高中数学常见题型解法归纳 数列应用题的解法

高中数学常见题型解法归纳 数列应用题的解法
高中数学常见题型解法归纳 数列应用题的解法

高中数学常见题型解法归纳 数列应用题的解法

【知识要点】

一、数列的应用主要是从实际生活中抽象出一个等差、等比的数列问题解答,如果不是等差等比数列的,要转化成等差等比数列的问题来解决.

二、与增长量和降低量有关的问题一般是等差数列,与增长率和降低率有关的问题一般是等比数列. 三、单利问题:设本金为p ,期利率为r ,则n 期后本利和)1(nr p S n +=,对应的是等差数列;

复利问题:设本金为p ,期利率为r ,则n 期后本利和n n r p S )1(+=,对应的是等比数列. 四、数列的问题注意弄清数列的项数、首项、公差和公比等. 【方法讲评】

【例1】某地为了防止水土流失,植树造林,绿化荒沙地,每年比上一年多植相同亩数的林木,但由于自然环境和人为因素的影响,每年都有相同亩数的土地沙化,具体情况为下表所示:

而一旦植完,则不会被沙化.

问:(1)每年沙化的亩数为多少?(2)到那一年可绿化完全部荒沙地?

(2) 设2005年及其以后各年的造林亩数分别为1a 、2a 、3a 、…,则

1800(1)4004001400n a n n =+-?=+

【点评】(1)利用等差数列的性质解答,首先要判断和证明数列是等差数列;(2)利用等差数列的性质解答时,一定要弄清数列的首项、公差和首项等,要分清是数列的通项问题还是数列的求和问题. 【反馈检测1】杭州某通讯设备厂为适应市场需求,提高效益,特投入98万元引进世界先进设备奔腾6号,并马上投入生产.第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引入该设备可获得的年利润为50万元.

请你根据以上数据,解决下列问题:(1)引进该设备多少年后,开始盈利?(2)引进该设备若干年后,有两种处理方案:第一种:年平均盈利达到最大值时,以26万元的价格卖出;第二种:盈利总额达到最大值时,以8万元的价格卖出.问哪种方案较为合算?并说明理由.

【例2】商学院为推进后勤社会化改革,与桃园新区商定:由该区向建设银行贷款500万元在桃园新区为学院建一栋可容纳一千人的学生公寓,工程于2002年初动工,年底竣工并交付使用,公寓管理处采用收费还贷偿还建行贷款(年利率5%,按复利计算),公寓所收费用除去物业管理费和水电费18万元.其余部分全部在年底还建行贷款.

(1)若公寓收费标准定为每生每年800元,问到哪一年可偿还建行全部贷款;

(2)若公寓管理处要在2010年底把贷款全部还清,则每生每年的最低收费标准是多少元(精确到元).(参考数据:lg1.73430.2391,lg1.050.0212==,8

1.05=1.4774)

【解析】 依题意,公寓2002年底建成,2003年开始使用.

(1)设公寓投入使用后n 年可偿还全部贷款,则公寓每年收费总额为1000×80(元)=800000(元)

=80万元,扣除18万元,可偿还贷款62万元.

依题意有 +++++2%)51(%)51(1[62…11%)51(500]%)51(+-+≥++n n . 化简得105.125)105.1(62+?≥-n n . ∴ 7343.105.1≥n . 两边取对数整理得28.110212

.02391

.005.1lg 7343.1lg ==≥

n .∴ 取n =12(年)

. ∴ 到2014年底可全部还清贷款.

【点评】(1)银行的单利问题和复利问题,要理解清楚.单利是一个等差数列问题,复利是一个等比数列问题.(2)利用等比数列的性质解答,首先要判断和证明数列是等比数列;(3)利用等比数列的性质解答时,一定要弄清数列的首项、公比和首项等,要分清是数列的通项问题还是数列的求和问题. 【反馈检测2】为促进个人住房商品化的进程,我国1999年元月公布了个人住房公积金贷款利率和商业性贷款利率如下:

汪先生家要购买一套商品房,计划贷款25万元,其中公积金贷款10万元,分十二年还清;商业贷款

15万元,分十五年还清.每种贷款分别按月等额还款,问: (1)汪先生家每月应还款多少元?

(2)在第十二年底汪先生家还清了公积金贷款,如果他想把余下的商业贷款也一次性还清;那么他家在这个月的还款总数是多少?

(参考数据:1.004455144

=1.8966,1.005025144

=2.0581,1.005025180

=2.4651)

【例3】2008年底某县的绿化面积占全县总面积的40%,从2009年开始,计划每年将非绿化面积的8%绿化,由于修路和盖房等用地,原有绿化面积的2%被非绿化.

⑴设该县的总面积为1,2008年底绿化面积为10

4

1=

a ,经过n 年后绿化的面积为1+n a ,试用n a 表示1+n a ;

⑵求数列{}n a 的第1+n 项1+n a ;

⑶至少需要多少年的努力,才能使绿化率超过60%(参考数据:4771.03lg ,3010.02lg ==)

⑵)5

4

(10954,25210911-=-+=

++n n n n a a a a . 数列?

??

?

??

-54n a 是公比为109,首项5254104541

-=-=-a 的等比数列. ∴n n a )10

9

)(52(541-+=+. ⑶,2

1

)109(,53)109)(52(54%,601

<>-+>+n n n a

1.高考数学考点与题型全归纳——集合

第一章 集合与简易逻辑 第一节 集 合 ? 基础知识 1. 集合的有关概念 1.1.集合元素的三个特性:确定性、无序性、互异性. 1. 2.集合的三种表示方法:列举法、描述法、图示法. 1.3.元素与集合的两种关系:属于,记为∈;不属于,记为?. 1.4.五个特定的集合及其关系图: N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2. 集合间的基本关系 2.1.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B(或B ?A). 2.2.真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作AB 或B A. A B ?? ???? A ? B ,A≠B.既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A. 2.3.集合相等:如果A ?B ,并且B ?A ,则A =B. 两集合相等:A =B ?? ??? ? A ? B ,A ?B.A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性. 2.4.空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}.

3. 集合间的基本运算 (1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A∩B ,即A∩B ={x|x ∈A ,且x ∈B}. (2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x|x ∈A ,或x ∈B}. (3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . ? 常用结论 (1)子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2)交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3)并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4)补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 考点一 集合的基本概念 [典例] 1. (2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 2. 已知a ,b ∈R ,若? ?? ? ??a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1 D .±1 [解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2. (2)由已知得a ≠0,则b a =0,所以 b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可 知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1. [答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意. [题组训练]

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

【精品】高中数学必修1经典题型总结

1.集合基本运算,数轴应用 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x << 2.集合基本运算,二次函数应用 已知集合{} {}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( ) A .]1,2[-- B . )2,1[- C..]1,1[- D .)2,1[ 3.集合基本运算,绝对值运算,指数运算 设集合{}{} ]2,0[,2|,2|1||∈==<-=x y y B x x A x ,则=B A ( ) A.]2,0[ B. )3,1( C. )3,1[ D. )4,1( 4.集合基本性质,分类讨论法 已知集合A= {} 22,25,12a a a -+,且-3 ∈A ,求a 的值 5.集合基本性质,数组,子集数量公式n 2 .集合A={(x,y)|2x+y=5,x ∈N,y ∈N },则A 的非空真子集的个数为( ) A 4 B 5 C 6 D 7 6.集合基本性质,空集意识 已知集合A={x|2a-1≤x≤a+2},集合B={x|1≤x≤5},若A∩B=A,求实数a 的取值范围. 7.函数解析式,定义域,换元法,复合函数,单调性,根式和二次函数应用,数形结合法 已知x x x f 2)1(+=+,定义域为:x>0 (1)求f(x)的解析式,定义域及单调递增区间 (2)求(-1)f x 解析式,定义域及最小值

8.函数基本性质,整体思想,解方程组 设1()满足2()()2,f x f x f x x -=求)(x f 9.函数基本性质,一次函数,多层函数,对应系数法 若f [ f (x )]=2x +3,求一次函数f (x )的解析式 10.不等式计算,穿针引线法 (1-x)(21)0(1)x x x +≥- 求x 取值范围 11.函数值域,反表示法,判别式法,二次函数应用,换元法,不等式法 求函数2241x y x +=-的值域 求函数2122 x y x x +=++的值域 求函数x x y 41332-+-=的值域 93(0)4y x x x =+> 12.函数值域,分类讨论,分段函数,数形结合,数轴应用 若函数a x x x f +++=21)(的最小值为3,则实数a 的值为 (A )5或8 (B )1-或5 (C )1-或4- (D )4-或8 13.函数单调性,对数函数性质,复合函数单调性(同增异减) 函数212 ()log (4)f x x =-的单调递增区间为 A.(0,)+∞ B.(-∞,0) C.(2,)+∞ D.(-∞,2)- 下列函数中,在区间(0,)+∞上为增函数的是( ) .A y 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+

数列必会常见题型归纳

数列必会基础题型 题型一:求值类的计算题(多关于等差等比数列) A )根据基本量求解(方程的思想) 1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; 2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和. 4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37, 中间两数之和为36,求这四个数. 5在等差数列{a n }中, (1)已知a 15=10,a 45=90,求a 60; (2)已知S 12=84,S 20=460,求S 28; (3)已知a 6=10,S 5=5,求a 8和S 8. 6、有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 7、已知△ABC 中,三内角A 、B 、C 的度数成等差数列,边a 、b 、c 依次成等比数列.求证:△ABC 是等边三角形. B )根据数列的性质求解(整体思想) 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ; 2、设n S 、n T 分别是等差数列{}n a 、 {}n a 的前n 项和,327++=n n T S n n ,则=5 5b a . 3、设n S 是等差数列{}n a 的前n 项和,若 ==5 935,95S S a a 则( ) 4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n n a b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .. 6、已知等比数列{a n }中,a 1·a 9=64,a 3+a 7=20,则a 11= .

数列全部题型归纳(非常全面-经典!)(新)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且23 1n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a += -,* N n ∈.

求证:11n a ?? ??-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2)8 n n a S +=则,数列n a 3 4)1a +求数列a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(1 1≥-+=-n n n a a n n ,求此数列的通项公式 (3) 1a = (4 (四)一次函数的递推形式 1. 若数列{}n a 满足111 1,12 n n a a a -==+(2)n ≥,数列n a

2 .若数列{}n a 满足111 1,22 n n n a a a -==+ (2)n ≥,数列n a (1 (2 (六)求周期 16 (1) 121,41n n n a a a a ++==-,求数列2004a

数列常见题型分析与方法总结

数列常见题型分析与做法 一、等差、等比数列的概念与性质 1、已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比,求n a ; (I )依题意032),(32244342=+--+=a a a a a a a 即 03213131=+-∴q a q a q a 2 1101322 = =?=+-∴q q q q 或2 11= ∴≠q q 1)2 1 (64-?=n n a 故 二、求数列的通项 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足2 11=a ,n n a a n n ++ =+2 11,求n a 答案:n n a n 12 3112 1- = - += ∴ 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 1 1+= +,求n a 答案:n a n 32= ∴ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元 法转化为等比数列求解。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 提示:)3(231+=++n n a a 答案:321-=+n n a . 类型4 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:这种类型一般利用???≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例:已知数列{}n a 前n 项和2 2 14---=n n n a S . (1)求1+n a 与n a 的关系;(2)求通项公式n a . 解:(1)由2 2 14-- -=n n n a S 得:1 112 14-++- -=n n n a S 于是) 2 12 1( )(1 2 11--++- +-=-n n n n n n a a S S 所以1 112 1 -+++ -=n n n n a a a n n n a a 2 12 11+ = ?+.

高考数学题型全归纳

2010-2016高考理科数学题型全归纳题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围 题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系

题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质 题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像

数列题型及解题方法归纳总结

知识框架 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常 数) 例1、已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解∵a n+1-a n =2为常数∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1)即a n =2n-1 例2、已知{}n a 满足11 2n n a a +=,而12a =,求 n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112 a = ,12 141 n n a a n +=+ -,求n a . 解:由已知可知 )12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) ★ 说明只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有 132n n a a -=+,求n a . 解法一:由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1∵a n+1=3a n +2∴3a n +2-a n =4·3n-1 即a n =2·3n-1-1 解法二:上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把n-1个等式累加得:∴an=2·3n-1-1 (4)递推式为a n+1=pa n +qn (p ,q 为常数) )(3 2 11-+-=-n n n n b b b b 由上题的解法, 得:n n b )3 2(23-=∴ n n n n n b a )31(2)21(32 -== (5)递推式为21n n n a pa qa ++=+ 思路:设21n n n a pa qa ++=+,可以变形为: 211()n n n n a a a a αβα+++-=-, 想 于是{a n+1-αa n }是公比为β的等比数列,就转化 为前面的类型。 求n a 。 (6)递推式为S n 与a n 的关系式 系;(2)试用n 表示a n 。 ∴)2121( )(1 2 11 --++- +-=-n n n n n n a a S S ∴1 11 2 1 -+++ -=n n n n a a a ∴ n n n a a 2 1 211+= + 上式两边同乘以2n+1得2n+1a n+1=2n a n +2则{2n a n }是公差为2的等差数列。 ∴2n a n =2+(n-1)·2=2n 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

高考数学题型全归纳:数学家高斯的故事(含答案)

数学家高斯的故事 高斯(Gauss,1777—1855)、著名的德国数学家。1777年4月30日出生在德国的布伦兹维克。父亲是一个砌砖工人,没有什么文化。 还在少年时代、高斯就显示出了他的数学才能。据说、一天晚上,父亲在计算工薪账目、高斯在旁边指出了其中的错误、令父亲大吃一惊。10岁那年、有一次老师让学生将1、2、3、…连续相加、一直加到100、即1+2+3+…+100。高斯没有像其他同学那样急着相加、而是仔细观察、思考、结果发现: 1+100=101、2+99=101、3+98=101、…、50+51=101一共有50个101、于是立刻得到: 1+2+3+…+98+99+100=50×101=5050 老师看着小高斯的答卷、惊讶得说不出话。其他学生过了很长时间才交卷、而且没有一个是算对的。从此、小高斯“神童”的美名不胫而走。村里一位伯爵知道后、慷慨出钱资助高斯、将他送入附近的最好的学校进行培养。 中学毕业后、高斯进入了德国的哥廷根大学学习。刚进入大学时、还没立志专攻数学。后来听了数学教授卡斯特纳的讲课之后、决定研究数学。卡斯特纳本人并没有多少数学业绩、但他培养高斯的成功、足以说明一名好教师的重要作用。 从哥廷根大学毕业后、高斯一直坚持研究数学。1807年成为该校的数学教授和天文台台长、并保留这个职位一直到他逝世。 高斯18岁时就发明了最小二乘法、19岁时发现了正17边形的尺规作图法、并给出可用尺规作出正多边形的条件、解决了这个欧几里得以来一直悬而未决的问题。为了这个发现、在他逝世后、哥廷根大学为他建立了一个底座为17边形棱柱的纪念像。

对代数学、高斯是严格证明代数基本定理的第一人。他的《算术研究》奠定了近代数论的基础、该书不仅在数论上是划时代之作、就是在数学史上也是不可多得的经典著作之一。高斯还研究了复数、提出所有复数都可以用平面上的点来表示、所以后人将“复平面”称为高斯平面、高斯还利用平面向量与复数之间的一一对应关系、阐述了复数的几何加法与乘法、为向量代数学奠定了基础。1828年高斯出版《关于曲面的一般研究》、全面系统地阐述了空间曲面的微分几何学。并提出了内蕴曲面理论。高斯的数学研究几乎遍及当时的所有数学领域、而且在不少方面的研究走在了时代的前列。他在数学历史上的影响可以和阿基米德、牛顿、欧拉并列。 高斯一生共有155篇论文。他治学严谨、把直观的概念作为入门的向导、然后试图在完整的逻辑体系上建立其数学的理论。他为人谨慎、他的许多数学思想与结果从不轻易发表、而且、他的论文很少详细写明思路。所以有的人说:“这个人、像狐狸似的、把沙土上留下的足迹、用尾巴全部扫掉。”

(完整版)数列常见题型总结经典(超级经典)

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )?? ?-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3 ,1111≥+==--n a a a n n n ,证明2 13-=n n a

1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式. 3.形如 )(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111,1-+= =n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中1111,1-+-= =n n a n n a a )2(≥n ,求n n S a 与。 2、求数列)2(1232,11 1≥+-==-n a n n a a n n 的通项公式。

数列全部题型归纳(非常全面-经典!)讲解学习

数列全部题型归纳(非常全面-经典!)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a +=-,*N n ∈.

求证:11n a ????-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2) 8n n a S +=则,数列n a 3)若数列{}n a 的前n 项和n S 满足,111 ,0,4n n n n a S S a a -=-≠=则,数列 n a 4)12323...(1)(2)n a a a na n n n +++=++ 求数列n a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式 (3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式. (4)若数列{}n a 的前n 项和n S 满足,211,2 n n S n a a ==则,数列n a (四)一次函数的递推形式 1. 若数列{}n a 满足1111,12 n n a a a -== +(2)n ≥,数列n a

高考数学 题型全归纳:数列在生活中的应用(含答案)

数列在生活中的应用 在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。与此同时,数列在艺术创作上也有突出的作用! 数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活关系的精彩描述。 首先, 我重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。 若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形,得(an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。日常生活中一切有关按揭货款的问题,均可根据此式计算。 (二)有关数列的其他经济应用问题 数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的。一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。 (三)数列在艺术中的广泛应用

高考数学题型全归纳

高考数学题型全归纳 1高考数学必考七个题型 第一,函数与导数 主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。 第二,平面向量与三角函数、三角变换及其应用 这一部分是高考的重点但不是难点,主要出一些基础题或中档题。 第三,数列及其应用 这部分是高考的重点而且是难点,主要出一些综合题。 第四,不等式 主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。 第五,概率和统计 这部分和我们的生活联系比较大,属应用题。 第六,空间位置关系的定性与定量分析 主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。 第七,解析几何 高考的难点,运算量大,一般含参数。 高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。 针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。 2高考数学题型全归纳 题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系

题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系 题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件 题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质 题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间

高中数学复习系列---数列常见题型总结

数列 题型一:求值类的计算题(多关于等差等比数列) A)根据基本量求解(方程的思想) 1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; 2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和. 4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数. B )根据数列的性质求解 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ; 2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S n n ,则=5 5b a . 3、设n S 是等差数列{}n a 的前n 项和,若 ==5 935,95S S a a 则( ) 4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若 231n n S n T n =+,则n n a b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S . 6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。 7、已知数列{}n a 是等差数列,若 471017a a a ++=,45612131477a a a a a a +++ +++=且 13k a =,则k =_________。 8、已知n S 为等比数列{}n a 前n 项和,54=n S ,602=n S ,则=n S 3 . 9、在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为( ) 10、在等比数列中,已知910(0)a a a a +=≠,1920a a b +=,则99100a a += . 11、已知{}n a 为等差数列,20,86015==a a ,则=75a . 12.在等差数列中,若 84816 1 ,.3S S S S =求= . 题型二:求数列通项公式: A) 给出前几项,求通项公式 1,0,1,0,…… ,,21,15,10,6,3,1 3,-33,333,-3333,33333…… B)给出前n 项和求通项公式

数列题型及解题方法归纳总结99067

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a = (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…

(完整版)高中数学题型归类总结

题型一,利用复合命题的真假及充分必要条件求参数范围, 1、 利用复合命题的真假求范围。考察复合命题真假的判断,求出每个命题对应的范围, 进而利用复合命题的真假列不等式组, 2、利用充分必要条件求范围,考察充分必要性的判断方法“集合法”求出每个命题对应的范围,进而有充分必要条件得出集合间的关系,从而列不等式组,求范围。 例题:1.若不等式成立的充分不必要条件是,则实数的取值范 围是______ 2.设p :函数|| ()2x a f x -=在区间(4,+∞)上单调递增;:log 21a q <,如果 “p ?”是真命题,“p 或q ”也是真命题,求实数a 的取值范围。 3.设p :实数x 满足x 2-4ax +3a 2 <0,其中a ≠0,q :实数x 满足? ???? x 2 -x -6≤0,x 2 +2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围. 4、已知p : {{ }20 100 x x x +≥-≤q:{}11,0,x m x m m p q -≤≤+>??若是的必要不充分条件,求 实数m 的取值范围 题型二:极坐标方程及参数方程的解决方法 因为我们熟悉的事普通方程的应用,所以此类为题一般都是转换成普通方程解决 应掌握两点,1、极坐标方程与普通方程的互化 { cos sin x y ρ?ρ? ==极坐标化为普通 222tan x y y x ρ?=+=??? 普通方程化为极坐标方程 2、 参数方程化为普通方程,方法是消参 例题: 1、 极坐标方程cos ρ?=和参数方程 { 123x t y t =--=+(t 为参数)所表示的图形分别是 圆、直线 2、 在极坐标系中,已知圆2cos ρ?=与直线3cos 4sin 0a ρ?ρ?++=相切,求 实数a 的值。 -8或2

数列常见题型汇总经典(超级经典)

数列常见题型汇总经典(超级经典)

————————————————————————————————作者:————————————————————————————————日期:

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )?? ?-=-11 n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和2 12n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3 -=n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足2 2n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3,111 1≥+==--n a a a n n n ,证明2 1 3-=n n a

1. 已知数列{}n a 的首项为1,且* 12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(1 1≥-+=-n n n a a n n ,求此数列的通项公式. 3.形如 )(1 n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =1 1-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中111 1 ,1-+-==n n a n n a a )2(≥n ,求n n S a 与。 2、求数列)2(1 232,111 ≥+-==-n a n n a a n n 的通项公式。

相关文档
最新文档