维纳滤波基本概念

合集下载

维纳滤波

维纳滤波

维纳滤波滤波器概念常用的滤波器是采用电感、电容等分立元件构成,如RC低通滤波器、LC谐振回路等。

但对于混在随机信号中的噪声滤波,这些简单的电路就不是最佳滤波器,这是因为信号与噪声均可能具有连续的功率谱。

不管滤波器具有什么样的频率响应,均不可能做到噪声完全滤掉,信号波形的不失真。

因此,滤波器研究的一个基本课题就是:如何设计和制造最佳的或最优的滤波器。

所谓最佳滤波器是指能够根据某一最佳准则进行滤波的滤波器。

维纳滤波定义及发展维纳滤波滤除背景噪声20世纪40年代,维纳奠定了关于最佳滤波器研究的基础。

即假定线性滤波器的输入为有用信号和噪声之和,两者均为广义平稳过程且知它们的二阶统计特性,维纳根据最小均方误差准则(滤波器的输出信号与需要信号之差的均方值最小),求得了最佳线性滤波器的参数,这种滤波器被称为维纳滤波器。

在维纳研究的基础上,人们还根据最大输出信噪比准则、统计检测准则以及其他最佳准则求得的最佳线性滤波器。

实际上,在一定条件下,这些最佳滤波器与维纳滤波器是等价的。

因而,讨论线性滤波器时,一般均以维纳滤波器作为参考。

维纳滤波是40年代在线性滤波理论方面所取得的最重要的成果。

利用平稳随机过程的相关特性和频谱特性对混有噪声的信号进行滤波的方法,1942年美国科学家N.维纳为解决对空射击的控制问题所建立。

维纳滤波基本概念从噪声中提取信号波形的各种估计方法中,维纳(Wiener)滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号(波形),而不只是它的几个参量。

设维纳滤波器的输入为含噪声的随机信号。

期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。

因此均方误差越小,噪声滤除效果就越好。

为使均方误差最小,关键在于求冲激响应。

如果能够满足维纳-霍夫方程,就可使维纳滤波器达到最佳。

根据维纳-霍夫方程,最佳维纳滤波器的冲激响应,完全由输入自相关函数以及输入与期望输出的互相关函数所决定。

维纳滤波的应用综述

维纳滤波的应用综述

基于维纳滤波的应用综述一、维纳滤波概述维纳(wiener)滤波是用来解决从噪声中提取信号问题的一种过滤(或滤波)的方法。

实际上这种线性滤波问题,可以看成是一种估计问题或一种线性估计问题。

一个线性系统,如果它的单位样本响应为h (n ),当输入一个随机信号x (n ),且x (n )=s (n )+v (n ) (1.1)其中s(n)表示信号,v(n)表示噪声,则输出y(n)为()=()()my n h m x n m -∑ (1.2)我们希望x (n )通过线性系统h (n )后得到的y (n )尽量接近于s (n ),因此称y (n )为s (n )的估计值,用^s 表示,即 ^()()y n s n = (1.3)实际上,式(1.2)的卷积形式可以理解为从当前和过去的观察值x (n ),x (n -1),x (n -2)…x (n -m ),来估计信号的当前值^()s n 。

因此,用h (n )进行过滤的问题可以看成是一个估计问题。

由于现在涉及的信号是随机信号,所以这样一种过滤问题实际上是一种统计估计问题。

维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。

对某些问题,还可求出滤波器传递函数的显式解,并进而采用由简单的物理元件组成的网络构成维纳滤波器。

维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声为非平稳的随机过程的情况,对于向量情况应用也不方便。

因此,维纳滤波在实际问题中应用不多,更多的是基于维纳滤波器发展而来的滤波方式。

二、基于维纳滤波的应用2.1在飞机盲降着陆系统中的应用盲降着陆系统(ILS)又译为仪表着陆系统。

它的作用是由地面发射的两束无线电信号实现航向道和下滑道指引,建立一条由跑道指向空中的虚拟路径。

飞机通过机载接收设备确定自身与该路径的相对位置,使飞机沿正确方向飞向跑道并且平稳下降高度。

维纳滤波原理

维纳滤波原理

维纳滤波原理维纳滤波是一种信号处理中常用的滤波方法,它的原理是基于最小均方误差准则,通过对信号和噪声的统计特性进行分析,设计一种能够最小化系统输出与期望输出之间均方误差的滤波器。

维纳滤波在图像处理、语音处理、雷达信号处理等领域都有广泛的应用,下面我们来详细了解一下维纳滤波的原理和应用。

首先,我们需要了解维纳滤波的基本模型。

维纳滤波的输入信号可以表示为s(n),噪声信号表示为v(n),系统输出信号表示为x(n),那么维纳滤波器的输出可以表示为:x(n) = w(n) s(n) + v(n)。

其中,表示卷积操作,w(n)表示滤波器的权值。

维纳滤波的目标是设计一个滤波器,使得系统输出信号x(n)与期望输出信号d(n)之间的均方误差最小,即最小化误差信号e(n)的均方值E[e^2(n)]。

根据最小均方误差准则,我们可以得到维纳滤波器的最优解为:w(n) = R_ss^(-1) p_s。

其中,R_ss表示输入信号s(n)的自相关矩阵,p_s表示输入信号s(n)与期望输出信号d(n)的互相关向量。

这个公式描述了维纳滤波器的权值与输入信号和期望输出信号的统计特性之间的关系。

维纳滤波器的设计需要对输入信号和噪声信号的统计特性有一定的了解。

通常情况下,输入信号和噪声信号被假设为高斯分布,因此可以通过它们的均值和方差来描述它们的统计特性。

在实际应用中,我们可以通过对信号和噪声的样本进行统计分析,估计它们的均值和方差,进而设计维纳滤波器。

除了基本的维纳滤波器设计原理,维纳滤波还有一些扩展应用。

例如,当输入信号和噪声信号的统计特性未知或难以估计时,我们可以通过自适应滤波的方法来实现维纳滤波。

自适应滤波器可以根据系统的实时输入信号和输出信号来动态地调整滤波器的权值,以适应信号和噪声的变化特性,从而实现更好的滤波效果。

维纳滤波在图像处理中有着广泛的应用。

在数字图像处理中,图像通常会受到噪声的影响,例如加性高斯噪声、椒盐噪声等。

维纳滤波在地震上的应用

维纳滤波在地震上的应用

维纳滤波在地震上的应用一、维纳滤波的基本原理维纳滤波是一种信号处理的方法,可以用于去噪、增强图像等方面。

其基本原理是通过对信号进行频域分析,将信号分解成不同的频率成分,然后根据频率成分的特点来进行滤波处理。

具体来说,维纳滤波可以通过对信号和噪声功率谱的估计来实现。

二、地震数据中存在的问题地震数据在采集过程中往往会受到各种干扰因素的影响,导致数据存在一定程度上的噪声。

这些噪声会对地震数据的质量产生重大影响,降低数据处理和解释的可靠性和准确性。

三、维纳滤波在地震数据处理中的应用1. 去除噪声由于地震数据中存在各种类型的噪声,因此需要采取相应措施进行去除。

维纳滤波可以通过对地震数据进行频域分析,将信号和噪声功率谱分离出来,并根据其特点进行相应处理。

这样就可以有效去除噪声,提高地震数据质量。

2. 提高分辨率地震数据在处理过程中需要进行成像,而成像的精度和分辨率直接影响到数据的解释和应用。

维纳滤波可以通过对地震数据进行频域分析,提高信号频率成分的权重,从而提高地震数据的分辨率和精度。

3. 去除多次反射在地震数据中,多次反射会产生干扰,降低数据质量。

维纳滤波可以通过对多次反射信号进行滤波处理,去除干扰信号,从而提高地震数据质量。

4. 提高信噪比由于地震数据中存在各种类型的噪声,因此需要采取相应措施来提高信噪比。

维纳滤波可以通过对地震数据进行频域分析,将信号和噪声功率谱分离出来,并根据其特点进行相应处理。

这样就可以有效提高地震数据的信噪比。

四、维纳滤波在地震勘探中的实际应用1. 地下构造成像在地震勘探中,地下构造成像是一项重要任务。

维纳滤波可以通过去除噪声、提高分辨率、去除多次反射和提高信噪比等措施,提高地震数据质量和成像效果,从而实现地下构造的精细成像。

2. 油气勘探在油气勘探中,地震数据是一项重要的数据来源。

维纳滤波可以通过去除噪声、提高信噪比等措施,提高地震数据质量和解释可靠性,从而实现油气勘探的精确定位和评价。

维纳滤波文档

维纳滤波文档

维纳滤波1. 简介维纳滤波(Wiener filtering)是一种经典的信号处理技术,用于消除信号中的噪声并恢复原始信号。

它是由诺贝尔奖获得者诺里斯·伯特·维纳(Norbert Wiener)于1949年提出的。

维纳滤波基于统计信号处理理论,通过在频域对信号和噪声进行建模,利用最小均方误差准则来估计信号。

它可以应用于许多领域,例如图像处理、语音信号处理、雷达信号处理等。

2. 维纳滤波的原理维纳滤波的目标是根据信号和噪声的统计特性,对接收到的被噪声污染的信号进行优化处理,以尽可能地恢复原始信号。

其基本原理可以分为以下几个步骤:2.1 信号与噪声建模首先,需要对信号和噪声进行建模。

假设接收到的信号为s(s),噪声为s(s),那么接收到的被噪声污染的信号可以表示为:s(s)=s(s)+s(s)2.2 计算信号和噪声的统计特性通过观测和采样,可以估计信号和噪声的统计特性,例如均值、方差、功率谱密度等。

以图像处理为例,可以通过对图像的样本进行统计分析来估计信号和噪声的统计特性。

2.3 估计滤波器函数利用信号和噪声的统计特性,可以估计滤波器函数s(s),其中s为频率。

滤波器函数描述了在不同频率上应该对信号进行的滤波程度。

通过估计滤波器函数,可以为不同频率的信号分配适当的增益。

2.4 滤波过程在维纳滤波中,滤波器函数s(s)是根据信号和噪声的功率谱密度来估计的。

通过将接收到的信号进行频谱变换,将频谱域中的信号与滤波器函数相乘,然后再进行逆向频谱变换,即可得到滤波后的信号。

3. 维纳滤波的应用维纳滤波在信号处理领域有广泛的应用,下面以图像处理为例说明其应用场景。

3.1 噪声去除在图像处理中,噪声往往是由于图像的采集、传输等过程中产生的。

维纳滤波可以根据图像的统计特性,将噪声进行估计,并对图像进行滤波,从而实现去噪的效果。

3.2 图像恢复图像的失真往往是由于拍摄条件、传输等因素引起的。

维纳滤波可以通过估计图像的信号特性,去除噪声和失真,从而恢复图像的细节和清晰度。

第9章维纳滤波PPT课件

第9章维纳滤波PPT课件
于是维纳-霍夫方程变为:
t
R x s(t) h (t)R x x ()d, t
21.12.2023
.
23
做变量替换,t-=,t-=,得到:
R x s() 0 h ()R x x( )d ,0
或:
R x s() 0 h ()R x x( )d ,0
此时:
L M S R s s(0 ) 0h ()R x s()d
21.12.2023
.
31
H(ej)
0 1
Sss()
Sss()Snn()
Sss() 0,Snn() 0 Sss() 0,Snn() 0
Sss() 0,Snn() 0
21.12.2023
.
32
H(ej) 1
Sss(ej) Snn(ej)
0
非因果维纳滤波器的幅频特性
21.12.2023
.
33
例9.4 设信号的自相关函数是: R ss(m ) 0 .8 m m 0 , 1 , 2 , 噪声是白色的
E [d(t)d ˆ(t)]2m in
• 又限定估计 dˆ ( t ) 是由观察x(t)经线性滤波
器h(t)得出的:
d ˆ(t)x(t)*h(t)tf x()h(t)d t0
21.12.2023
.
11
最优线性均方估计的选取原则是使估计
误差 e(t)d(t)dˆ(t) 与所有的观察值
x(), ∊[t0,tf]正交,也就是说,如果 对每一个 ∊[t0,tf]都有:
21.12.2023
.
17
由于Rss‘(t)是奇函数,所以Rss‘(0)=0 把上式化简得到:
R ss (a ) a R ss (0 ) 0 R s's ( a ) b R s's'( 0 ) 0 故得到:

维纳滤波概述

维纳滤波概述
2 2

E[ x(t ) h(t ) y (t )d ]2
0

E[ x(t )]2 2 h( )( E[ y (t ) y ( )]d
0

h( )d h( ) E[ y (t ) y (t )]d
0 0


Rxx (0) 2 h( ) Ryx ( )d
E[e 2 (n)] lim
(2-25)
1 T 2T

T
T
(n) s (n)]2 dn [s
滤波器在n时刻复现信号s(n)显然是滤波问题。这是一种简单的过滤,滤除 噪声v(n)是唯一的目的。 但输出在时间上的简单的超前或者滞后,都不失为线性
(n a) ,这显然是一种超前的情况,输 滤波问题。在n时刻,滤波器输出如果为 s (n a) 是 s(n a) 的估计值,它比x(n)超前了 时间。这个时候滤波器所完成 出s
2 J1 2 J 2 0( 3 )
(2-15) 则将导致
J[ h h( t )] J [ o p t( t ) oh p t (t ) ]
(2-16) 这明显与最佳冲击响应将使均方误差最小的假设相矛盾。所以,我们只能取
J1 =0,即满足式(2-11)。由式(2-13)知,若使 J1 =0成立,则必须使式(2-13)中的方
第 2 章 维纳滤波理论
2.1 维纳滤波的概述
维纳 (Wiener) 滤波是用来解决从噪声中提取信号问题的一种过滤 (或滤波) 的方法。 实际上这种线性的滤波问题,可以看成是一种估计问题或是一种线性估 计问题。 维纳滤波器是一种基于最小均方误差准则下的估计滤波器。 滤波器的输入包 括有真实信号值x(t)和干扰噪声w(t),信号值与噪声是统计独立的,则两者的合 成输入信号是

维纳滤波(最小均方滤波)

维纳滤波(最小均方滤波)

维纳滤波(最⼩均⽅滤波)维纳滤波(最⼩均⽅滤波)避免逆滤波固有的弊端的另⼀种⽅法就是寻找图像的⼀种估值,使得和之间的均⽅误差最⼩。

均⽅误差最⼩准则是由维纳(Wiener)在1949年⾸先提出并⽤来对⼀维平稳时间序列进⾏估值。

因此这种⽅法被称为维纳滤波,也被称为最⼩均⽅误差滤波。

设、、分别为退化图像、原始图像和噪声,并设他们都是均匀随机的,且噪声的均值为零,并与图像不相关。

可以得到(3-6)式中,为维纳滤波器的点扩散函数。

按照均⽅误差最⼩准则,应该满⾜(3-7)为最⼩。

我们把称为已知时的线性最⼩均⽅估计。

将(2.2)带⼈(2.1)式,得到(3-8)可以证明当(3-9)时,式(3-7)取最⼩值。

经过证明可以得到维纳滤波的转移函数为(3-10)其中为噪声功率谱,为图像功率谱。

由式(2.5)可以看出,当没有噪声时,有,维纳滤波器就可以简化的看成是逆滤波器。

在有噪声的情况下,维纳滤波也⽤信噪功率⽐作为修正函数对逆滤波器进⾏了修正,但它在均⽅误差最⼩的意义上提供最佳恢复。

通常将噪声假设为⽩噪声,即噪声功率谱为常数,若在频谱空间上⾼频区下降⽐快得多,这种假设就近似正确。

于是可以认为常数(3-11)如果噪声时各态历经的,可以⽤⼀幅噪声图像进⾏计算从⽽求得,图像功率谱则可利⽤与原始图像统计性质相同的⼀类图像来确定。

如果不知道有关随机场的统计性质,也常⽤下式近似计算转移函数:(3-12)K是根据信噪⽐的某种先验知识来确定的常数。

下⾯是维纳滤波的复原效果:(a)原图(b)退化(c)复原图3-3 维纳滤波复原实验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Wiener 滤波概述
Wiener 滤波器是从统计意义上的最优滤波,它要求输入信号是宽平稳随机序列,本章主要集中在FIR 结构的Wiener 滤波器的讨论。














({n x )n ,
§3.1从估计理论观点导出Wiener 滤波
FIR 结构(也称为横向)的Wiener 滤波器的核心结构如图4所示. 图4.横向Wiener 滤波器
FIR 结构的Wiener 是一个线性Beyesian 估计问题.
为了与第2讲中估计理论一致,假设信号,滤波器权值均为实数
由输入)(n x 和它的1至(M-1)阶延迟,估计期望信号)(n d ,确定权系数}1,0,{-=M i w i 使估计误差均方值最小,均方
误差定义为:
xx R 这里线性0w
或a
1) 波可能会达到更好结果。

2) 在联合高斯条件下,Wiener 滤波也是总体最优的(①从Bayesian 估计意义上讲是这样,②要满足平稳条件) 3) 从线性贝叶斯估计推导过程知,在滤波器系数取非最优的w 时,其误差性能表示:
它是w 的二次曲面,只有一个最小点,0w w =时,m in )(J w J =
§3.2维纳滤波:从正交原理和线性滤波观点分析Wiener 滤波器 Wiener 滤波器是一个最优线性滤波器,滤波器核是IIR 或FIR 的。

导出最优滤波器的正交原理,并从正交原理出发重新导出一般
IIR 。

=
∑∞
=--0
*)
(][k k
k n x w n d
均方误差是:
{}][*][n e n e E J ={}2
|][|n e E = 设权系数:
k k k jb a w +=
定义递度算子
T
k ],,[10 ∇∇∇=∇.其中
k k k k b j
a w ∂∂
+∂∂=∂∂=∇
符号J ∇是递度算子作用于J ,其中第k 项为:k k k b J
j
a J J ∂∂+∂∂=∇
要求
由J 得
∇[n
je J k

[e a k
∂k 代入J k ∇表达式整理得:]][*][[2n e k n x E J k --=∇
当0=∇J
k ,1,0=k 时,J 达到最小。

设J 达最小时,用][,
00n e w 表示权系数和误差e[n],且
min J J =
则有:
0]][][[*0
=-n e k n x E , ,1,0=k
以上为正交性原理,达到最优滤波时,误差和输入正交。

推论:0]][][[*0
0=n e n y E


⎢⎣⎡x E ,
定:
[i r x [r xd 有=i 这就是Wiener-Hopf 方程,解此方程,可得到最优权i w 0。

对于M 阶FIR 滤波器,(横向滤波器)Wiener-Hopf 方程变为:
∑-=-=-10
0]
[][M i xd x
i k r k i r w

1,1,0-=M k
·矩阵形式: 令T
M n x n x n x n ]]
1[,],1[],[[][+--= x

R =⎪⎪⎪⎪⎪

⎫-]2]1[],1[],
0[M r r r 里
0w 在示由
],[n x 。

[0e 也可以写成:]|[][][0n X n d n e n d +=

]|[ˆn
X n d 和
]
[0n e 正交性得:
[
]
2
ˆ2
2
][d
o d
n e E σ
σ+=2
ˆm in d J σ+=
即:2
ˆ2
m in
d d J σσ-=
由∑-=-=1
*][]|[ˆM k k n k n x w X n d ]
[0n H x w =

2
ˆd
σE =则
m J 0
w H
=由

J =




∑∑∑∑-=-=-=-=⋅+----=10
10
10
10
**2[
)(*)(M k M k M k M i x i k
xd k xd
k d
r w w k r w k r w J σ
由上式,可以看出,J 是W k 的二次曲面,是碗状曲面,碗口向上,
J min 在碗底,其实,由上式直接对w k 求导,得到一组方程,正是
wiener-Hopf 方程。

矩阵形式w w w w R J H
H
H
d
+--=xd xd r r w 2)(σ

x d
r 10-=R w 时

达最小,
min J 性

(J 由

(w J 令v
,有:
=k k
J 1
λ这是超椭圆,
k
λ为其一个轴。

数值例子1:
有一信号][n s ,它的自相关序列为k
s k r ⎪⎭

⎝⎛=212710][,被
一白噪声所污染,噪声方差为3/2,被污染信号][n x 作为Wiener 滤波器的输入,求2阶FIR 滤波器使输出信号是][n s 的尽可能的恢复。

解:本题中,][][][n v n s n x +=,][][n s n d =。

w
min
J #
是白
噪声函数
为:118458.01)(-⋅+=Z
Z H ②][n d 经过了一个通信信通,信道的传输函数为)(2Z H ,并加
入了白噪声1.022
=σ即:
通道模型如图5所示:
图5.通道模型
③求解:一个二阶FIR 结构Wiener 滤波器,目的是由x[n]尽可能恢复d [n ] 解: ①][n d 是一个)1(AR 过程,27.0,1)(2
1
1
11=+=-σZ a Z A
②在
][][][n v n s n x +=][n s )2(AR ,
反解但

R x =1.0 ⎝⎛=1③求][k r xd {}][][][n d k n x E k r xd -=


]
[]1[9458.0][n d n s n s =--,

][][][2n v n s n x +=代入上式
得:]1[9458.0][][--=k r k r k r s s xd
故5272
.0])1[9458.0(]0[]0[=-⨯-+=s s xd r r r
最优系数 最小均方误差:

-R 02
=
·或
)()
()(z z z H x xd ΓΓ=
这里)(z H 是滤波器冲激响应(权系数)的z 变换,
)(z x Γ是][k r x 的z 变换,)(z xd Γ是][k p 的z 变换。

最小均方误差为
∑∞
-∞
=--
=l xd
ol d
l r w
J ]
[2min σ
例2.有一信号][n s ,它的自相关序列为
k
s k r ⎪
⎫ ⎛=110][3/,IIR ]。


245
维纳滤波器的传输函数为
上式中,)(z x
+
Γ是由)(z x Γ中位于单位圆内的极点
和零点组成;+
-⎥⎦⎤
⎢⎣⎡ΓΓ)()(z z x xd 是对应于)()(z z x xd -ΓΓ中的因果序列
部分的z 变换。

最小均方误差为
例3.用因果滤波器实现例2的相同问题 解:

11)
311)(311(116620)(1111z z z z z x --=--=Γ---- 得到(+Γz x 另

)(z Y
上式中的][n u 代表阶跃序列。

][n y 的因果部分为
=⎥⎦⎤
⎢⎣⎡ΓΓΓ=+-+)()()(1)(z z z z H x xd x )311()211(1
1
----z z 12
113/1--z

13
113/1--z
因果的IIRWiener 滤波器比非因果的剩余误差要略大。

相关文档
最新文档