题]:两个向量的数量积与两个实数的乘积有什么区别?(1) 在实数中:若0≠a ,且ab=0,则b=0,但在向量的数量积中,若→→≠0a ,且0=∙→→b a ,不能推出→→=0b .(2) 已知实数)(,,,o b c b a ≠,且bc ab =,则a=c,但在向量的数量积中没有→→→→→→=⇒∙=∙c a c b b a . (3) 在实数中有)()(c b a c b a ∙∙=∙∙,但是在向量的数量积中)()(→→→→→→∙∙≠∙∙c b a c b a ,这是因为左边是与→c 共线的向量,而右边是与→a 共线的向量.5.正弦定理、余弦定理及三角形面积公式你掌握了吗?三角形内的求值、化简和证明恒等式有什么特点? 1.向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))(2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。
的相反向量是-。
如下列命题:(1)若a b =,则a b =。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若A B D C=,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则AB DC =。
(5)若,a bbc ==,则a c =。
(6)若//,//a b b c ,则//a c 。
其中正确的是_______(答:(4)(5))2.向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如,,等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
3.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。
如(1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =______(答:1322a b -);(2)下列向量组中,能作为平面内所有向量基底的是 A. 12(0,0),(1,2)e e ==- B. 12(1,2),(5,7)e e =-= C. 12(3,5),(6,10)e e ==D. 1213(2,3),(,)24e e =-=-(答:B );(3)已知,A D B E 分别是ABC ∆的边,BC AC 上的中线,且,AD a BE b ==,则BC 可用向量,a b 表示为_____(答:2433a b +);(4)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是___(答:0)4.实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:()()1,2a a λλ=当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ=,注意:λa ≠0。
5.平面向量的数量积:(1)两个向量的夹角:对于非零向量,,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量,的夹角,当θ=0时,,同向,当θ=π时,,反向,当θ=2π时,a ,b 垂直。
(2)平面向量的数量积:如果两个非零向量,,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积或点积),记作:a ∙b ,即a ∙b =cos a b θ。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
如(1)△ABC 中,3||=−→−AB ,4||=−→−AC ,5||=−→−BC ,则=⋅BC AB _________(答:-9);(2)已知11(1,),(0,),,22a b c a kb d a b ==-=+=-,c 与d 的夹角为4π,则k 等于____(答:1);(3)已知2,5,3a b a b ===-,则a b +等于____;(4)已知,a b 是两个非零向量,且a b a b ==-,则与a a b +的夹角为____(答:30)(3)在上的投影为||cos b θ,它是一个实数,但不一定大于0。
如已知3||=→a ,5||=→b ,且12=⋅→→b a ,则向量→a 在向量→b 上的投影为______(答:512) (4)∙的几何意义:数量积∙等于的模||a 与在上的投影的积。
(5)向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则: ①0a b a b ⊥⇔∙=;②当,同向时,∙=a b ,特别地,222,a a a a a a =∙==;当与反向时,∙=-a b ;当θ为锐角时,∙>0,且 a b 、不同向,0a b ⋅>是θ为锐角的必要非充分条件;当θ为钝角时,∙<0,且 a b 、不反向,0a b ⋅<是θ为钝角的必要非充分条件; ③非零向量a ,b 夹角θ的计算公式:cos a b a bθ∙=;④||||||a b a b ∙≤。
如(1)已知)2,(λλ=→a ,)2,3(λ=→b ,如果→a 与→b 的夹角为锐角,则λ的取值范围是______(答:43λ<-或0λ>且13λ≠);(2)已知OFQ ∆的面积为S ,且1=⋅−→−−→−FQ OF ,若2321<<S ,则−→−−→−FQ OF ,夹角θ的取值范围是_________(答:(,)43ππ);(3)已知(c o s ,s i n ),(c a x x b y y ==a 与b 之间有关系式3,0ka b a kb k +=->其中,①用k 表示a b ⋅;②求a b ⋅的最小值,并求此时a 与b 的夹角θ的大小(答:①21(0)4k a b k k +⋅=>;②最小值为12,60θ=)6.向量的运算: (1)几何运算:①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,AB a BC b ==,那么向量AC 叫做a 与b 的和,即a b AB BC AC +=+=;②向量的减法:用“三角形法则”:设,,AB a AC b a b AB AC CA ==-=-=那么,由减向量的终点指向被减向量的终点。
注意:此处减向量与被减向量的起点相同。
如(1)化简:①AB BC CD ++=___;②AB AD DC --=____;③()()AB CD AC BD ---=_____(答:①AD ;②CB ;③0);(2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===,则||a b c ++=_____(答:;(3)若O 是ABC 所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC 的形状为____(答:直角三角形);(4)若D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一点P ,满足0PA BP CP ++=,设||||AP PD λ=,则λ的值为___(答:2);(5)若点O 是ABC △的外心,且0OA OB CO ++=,则ABC △的内角C 为____(答:120);(2)坐标运算:设1122(,),(,)a x y b x y ==,则:①向量的加减法运算:12(a b x x ±=±,12)y y ±。
如(1)已知点(2,3),(5,4)A B ,(7,10)C ,若()AP AB AC R λλ=+∈,则当λ=____时,点P 在第一、三象限的角平分线上(答:12);(2)已知1(2,3),(1,4),(sin ,cos )2A B AB x y =且,,(,)22x y ππ∈-,则x y += (答:6π或2π-);(3)已知作用在点(1,1)A 的三个力123(3,4),(2,5),(3,1)F F F ==-=,则合力123F F F F =++的终点坐标是 (答:(9,1))②实数与向量的积:()()1111,,a x y x y λλλλ==。
③若1122(,),(,)A x y B x y ,则()2121,AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。
如设(2,3),(1,5)A B -,且13AC AB =,3AD AB =,则C 、D 的坐标分别是__________(答:11(1,),(7,9)3-); ④平面向量数量积:1212a b x x y y ∙=+。
如已知向量=(sinx ,cosx ), =(sinx ,sinx ), =(-1,0)。
(1)若x =3π,求向量、的夹角;(2)若x ∈]4,83[ππ-,函数b a x f ⋅=λ)(的最大值为21,求λ的值(答:1(1)150;(2)2或1); ⑤向量的模:222222||,||a x y a a x y =+==+。