2019届高考数学复习专题二数列第二讲大题考法——数列课件理

合集下载

2019高考数学理高分大二轮课件专题5第2讲综合大题部分

2019高考数学理高分大二轮课件专题5第2讲综合大题部分

(2)等比中项法,对于非零数列{an},若anan+2=a,则数列{an}是等比数列.
(3)若数列{an}成等比数列,则数列{lg an}(an>0)成等差数列;反之,若数列{an}成
等差数列,则数列{ban}成等比数列.
8
精准考点突破
易错防范突破
真题押题精练
增分强化练
首页 上页 下页 末页
考点一 考点二
(1)证明:数列 {a1n}是等差数列,并求数列 {an}的通项公式;
(2)若数列 {bn}的通项公式为 bn=2na+n 6,求数列 {bn}的前 n 项和 Sn.
2
精准考点突破
易错防范突破
真题押题精练
增分强化练
首页 上页 下页 末页
考点一 考点二
解析:(1)依题意,an+1an+an+2an+1=2an+2an,两边同时除以anan+1an+2,

∴an+1=2an-an-1+2(n≥2),

①-②得an+2-an+1=2an+1-2an-(an-an-1)
∴(an+2-an+1)+(an-an-1)=2(an+1-an)
∵bn=an+1-an,
∴bn+1=an+2-an+1,bn-1=an-an-1.
∴bn+1+bn-1=2bn(n≥2),
10
精准考点突破
易错防范突破
真题押题精练
增分强化练
首页 上页 下页 末页
考点一 考点二
2.(裂项相消)(2018·东北三省三校第二次联考)已知数列{an}满足a1=3,an+1=2an-
n+1,数列{bn}满足b1=2,bn+1=bn+an-n,n∈N*.
(1)证明:{an-n}为等比数列;

2019届高考数学二轮复习第二篇核心知识回扣2.2数列课件文

2019届高考数学二轮复习第二篇核心知识回扣2.2数列课件文

4.已知等比数列{an}中,a2=20,a6=19,则a4的值为 ____________.
【解析】因为(a4)2=a2a6=380,所以a4=± 380 , 又因为a4=a2q2>0,所以a4=2 95 . 答案:2 95
5.已知数列{an}中,an=n+2n则前10项和 S10=____________.
当x=1时,1+x+x2+…+xn=n,
当x≠0,x≠1时,1+x+x2+…+xn= 1 xn+1 ,
所以1+x+x2+…+xn=
1 xn+1

,x 1,
1 x
Байду номын сангаас
1 x
n,x=1.
9.利用裂项相消法求和时,分裂后的结果与分裂前的值 不相等.应该把分裂后的式子运算后与原来分裂前对照 验证. 10.利用分组求和时,不能分成等差数列、等比数列的 求和问题,比如遇到(-1)n时,要分成奇数、偶数分别讨 论求和.
11.遇到含有Sn,an的关系式子中,要把n换成n-1时,只 更换了一个或部分的n,应该更换所有的n.
(2n 1)(2n+1) 2 2n 1 2n+1
(3) 1 n+1 n.
n + n+1
【易错易混提醒】 1.已知数列的前n项和求an,容易忽视n=1的情形,而直 接用an=Sn-Sn-1,造成错误的原因是忽略了定义域n≥2, 正确的是:an= SS1n,n=S1n,1,n 2.
【解析】当n=1时,2a1=1,a1= 1 ,
2
当n≥2时,2a1+22a2+23a3+…+2nan=n,

[精品]2019高考数学二轮复习专题三数列第二讲数列的综合应用教案理

[精品]2019高考数学二轮复习专题三数列第二讲数列的综合应用教案理

第二讲 数列的综合应用由递推关系求通项授课提示:对应学生用书第30页[悟通——方法结论] 求数列通项常用的方法(1)定义法:①形如a n +1=a n +C (C 为常数),直接利用定义判断其为等差数列.②形如a n +1=ka n (k 为非零常数)且首项不为零,直接利用定义判断其为等比数列.(2)叠加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式. (3)叠乘法:形如a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a na n -1,求其通项公式. (4)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t),其中t =q1-p,再转化为等比数列求解.(5)构造法:形如a n +1=pa n +q n(其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以q n +1,得a n +1q n +1=p q ·a n q n +1q ,构造新数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解. [全练——快速解答]1.(2018·洛阳四校联考)已知数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则数列{a n }的通项公式为( )A .a n =2n +1B .a n =⎩⎪⎨⎪⎧14,n =1,2n +1,n ≥2C .a n =2nD .a n =2n +2解析:由题意可知,数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则n ≥2时,有12a 1+122a 2+123a 3+…+12n -1a n -1=2(n -1)+5,n ≥2,两式相减可得,a n2n =2n +5-2(n -1)-5=2,∴a n =2n +1,n ≥2,n ∈N *.当n =1时,a 12=7,∴a 1=14,综上可知,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧14,n =1,2n +1,n ≥2.答案:B2.(2018·潮州月考)数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1,n ∈N *),则数列{a n }的通项公式是________.解析:法一:由a n +1=2S n +1可得a n =2S n -1+1(n ≥2),两式相减得a n +1-a n =2a n ,即a n +1=3a n (n ≥2). 又a 2=2S 1+1=3,∴a 2=3a 1,故{a n }是首项为1,公比为3的等比数列, ∴a n =3n -1.法二:由于a n +1=S n +1-S n ,a n +1=2S n +1, 所以S n +1-S n =2S n +1,S n +1=3S n +1, 所以S n +1+12=3⎝⎛⎭⎪⎫S n +12,所以数列⎩⎨⎧⎭⎬⎫S n +12为首项是S 1+12=32,公比为3的等比数列,故S n +12=32×3n -1=12×3n,即S n =12×3n -12.所以,当n ≥2时,a n =S n -S n -1=3n -1,由n =1时a 1=1也适合这个公式,知所求的数列{a n }的通项公式是a n =3n -1.答案:a n =3n -13.(2018·福州模拟)已知数列{a n }的前n 项和为S n ,且S n =2a n -1. (1)证明数列{a n }是等比数列;(2)设b n =(2n -1)a n ,求数列{b n }的前n 项和T n .解析:(1)证明:当n =1时,a 1=S 1=2a 1-1,所以a 1=1, 当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1), 所以a n =2a n -1,所以数列{a n }是以1为首项,2为公比的等比数列. (2)由(1)知,a n =2n -1, 所以b n =(2n -1)×2n -1,所以T n =1+3×2+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1①2T n =1×2+3×22+…+(2n -3)×2n -1+(2n -1)×2n②由①-②得-T n =1+2×(21+22+…+2n -1)-(2n -1)·2n=1+2×2-2n -1×21-2-(2n -1)×2n=(3-2n )×2n-3, 所以T n =(2n -3)×2n+3.由a n 与S n 关系求通项公式的注意事项(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1中需n ≥2. (2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合,则需统一“合写”.(3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.数列求和授课提示:对应学生用书第31页[悟通——方法结论] 常用求和方法(1)错位相减法:适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列.把S n =a 1+a 2+…+a n两边同乘以相应等比数列的公比q ,得到qS n =a 1q +a 2q +…+a n q ,两式错位相减即可求出S n .(2)裂项相消法:即将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法.裂项相消法适用于形如⎩⎨⎧⎭⎬⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列. (3)拆项分组法:把数列的每一项拆成两项(或多项),再重新组合成两个(或多个)简单的数列,最后分别求和.(2017·高考全国卷Ⅲ)(12分)设数列{a n }满足(1)求{a n }的通项公式;(2)求数列的前n 项和.[学审题][12n 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).(2分)两式相减得(2n -1)a n =2, 所以a n =22n -1(n ≥2).(4分)又由题设可得a 1=2,满足上式, 从而{a n }的通项公式为a n =22n -1.(6分) (2)记{a n2n +1}的前n 项和为S n . 由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1.(10分)则S n =11-13+13-15+…+12n -1-12n +1=2n 2n +1.(12分)1.分类讨论思想在数列求和中的应用(1)当数列通项中含有(-1)n时,在求和时要注意分n 为奇数与偶数处理. (2)对已知数列满足a n +2a n=q ,在求{a n }的前n 项和时分奇数项和偶数项分别求和.2.学科素养:通过数列求和着重考查学生逻辑推理与数学运算能力.[练通——即学即用]1.已知函数f (n )=⎩⎪⎨⎪⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( )A .0B .100C .-100D .10 200解析:由题意,a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,故选B.答案:B2.已知数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10等于( ) A .15 B .12 C .-12D .-15解析:∵a n =(-1)n(3n -2),∴a 1+a 2+…+a 10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.答案:A3.(2018·张掖诊断)已知数列{a n }的前n 项和为S n ,若a n =-3S n +4,b n =-log 2a n +1. (1)求数列{a n }和{b n }的通项公式;(2)令c n =b n 2n +1+1n (n +1),其中n ∈N *,若数列{c n }的前n 项和为T n ,求T n .解析:(1)由a 1=-3a 1+4,得a 1=1, 由a n =-3S n +4, 知a n +1=-3S n +1+4, 两式相减并化简得a n +1=14a n ,∴a n =⎝ ⎛⎭⎪⎫14n -1,b n =-log 2a n +1=-log 2⎝ ⎛⎭⎪⎫14n =2n .(2)由题意知,c n =n 2n +1n (n +1).令H n =12+222+323+…+n2n ,①则12H n =122+223+…+n -12n +n2n +1,② ①-②得,12H n =12+122+123+…+12n -n 2n +1=1-n +22n +1. ∴H n =2-n +22n.又M n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,∴T n =H n +M n =2-n +22n+nn +1.数列的综合应用授课提示:对应学生用书第32页[悟通——方法结论]数列中的综合问题,大多与函数、方程、不等式及解析几何交汇,考查利用函数与方程的思想及分类讨论思想解决数列中的问题,用不等式的方法研究数列的性质,数列与解析几何交汇,主要涉及点列问题.(1)(2018·德州模拟)已知点O 为坐标原点,点A n (n ,a n )(n ∈N *)为函数f (x )=1x +1的图象上的任意一点,向量i =(0,1),θn 是向量OA n →与i的夹角,则数列⎩⎨⎧⎭⎬⎫cos θn sin θn 的前2 015项的和为( ) A .2 B.2 0142 015 C.2 0152 016D .1解析:因为a n =1n +1,所以OA n →=(n ,1n +1),所以cos θn =OA n →·i |OA n →||i |=1n +1n 2+1(n +1)2,因为0≤θn ≤π,所以sin θn =1-cos 2θn =nn 2+1(n +1)2,所以cos θn sin θn =1n (n +1)=1n -1n +1,所以cos θ1sin θ1+cos θ2sin θ2+…+cos θ 2 015sin θ2 015=1-12+12-13+…+12 015-12 016=1-12 016=2 0152 016. 答案:C(2)(2018·日照模拟)已知数列{a n }的前n 项和S n 满足:2S n +a n =1. ①求数列{a n }的通项公式;②设b n =2a n +1(1+a n )(1+a n +1),数列{b n }的前n 项和为T n ,求证:T n <14.解析:①因为2S n +a n =1,所以2S n +1+a n +1=1, 两式相减可得2a n +1+a n +1-a n =0,即3a n +1=a n ,即a n +1a n =13, 又2S 1+a 1=1,所以a 1=13,所以数列{a n }是首项、公比均为13的等比数列.故a n =13·(13)n -1=(13)n ,数列{a n }的通项公式为a n =(13)n.②证明:因为b n =2a n +1(1+a n )(1+a n +1),所以b n =2·(13)n +1[1+(13)n ][1+(13)n +1]=23n +13n +13n ·3n +1+13n +1=2·3n(3n +1)·(3n +1+1)=13n +1-13n +1+1. 故T n =b 1+b 2+…+b n =(131+1-132+1)+(132+1-133+1)+…+(13n +1-13n +1+1)=14-13n +1+1<14.所以T n <14.数列与不等式的交汇多为不等式恒成立与证明,在求解时要注意等价转化即分离参数法与放缩法的技巧应用.[练通——即学即用]1.(2018·宝鸡摸底)正项等比数列{a n }中,a 2 017=a 2 016+2a 2 015,若a m a n =16a 21,则4m +1n的最小值等于( )A .1 B.32 C.53D.136解析:设等比数列{a n }的公比为q ,且q >0, ∵a 2 015q 2=a 2 015q +2a 2 015,∴q 2-q -2=0,∴q =2或q =-1(舍去), 又a 1q m -1·a 1qn -1=16a 21,∴2m +n -2=16,∴m +n -2=4,m +n =6,∴⎝ ⎛⎭⎪⎫4m +1n ·m +n 6=16⎝ ⎛⎭⎪⎫5+4n m +m n ≥16⎝ ⎛⎭⎪⎫5+24n m ·m n =32,当且仅当m =4,n =2时等号成立.故4m +1n 的最小值为32.答案:B2.(2018·烟台模拟)设函数f (x )=23+1x (x >0),数列{a n }满足a 1=1,a n =f (1a n -1),n ∈N *,且n ≥2.(1)求数列{a n }的通项公式; (2)对n ∈N *,设S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1,若S n ≥3t4n 恒成立,求实数t 的取值范围. 解析:(1)由a n =f (1a n -1)得,a n -a n -1=23,n ∈N *,n ≥2, 所以{a n }是首项为1,公差为23的等差数列.所以a n =1+23(n -1)=2n +13,n ∈N *.(2)因为a n =2n +13,所以a n +1=2n +33,所以1a n a n +1=9(2n +1)(2n +3)=92(12n +1-12n +3).则S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1=92(13-12n +3)=3n 2n +3. 故S n ≥3t 4n 恒成立等价于3n 2n +3≥3t 4n ,即t≤4n 22n +3恒成立.令g (x )=4x 22x +3(x >0),则g ′(x )=8x (x +3)(2x +3)2>0,所以g (x )=4x22x +3(x >0)为单调递增函数.所以当n =1时,4n 22n +3取得最小值,且(4n 22n +3)min =45.所以t≤45,即实数t 的取值范围是(-∞,45].授课提示:对应学生用书第131页一、选择题1.(2018·宜昌月考)已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 2 018OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 2 018等于( )A .1 007B .1 009C .2 016D .2 018解析:∵A ,B ,C 三点共线,∴a 1+a 2 018=1, ∴S 2 018=2 018(a 1+a 2 018)2=1 009.答案:B2.已知数列{a n }满足a 1=5,a n a n +1=2n,则a 7a 3=( ) A .2 B .4 C .5D.52解析:因为a n +1a n +2a n +3a n +4a n a n +1a n +2a n +3=a n +4a n =2n +1·2n +32n ·2n +2=22,所以令n =3,得a 7a 3=22=4,故选B.答案:B3.在数列{a n }中,a 1=1,a 2=2,a n +2-a n =1+(-1)n,那么S 100的值为( ) A .2 500 B .2 600 C .2 700D .2 800解析:当n 为奇数时,a n +2-a n =0⇒a n =1, 当n 为偶数时,a n +2-a n =2⇒a n =n ,故a n =⎩⎪⎨⎪⎧1,n 为奇数,n ,n 为偶数,于是S 100=50+(2+100)×502=2 600.答案:B4.(2018·海淀二模)在数列{a n }中,“a n =2a n -1,n =2,3,4,…”是“{a n }是公比为2的等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当a n =0时,也有a n =2a n -1,n =2,3,4,…,但{a n }不是等比数列,因此充分性不成立;当{a n }是公比为2的等比数列时,有a na n -1=2,n =2,3,4,…,即a n =2a n -1,n =2,3,4,…,所以必要性成立. 答案:B5.已知数列2 015,2 016,1,-2 015,-2 016,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 017项和S 2 017等于( )A .2 018B .2 015C .1D .0解析:由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1,故数列的前8项依次为2 015,2 016,1,-2 015,-2 016,-1,2 015,2 016.由此可知数列为周期数列,且周期为6,S 6=0.∵2 017=6×336+1,∴S 2 017=2 015.答案:B6.若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为( ) A .22 B .21 C .24D .23解析:因为3a n +1=3a n -2,所以a n +1-a n =-23,所以数列{a n }是首项为15,公差为-23的等差数列,所以a n =15-23·(n -1)=-23n +473,令a n =-23n +473>0,得n <23.5,所以使a k ·a k +1<0的k 值为23.答案:D7.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n (n 为正奇数),a n +1(n 为正偶数),则其前6项之和为( )A .16B .20C .33D .120解析:a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,所以前6项和S 6=1+2+3+6+7+14=33,故选C.答案:C8.已知等差数列{a n }的公差为d ,关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],则使数列{a n }的前n 项和S n最大的正整数n 的值是( )A .4B .5C .6D .7解析:∵关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],∴0,9是一元二次方程dx 2+2a 1x =0的两个实数根,且d <0,∴-2a 1d =9,a 1=-9d 2.∴a n =a 1+(n -1)d =(n -112)d ,可得a 5=-12d >0,a 6=12d <0.∴使数列{a n }的前n 项和S n 最大的正整数n 的值是5.答案:B9.(2018·湘中名校联考)若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n>0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033解析:因为a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,所以d <0,a 2 016>0,a 2 017<0,所以S 4 032=4 032(a 1+a 4 032)2=4 032(a 2 016+a 2 017)2>0,S 4 033= 4 033(a 1+a 4 033)2=4 033a 2 017<0,所以使前n 项和S n >0成立的最大正整数n 是4032.答案:C10.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2.若函数f (x )=sin 2x +2 cos 2x 2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .1解析:由已知得2a n +1=a n +a n +2, 即数列{a n }为等差数列. 又f (x )=sin 2x +1+cos x ,a 1+a 9=a 2+a 8=…=2a 5=π,故cos a 1+cos a 9=cos a 2+cos a 8=…=cos a 5=0, 又2a 1+2a 9=2a 2+2a 8=…=4a 5=2π,故sin 2a 1+sin 2a 9=sin 2a 2+sin 2a 8=…=sin 4a 5=0,故数列{y n }的前9项和为9. 答案:C11.已知数列{a n },“|a n +1|>a n ”是“数列{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:∵|a n +1|>a n ,∴⎩⎪⎨⎪⎧a n +1>0,a n +1>a n 或⎩⎪⎨⎪⎧a n +1≤0,-a n +1>a n .又∵数列{a n }为递增数列,∴a n +1>a n ,∴“|a n +1|>a n ”是“数列{a n }为递增数列”的既不充分也不必要条件. 答案:D12.已知数列{a n }是首项为a ,公差为1的等差数列,数列{b n }满足b n =1+a n a n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围是( )A .(-8,-7)B .[-8,-7)C .(-8,-7]D .[-8,-7]解析:因为{a n }是首项为a ,公差为1的等差数列,所以a n =n +a -1,因为b n =1+a n a n,又对任意的n ∈N *都有b n ≥b 8成立,所以1+1a n ≥1+1a 8,即1a n ≥1a 8对任意的n ∈N *恒成立,因为数列{a n }是公差为1的等差数列,所以{a n }是单调递增的数列,所以⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧8+a -1<0,9+a -1>0,解得-8<a <-7.答案:A 二、填空题13.(2018·沈阳模拟)在数列{a n }中,a 1=1,a 2=2,a n +1=3a n -2a n -1(n ≥2),则a n =________.解析:法一:因为a n +1=3a n -2a n -1(n ≥2),所以a n +1-a n a n -a n -1=2(n ≥2),所以a n +1-a n =(a 2-a 1)2n -1=2n -1(n ≥2),又a 2-a 1=1,所以a n -a n -1=2n -2,a n -1-a n -2=2n -3,…,a 2-a 1=1,累加,得a n =2n -1(n ∈N *).法二:因为a n +1=3a n -2a n -1(n ≥2),所以a n +1-2a n =a n -2a n -1,得a n +1-2a n =a n -2a n -1=a n -1-2a n -2=…=a 2-2a 1=0,即a n =2a n -1(n ≥2),所以数列{a n }是以1为首项,2为公比的等比数列,所以a n =2n -1(n ∈N *).答案:2n -1(n ∈N *)14.(2018·辽宁五校联考)设数列{a n }的前n 项和为S n ,若a 1=3且当n ≥2时,2a n =S n ·S n -1,则{a n }的通项公式a n =________.解析:当n ≥2时,由2a n =S n ·S n -1可得2(S n -S n -1)=S n ·S n -1,∴1S n -1-1S n =12,即1S n -1S n -1=-12,∴数列{1S n }是首项为13,公差为-12的等差数列,∴1S n =13+(-12)·(n -1)=5-3n 6,∴S n =65-3n .当n ≥2时,a n =12S n S n -1=12×65-3n ×65-3(n -1)=18(5-3n )(8-3n ),又a 1=3,∴a n =⎩⎪⎨⎪⎧3,n =1,18(5-3n )(8-3n ),n ≥2.答案:⎩⎪⎨⎪⎧3,n =118(5-3n )(8-3n ),n ≥215.(2018·广州调研)已知数列{a n }满足a 1=1,a n +1=a 2n +a n ,用[x ]表示不超过x 的最大整数,则⎣⎢⎡⎦⎥⎤1a 1+1+1a 2+1+…+1a 2 017+1=________.解析:因为a n +1=a 2n +a n , 所以1a n +1=1a n (a n +1)=1a n -1a n +1,即1a n +1=1a n -1a n +1, 于是1a 1+1+1a 2+1+…+1a 2 017+1=⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a 2 017-1a 2 018=1a 1-1a 2 018. 因为a 1=1,a 2=2>1,a 3=6>1,…, 可知1a 2 018∈(0,1),则1a 1-1a 2 018∈(0,1),所以⎣⎢⎡⎦⎥⎤1a 1-1a 2 018=0.答案:016.已知数列{a n }满足a 1=-40,且na n +1-(n +1)a n =2n 2+2n ,则a n 取最小值时n 的值为________. 解析:由na n +1-(n +1)a n =2n 2+2n =2n (n +1), 两边同时除以n (n +1),得a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为-40、公差为2的等差数列,所以a n n=-40+(n -1)×2=2n -42, 所以a n =2n 2-42n ,对于二次函数f (x )=2x 2-42x ,在x =-b 2a =--424=10.5时,f (x )取得最小值,因为n 取正整数,且10和11到10.5的距离相等, 所以n 取10或11时,a n 取得最小值. 答案:10或11 三、解答题17.(2018·枣庄模拟)已知方程a n x 2-a n +1x +1=0(a n >0)有两个根αn 、βn ,a 1=1,且满足(1-1αn )(1-1βn)=1-2n,其中n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =log 2(a n +1),c n =a n b n ,求数列{c n }的前n 项和T n .解析:(1)由已知可得,⎩⎪⎨⎪⎧αn+βn =a n +1a nαnβn =1a n,又(1-1αn )(1-1βn )=1-2n ,∴1-αn +βn αn βn +1αn βn=1-2n, 整理得,a n +1-a n =2n,其中n ∈N *.∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+1=1-2n1-2=2n-1.(2)由(1)知,b n =log 2(2n-1+1)=n , ∴c n =n (2n -1)=n ·2n-n .∴T n =c 1+c 2+…+c n =1×2+2×22+3×23+…+n ×2n-(1+2+…+n ), 设P n =1×2+2×22+3×23+…+n ×2n,① 则2P n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1,②①-②得-P n =2+22+23+…+2n -n ×2n +1=2(1-2n)1-2-n ×2n +1=(1-n )×2n +1-2,∴P n =(n -1)×2n +1+2.又Q n =1+2+…+n =n (n +1)2,∴T n =P n -Q n =(n -1)×2n +1+2-n (n +1)2.18.(2018·九江一中模拟)设等差数列{a n }的前n 项和为S n ,a 22-3a 7=2,且1a 2,S 2-3,S 3成等比数列,n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =4(n +1)a 2n a 2n +2,数列{b n }的前n 项和为T n ,若对于任意的n ∈N *,都有64T n <|3λ-1|成立,求实数λ的取值范围.解析:(1)设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 22-3a 7=2(S 2-3)2=1a 2·S 3得⎩⎪⎨⎪⎧(a 1+21d )-3(a 1+6d )=2(2a 1+d -3)·(a 1+d )=3a 1+3d ,即⎩⎪⎨⎪⎧-2a 1+3d =2(a 1+d )(2a 1+d -6)=0,解得⎩⎪⎨⎪⎧a 1=2d =2或⎩⎪⎨⎪⎧a 1=-25d =25.当a 1=-25,d =25时,S 2-3=-175没有意义, ∴a 1=2,d =2,此时a n =2+2(n -1)=2n . (2)b n =4(n +1)a 2n a 2n +2=n +14(n +2)2n 2=116[1n 2-1(n +2)2].T n =b 1+b 2+b 3+…+b n =116(112-132)+116(122-142)+116(132-152)+…+ 116[1(n -1)2-1(n +1)2]+116[1n 2-1(n +2)2] =116[1+14-1(n +1)2-1(n +2)2] =564-116[1(n +1)2+1(n +2)2], ∴64T n =5-4[1(n +1)2+1(n +2)2]<5,为满足题意,只需|3λ-1|≥5,∴λ≥2或λ≤-43.19.(2018·临汾中学模拟)已知数列{a n }的前n 项和为S n ,且S n =12(a 2n +a n ),a n >0.(1)求数列{a n }的通项公式;(2)若b n =a n2n -1,数列{b n }的前n 项和为T n ,则是否存在正整数m ,使得m ≤T n <m +3对任意的正整数n 恒成立?若存在,求出m 的值;若不存在,请说明理由.解析:(1)S n =12(a 2n +a n ),即a 2n +a n -2S n =0,①当n ≥2时, S n -1=12(a 2n -1+a n -1),即a 2n -1+a n -1-2S n -1=0,②①-②得(a n -a n -1)(a n +a n -1)+a n -a n -1-2a n =0, (a n +a n -1)(a n -a n -1-1)=0, ∵a n >0, ∴a n -a n -1=1,当n =1时,a 21+a 1-2a 1=0,∵a n >0, ∴a 1=1,∴a n =1+(n -1)=n . (2)由(1)知b n =n2n -1,所以T n =1×(12)0+2×(12)1+…+n (12)n -1,③12T n =1×(12)1+2×(12)2+…+n (12)n,④ ③-④得12T n =1+12+…+(12)n -1-n (12)n =2[1-(12)n ]-n (12)n,故T n =4[1-(12)n ]-2n (12)n =4-4×(12)n -2n (12)n =4-(2n +4)(12)n.易知T n <4,∵T n +1-T n =4-(2n +6)(12)n +1-4+(2n +4) ·(12)n =(n +1)(12)n>0,∴T n ≥T 1=1,故存在正整数m =1满足题意.。

2019年高考数学数列复习指导(最适用、最全面)

2019年高考数学数列复习指导(最适用、最全面)

2019年高考数学数列复习指导第一节数列的概念与简单表示法教材细梳理1.数列的有关概念概念含义数列按照一定顺序排列的一列数数列的项数列中的每一个数数列的通项数列{a n}的第n项a n通项公式数列{a n}的第n项a n与n之间的关系能用公式a n=f(n)表示,这个公式叫做数列的通项公式前n项和数列{a n}中,S n=a1+a2+…+a n叫做数列的前n项和n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.4.数列的分类[1.数列的通项公式不一定唯一.2.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.知识微思考1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)所有数列的第n 项都能使用公式表达.( )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( ) (3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) (5)在数列{a n }中,对于任意正整数m ,n ,a m +n =a mn +1,若a 1=1,则a 2=2.( ) 答案:(1)× (2)√ (3)× (4)√ (5)√2.数列的通项a n =2n 与函数f (x )=2x 有何区别与联系?提示:数列a n =2n 是特殊函数,其定义域为N *,而函数f (x )=2x 的定义域为R ,a n =2n 的图象是离散点且在f (x )=2x 的图象上.3.数列{a n }中,由a n +1=n +1能得到{a n }的通项a n =n 吗? 提示:不能.由a n +1=n +1得到a n =n ,这里n ≥2.若a 1=1时,数列的通项a n =n ;若a 1=2时,则通项a n =⎩⎨⎧2 (n =1),n (n ≥2).四基精演练1.(必修5·2.1例3改编)在数列{a n }中,a 1=1,a n =1+1a n -1(n ≥2),则a 4=( )A.32 B.53 C.74D.85解析:选B.由题意知,a 1=1,a 2=1+1a 1=2,a 3=1+1a 2=32,a 4=1+1a 3=53.2.(实践题)(必修5·2.1教材引例改编)把1,3,6,10,15,21,…这些数叫作三角形数,这是因为以这些数目的点可以排成一个正三角形(如图).则第7个三角形数是( ) A .27 B .28 C .29D .30解析:选B.观察规律可知三角形数为1,3,6,10,15,21,28,36,….3.(必修5·2.1练习改编)数列1,23,35,47,59,…的一个通项公式a n 是 .解析:由已知得,数列可写成11,23,35,…,故通项公式可以为n2n -1.答案:a n =n2n -14.(2018·山东日照期末)在数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是 .解析:根据题意并结合二次函数的性质可得a n =-2n 2+29n +3=-2⎝⎛⎭⎫n 2-292n +3=-2⎝⎛⎭⎫n -2942+3+8418, ∴n =7时,a n 取得最大值,最大项a 7的值为108. 答案:1085.(2016·高考浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= .解析:法一:∵a n +1=2S n +1,∴a 2=2S 1+1,即S 2-a 1=2a 1+1,又∵S 2=4,∴4-a 1=2a 1+1,解得a 1=1.又a n +1=S n +1-S n ,∴S n +1-S n =2S n +1,即S n +1=3S n +1,由S 2=4,可求出S 3=13,S 4=40,S 5=121. 法二:由a n +1=2S n +1,得a 2=2S 1+1,即S 2-a 1=2a 1+1,又S 2=4,∴4-a 1=2a 1+1,解得a 1=1.又a n +1=S n +1-S n ,∴S n +1-S n =2S n +1,即S n +1=3S n +1,则S n +1+12=3⎝⎛⎭⎫S n +12,又S 1+12=32,∴⎩⎨⎧⎭⎬⎫S n +12是首项为32,公比为3的等比数列,∴S n +12=32×3n -1,即S n =3n -12,∴S 5=35-12=121.答案:1;121考点一已知数列的前几项求通项[简单型]——发展数学抽象由数列的前几项求数列通项公式的策略1.对数列的前几项进行归纳、联想,具体如下:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项符号特征等.2.根据数列的前几项写出数列的一个通项公式是利用不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n或(-1)n+1来调整.写出下列数列的一个通项公式: (1)1,3,5,7,…; (2)-11×2,12×3,-13×4,14×5,…; (3)1,5,1,5,1,5,…; (4)9,99,999,9 999,….解:(1)数列的前4项都是序号的2倍减去1,所以它的一个通项公式为a n =2n -1.事实上,该数列是由连续的正奇数组成的.(2)此数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n =(-1)n 1n (n +1).(3)已知数列可以变换为3-2,3+2,3-2,3+2,…,所以已知数列的一个通项公式为a n=3+(-1)n ·2.(4)数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式为a n =10n -1.考点二 已知递推关系求通项[探究型]——发展数学运算[例1] (1)(2018·湖南四校联考)在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n解析:由已知,a n +1-a n =ln n +1n ,a 1=2,所以a n -a n -1=ln nn -1(n ≥2),a n -1-a n -2=ln n -1n -2, …a 2-a 1=ln 21,将以上n -1个式子叠加,得 a n -a 1=ln n n -1+ln n -1n -2+…+ln 21=ln ⎝⎛⎭⎪⎫n n -1·n -1n -2 (21)=ln n .所以a n =2+ln n (n ≥2), 经检验n =1时也适合.故选A. 答案:A(2)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n = .解析:因为(n +1)a 2n +1+a n +1·a n -na 2n =0, 所以(a n +1+a n )[(n +1)a n +1-na n ]=0, 又a n +1+a n >0,所以(n +1)a n +1-na n =0, 即a n +1a n =n n +1, 所以a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12×23×34×45×…×n -1n ,所以a n =1n .答案:1n[母题变式]1.若把本例(1)中条件“a n +1=a n +ln ⎝⎛⎭⎫1+1n ”改为“a n +1=2a n +1”,则a n = . 解析:由题意知a n +1+1=2(a n +1),所以数列{a n +1}是以3为首项,2为公比的等比数列,所以a n +1=3×2n -1,所以a n =3× 2n -1-1.答案:3×2n -1-1(n ∈N *)2.若把本例(1)中条件“a n +1=a n +ln ⎝⎛⎭⎫1+1n ”改为a n +1=2a n 2+a n ,则a n = . 解析:∵a n +1=2a na n +2,a 1=2,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12, 又a 1=2,则1a 1=12,∴⎩⎨⎧⎭⎬⎫1a n 是以12为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2,∴a n =2n . 答案:2n3.若把本例(2)中条件改为“a 1=1,a n +1+a n =2n ”,则a n = . 解析:∵a n +1+a n =2n ,∴a n +2+a n +1=2n +2, 故a n +2-a n =2,即数列{a n }是奇数项与偶数项都是公差为2的等差数列. 当n 为偶数时,a 2=1,故a n =a 2+2⎝⎛⎭⎫n 2-1=n -1.当n 为奇数时,∵a n +1+a n =2n ,a n +1=a 1+2×n -12=1+n -1=n (n +1为偶数),故a n=n .综上所述,a n =⎩⎪⎨⎪⎧n ,n 为奇数,n -1,n 为偶数.答案:a n =⎩⎪⎨⎪⎧n ,n 为奇数n -1,n 为偶数已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解.当出现a n =a n -1+m 时,构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+f (n )时,用累加法求解;当出现a na n -1=f (n )时,用累乘法求解.[提醒] 在求出通项公式后,一定要验证是否满足公式.考点三 a n 与S n 的关系应用[高频型]——发展数学运算[例n n 为 .解析:当n =1时,a 1=S 1=2, 当n ≥2时 ,a n =S n -S n -1=6n -5,故a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.答案:a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2(2)已知数列{a n }的前n 项和S n =5-4×2-n ,则其通项公式为 .解析:a 1=S 1=5-4×2-1=3,a n =S n -S n -1=(5-4×2-n )-(5-4×2-n +1)=42n (n ≥2).当n =1时,42n =2≠a 1,∴a n =⎩⎪⎨⎪⎧3,n =1,42n ,n ≥2答案:a n =⎩⎪⎨⎪⎧3,n =1,42n,n ≥2[例n n 1n +1S n S n +1,则S n = .解析:由已知得a n +1=S n +1-S n =S n +1S n ,两边同时除以S n +1S n ,得1S n +1-1S n =-1,故数列{1S n }是以-1为首项,-1为公差的等差数列,则1S n =-1-(n -1)=-n ,所以S n =-1n.答案:-1n(2)(2018·南昌模拟)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则S n 等于 .解析:由a n +1=3S n 得S n +1-S n =3S n , ∴S n +1=4S n ,又S 1=a 1=1≠0,∴{S n }是首项为1,公比为4的等比数列,∴S n =4n -1. 答案:4n -1数列的通项a n 与前n 项和S n 的关系是a n =当n=1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.1.(2018·陕西四校联考)已知数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则数列{a n }的通项公式为( )A .a n =2n +1B .a n =⎩⎪⎨⎪⎧14(n =1)2n +1(n ≥2)C .a n =2nD .a n =2n +2解析:选B.由题意可知,数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则12a 1+122a 2+123a 3+…+12n -1a n -1 =2(n -1)+5,n >1,两式相减可得:a n2n =2n +5-2(n -1)-5=2,∴a n =2n +1,n >1,n ∈N *. 当n =1时,a 12=7,∴a 1=14,综上可知,数列{a n }的通项公式为:a n =⎩⎪⎨⎪⎧14 (n =1),2n +1 (n ≥2).故选B.2.数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1,n ∈N ),则数列{a n }的前n 项和S n = .解析:由a n +1=2S n +1,可得a n =2S n -1+1(n ≥2),两式相减,得a n +1-a n =2a n ,a n +1=3a n (n ≥2).∵a 2=2S 1+1=3,∴a 2=3a 1,故数列{a n }是首项为1,公比为3的等比数列. ∴a n =3n -1,由a n +1=2S n +1,得S n =a n +1-12=3n -12.答案:3n -12发展数学建模、数学运算(创新型)模型 数列的单调性与函数不等式、导数的交汇创新数列是特殊函数,所以可用函数的观点和方法研究数列的性质、单调性,最大(小)项.数列与函数、不等式、导数等交汇命题是高考的热点,解决这类问题的策略是:1.用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列或是常数列.2.用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.3.结合相应函数的图象直观判断.[例4] (1)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为 .解析:设等差数列{a n }的首项为a 1,公差为d ,由等差数列前n 项和公式可得⎩⎨⎧10a 1+10×92d =0,15a 1+15×142d =25,解得⎩⎪⎨⎪⎧a 1=-3,d =23.∴nS n =n 2a 1+n 2(n -1)2d =-3n 2+13(n 3-n 2)=13n 3-10n 23. 构造函数f (x )=13x 3-103x 2(x >0).令f ′(x )=0,解得x =0(舍去)或x =203.当x >203时,f (x )单调递增;当0<x <203时,f (x )单调递减.∵n ∈N *,∴当n =7时,nS n 取最小值, ∴(nS n )min =13×73-10×723=-49.答案:-49(2)(2018·烟台质检)已知数列{a n }的通项为a n =2n -1,又数列{b n }满足b n =2log 2a n +1,记S n =b 1+b 2+…+b n ,若∀n ∈N *都有S n a n ≤S ka k成立,则正整数k 的值为 .解析:∵a n =2n -1,∴b n =2log 2a n +1=2n . 所以S n =b 1+b 2+…+b n =n (2+2n )2=n 2+n ,令c n =S n a n =n 2+n2n -1.则c n +1-c n =S n +1a n +1-S n a n =(n +1)(n +2)2n -n (n +1)2n -1=(n +1)(2-n )2n .所以当n =1时,c 1<c 2; 当n =2时,c 3=c 2;当n ≥3时,c n +1-c n <0,即c 3>c 4>c 5>…,所以数列{c n }中最大项为c 2和c 3.所以存在k =2或3,使得任意的正整数n ,都有S k a k ≥S na n .答案:2或3课时规范训练(限时练·夯基练·提能练)A 级 基础夯实练(30分钟,55分)1.(2018·合肥模拟)数列{a n }的前n 项和为S n ,若S n -S n -1=2n -1(n ≥2),且S 2=3,则a 1+a 3的值为( )A .1B .3C .5D .6解析:选C.依题意,S 2-S 1=3, 所以a 1=S 1=S 2-3=3-3=0,又因为a 3=S 3-S 2=5,所以a 1+a 3=0+5=5.2.(2018·株洲模拟)数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),若p -q =5,则a p -a q =( )A .10B .15C .-5D .20 解析:选D.当n ≥2时,a n =S n -S n -1=2n 2-3n -[2(n -1)2-3(n -1)]=4n -5,当n =1时,a 1=S 1=-1,符合上式,所以a n =4n -5,所以a p -a q =4(p -q )=20.3.(2018·西安模拟)在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n . ∴a 6=a 3·a 3=64,a 3=8. ∴a 9=a 6·a 3=64×8=512.4.数列{a n }满足a n +1=⎩⎨⎧2a n,0≤a n<12,2a n-1,12≤a n<1.若a 1=35,则a 2 019=( )A.15B.25C.35D.45解析:选B.由递推关系得,a 1=35,a 2=2a 1-1=2×35-1=15,a 3=2a 2=2×15=25,a 4=2a 3=2×25=45,a 5=2a 4-1=2×45-1=35,…,所以a 5=a 1,即a n +4=a n .所以数列{a n }是周期为4的周期数列,a 2 019=a 504×4+3=a 3=25,故选B.5.(2018·洛阳模拟)设数列{a n }满足a 1+2a 2+22a 3+…+2n -1a n =n 2(n ∈N *),则通项公式是( )A .a n =12nB .a n =12n -1C .a n =12nD .a n =12n +1解析:选C.设{2n -1·a n }的前n 项和为T n ,∵数列{a n }满足a 1+2a 2+22a 3+…+2n -1a n =n 2(n ∈N *),∴T n =n 2,∴2n -1an =T n -T n -1=n 2-n -12=12, ∴a n =122n -1=12n ,经验证,n =1时也成立,故a n =12n .故选C.6.(2018·济南模拟)设曲线f (x )=x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·x 3·x 4·…·x 2 018=( )A.2 0172 018 B.12 018 C.2 0182 019D.12 019解析:选D.由f (x )=x n +1得f ′(x )=(n +1)x n ,切线方程为y -1=(n +1)(x -1),令y =0得x n =n n +1,故x 1·x 2·x 3·x 4·…·x 2 018=12×23×…×2 0182 019=12 019.7.(2018·长春模拟)设数列{a n }的前n 项和为S n ,且a 1=1,数列{S n +na n }为常数列,则a n =( )A.13n -1 B.2n (n +1)C.6(n +1)(n +2) D.5-2n 3解析:选B.由题意知当n =1时,S n +na n =2,当n ≥2时, S n -1+(n -1)a n -1=2,所以(n +1)a n =(n -1)a n -1,即a n a n -1=n -1n +1,从而a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=13·24·…·n -1n +1,则a n =2n (n +1),当n =1时上式成立,所以a n =2n (n +1). 8.(2018·广州二模)设数列{a n }的各项都是正数,且对任意n ∈N *,都有4S n =a 2n +2a n ,其中S n 为数列{a n }的前n 项和,则数列{a n }的通项公式为a n = .解析:当n =1时,由4S 1=a 21+2a 1,a 1>0,得a 1=2;当n ≥2时,由4a n =4S n -4S n -1=(a 2n +2a n )-(a 2n -1+2a n -1),得(a n +a n -1)(a n -a n -1-2)=0. 因为a n +a n -1>0,所以a n -a n -1=2, 则数列{a n }是首项为2,公差为2的等差数列, 故a n =2+(n -1)×2=2n . 答案:2n9.(2018·厦门调研)若数列{a n }满足a 1·a 2·a 3·…·a n =n 2+3n +2,则数列{a n }的通项公式为 .解析:a 1·a 2·a 3·…·a n =(n +1)(n +2), 当n =1时,a 1=6;当n ≥2时,⎩⎪⎨⎪⎧a 1·a 2·a 3·…·a n -1·a n =(n +1)(n +2),a 1·a 2·a 3·…·a n -1=n (n +1),故当n ≥2时,a n =n +2n,所以a n=⎩⎨⎧6,n =1,n +2n ,n ≥2,n ∈N *.答案:a n =⎩⎪⎨⎪⎧6,n =1,n +2n,n ≥2,n ∈N *.10.(10分)已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解:(1)a 1=2,a n =S n -S n -1=2n -1(n ≥2).∴b n=⎩⎨⎧23 (n =1),1n(n ≥2).(2)∵c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴{c n }是递减数列.B 级 能力升级练(25分钟,40分)1.对于数列{a n },“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件解析:选B.当a n +1>|a n |(n =1,2,…)时, ∵|a n |≥a n ,∴a n +1>a n , ∴{a n }为递增数列.当{a n }为递增数列时,若该数列为-2,0,1,则a 2>|a 1|不成立,即a n +1>|a n |(n =1,2,…)不一定成立.综上知,“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的充分不必要条件. 2.(2018·潍坊模拟)定义:称nP 1+P 2+…+P n为n 个正数P 1,P 2,…,P n 的“均倒数”.若数列{a n }的前n 项的“均倒数”为12n -1,则数列{a n }的通项公式为( )A .a n =2n -1B .a n =4n -1C .a n =4n -3D .a n =4n -5解析:选C.∵n a 1+a 2+…+a n =12n -1,∴a 1+a 2+…+a n n =2n -1,∴a 1+a 2+…+a n =(2n -1)n ,a 1+a 2+…+a n -1=(2n -3)(n -1)(n ≥2),当n ≥2时,a n =(2n -1)n -(2n -3)(n -1)=4n -3; a 1=1也适合此等式,∴a n =4n -3.3.(2018·苏州调研)已知数列{a n }满足a 1=1,a n +1=a n +n +1,则8+a nn的最小值为 .解析:由a 1=1,a n +1=a n +n +1得 a 2-a 1=2,a 3-a 2=3,…… a n -a n -1=n .以上等式相加得a n =a 1+2+3+…+n =n (n +1)2,∴8+a n n =n 2+8n +12≥24+12=412,当且仅当n =4时上式取到等号. 答案:4124.(12分)已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞).5.(13分)(2018·沈阳期末)已知{a n }是公差为d 的等差数列,它的前n 项和为S n ,S 4=2S 2+4,数列{b n }中,b n =1+a na n.(1)求公差d 的值;(2)若a 1=-52,求数列{b n }中的最大项和最小项的值;(3)若对任意的n ∈N *,都有b n ≤b 8成立,求a 1的取值范围. 解:(1)∵S 4=2S 2+4,∴4a 1+3×42d =2(2a 1+d )+4,解得d =1. (2)∵a 1=-52,∴数列{a n }的通项公式为a n =-52+(n -1)=n -72,∴b n =1+1a n =1+1n -72.∵函数f (x )=1+1x -72在⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞上分别是单调减函数, ∴b 3<b 2<b 1<1,当n ≥4时,1<b n ≤b 4, ∴数列{b n }中的最大项是b 4=3,最小项是b 3=-1. (3)由b n =1+1a n ,得b n =1+1n +a 1-1.又函数f (x )=1+1x +a 1-1在(-∞,1-a 1)和(1-a 1,+∞)上分别是单调减函数,且x <1-a 1时,y <1;当x >1-a 1时,y >1.∵对任意的n ∈N *,都有b n ≤b 8, ∴7<1-a 1<8,∴-7<a 1<-6, ∴a 1的取值范围是(-7,-6).第二节 等差数列及其前n 项和教材细梳理1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }是等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }(p ,q ∈N *)也是等差数列.(5)若{a n }是等差数列,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)组成公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(7)S 2n -1=(2n -1)a n .(8)若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项). [易错易混]1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.知识微思考1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有 2a n +1=a n +a n +2.( )(3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( )(6)设S n 是{a n }的前n 项和,那么{a n }是等差数列的充要条件是S n =An 2+Bn (A ,B 为常数).( )答案:(1)× (2)√ (3)√ (4)× (5)× (6)√2.设S n 是{a n }的前n 项和,若S n =n 2+1,则{a n }是等差数列,对吗?提示:不对,由S n =n 2得当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,又a 1=2,所以数列{a n }去掉首项后,才是等差数列.四基精演练1.(必修5·2.1例1改编)已知等差数列-5,-2,1,…,则该数列的第20项为 . 解析:依题意得,该等差数列的首项为-5,公差为3,所以a 20=-5+19×3=52,故第20项为52.答案:522.(必修5·习题2.3T 5改编)在100以内的正整数中有 个能被6整除的数. 解析:由题意知,能被6整除的数构成一个等差数列{a n }, 则a 1=6,d =6,得a n =6+(n -1)6=6n .由a n =6n ≤100,即n ≤1646=1623,所以在100以内有16个能被6整除的数. 答案:163.(实践题)(必修5·2.2练习T 2改编)某剧场有20排座位,后一排比前一排多2个座位,最后一排有60个座位,则剧场总共的座位数为 .解析:设第n 排的座位数为a n (n ∈N *),数列{a n }为等差数列,其公差d =2,则a n =a 1+(n -1)d =a 1+2(n -1).由已知a 20=60,得60=a 1+2×(20-1),解得a 1=22,则剧场总共的座位数为20(a 1+a 20)2=20×(22+60)2=820.答案:8204.(2017·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C.等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8, 得d =4,故选C.5.(2017·高考浙江卷)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.∵S 4+S 6>2S 5⇔S 4+S 4+a 5+a 6>2(S 4+a 5)⇔a 6>a 5⇔a 5+d >a 5⇔d >0,∴“d >0”是“S 4+S 6>2S 5”的充分必要条件.故选C.考点一等差数列的性质及基本量运算[简单型]——发展数学运算等差数列运算的思想方法1.方程思想:设出首项a1和公差d,然后将通项公式或前n项和公式转化为方程(组)求解.2.整体思想:当所给条件只有一个时,可将已知和所求结果都用a1,d表示,寻求两者的联系,整体代换即可求解.3.利用性质:运用等差数列性质,可以化繁为简、优化解题过程.1.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ) A .3 B .4 C .5D .6解析:选C.由已知得,a m =S m -S m -1=2,a m +1=S m +1-S m =3,因为数列{a n }为等差数列,所以d =a m +1-a m =1,又因为S m =m (a 1+a m )2=0,所以m (a 1+2)=0,因为m ≠0,所以a 1=-2,又a m =-2+(m -1)1=2,解得m =5.2.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8= .解析:根据等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=25,解得a 5=5.又a 2+a 8=2a 5,所以a 2+a 8=10.答案:103.(2016·高考江苏卷)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 .解析:因为S 5=5a 3=10,所以a 3=2.又a 1+a 22=-3,所以2-2d +(2-d )2=-3,所以d =3,所以a 9=a 3+6d =2+6×3=20.答案:20考点二 等差数列的判定与证明[探究型]——发展逻辑推理[例1] (2018·南昌一模)已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n+n -4(n ∈N *).(1)求证:数列{a n }为等差数列; (2)求数列{a n }的通项公式.解:(1)证明:当n=1时,有2a1=a21+1-4,即a21-2a1-3=0,解得a1=3(a1=-1舍去).当n≥2时,有2S n-1=a2n-1+n-5,又2S n=a2n+n-4,两式相减得2a n=a2n-a2n-1+1,即a2n-2a n+1=a2n-1,也即(a n-1)2=a2n-1,因此a n-1=a n-1或a n-1=-a n-1.若a n-1=-a n-1,则a n+a n-1=1.而a1=3,所以a2=-2,这与数列{a n}的各项均为正数相矛盾,所以a n-1=a n-1,即a n-a n-1=1,因此数列{a n}为首项为3,公差为1的等差数列.(2)由(1)知a1=3,d=1,所以数列{a n}的通项公式为a n=3+(n-1)×1=n+2,即a n=n+2.[母题变式]1.若本例条件变为“数列{a n}的前n项和为S n,且满足2S n-na n=n”,判断{a n}是不是等差数列.证明:因为2S n-na n=n,①所以当n≥2时,2S n-1-(n-1)a n-1=n-1,②所以①-②得:(2-n)a n+(n-1)a n-1=1,(1-n)a n+1+na n=1,∴(2-n)a n+(n-1)a n-1=(1-n)a n+1+na n,所以2a n=a n-1+a n+1(n≥2),所以数列{a n}为等差数列.2.本例的条件不变,若数列⎩⎨⎧⎭⎬⎫S n n -λ为等差数列,则非零常数λ的值为 .解析:由例1解答知a n =n +2, ∴S n =n 22+52n ,设b n =S nn -λ=n (n +5)2(n -λ).由{b n }为等差数列,∴2b 2=b 1+b 3,解得λ=-5或λ=0(舍去),经检验符合题意. 答案:-5判定数列{a n }是等差数列的常用方法1.定义法:对任意n ∈N *,a n +1-a n 是同一个常数. 2.等差中项法:对任意n ≥2,n ∈N *,满足2a n =a n +1+a n -1. 3.通项公式法:数列的通项公式a n 是n 的一次函数.4.前n 项和公式法:数列的前n 项和公式S n 是n 的二次函数,且常数项为0.考点三 等差数列前n 项和及性质的应用[高频型]——发展数学运算[例n 1357910等于( )A .45B .60C .75D .90解析:由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45.答案:A(2)(2018·山师附中月考)在等差数列{a n }中,S 10=100,S 100=10,则S 110= . 解析:法一:设数列{a n }的公差为d ,首项为a 1, 则⎩⎨⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.法二:因为S 100-S 10=(a 11+a 100)×902=-90,所以a 11+a 100=-2, 所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110.答案:-110[例n 1n 717n 的值为 .解析:法一:由S 7=S 17得2a 1+23d =0, 即(a 1+11d )+(a 1+12d )=0, 故a 12+a 13=0.又由a 1<0,S 7=S 17,可知d >0,所以a 12<0,a 13>0,所以n =12时,S n 最小. 法二:由S 7=S 17得d =-223a 1,从而S n =d2n 2+⎝⎛⎭⎫a 1-d 2n =-a 123(n -12)2+14423a 1.因为a 1<0,所以-a 123>0,所以n =12时,S n 最小.答案:121.求等差数列前n 项和S n 最值的两种方法(1)利用S n =an 2+bn 转化为二次函数求最值时要注意n 的取值. (2)若{a n }是等差数列,求其前n 项和的最值时,①若a 1>0,d <0,且满足⎩⎪⎨⎪⎧a n ≥0,a n +1<0,前n 项和S n 最大.②若a 1<0,d >0,且满足⎩⎨⎧a n ≤0a n +1>0,前n 项和S n 最小.2.运用等差数列的性质,可以化繁为简、优化解题过程,但要注意性质运用的条件,灵活应用.1.(2018·沈阳一模)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .27解析:选B.由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列. 即2(S 6-S 3)=S 3+(S 9-S 6),得到a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=45.2.(2018·桂林一模)在等差数列{a n }中,其前n 项和是S n ,若S 15>0,S 16<0,则在S 1a 1,S 2a 2,…,S 15a 15中最大的项是( ) A.S 1a 1 B.S 8a 8 C.S 9a 9D.S 15a 15解析:选B.由于S 15=15(a 1+a 15)2=15a 8>0,S 16=16(a 1+a 16)2=8(a 8+a 9)<0,所以可得a 8>0,a 9<0.这样S 1a 1>0,S 2a 2>0,…,S 8a 8>0,S 9a 9<0,S 10a 10<0,…,S 15a 15<0,而S 1<S 2<…<S 8,a 1>a 2>…>a 8,所以在S 1a 1,S 2a 2,…,S 15a 15中最大的是S 8a 8.发展数学建模、数学运算(应用型)模型 巧用三点共线解等差数列问题用函数观点深入研究通项公式和前n 项和公式,得到一些重要结论,将大大提高解题速度.1.由等差数列与一次函数的关系可知:对于公差为d (d ≠0)的等差数列{a n },其通项公式为a n =dn +(a 1-d ),则点(n ,a n )(n ∈N *)共线,又d =a n -a mn -m (n ≠m ),所以d 为过(m ,a m ),(n ,a n )两点的直线的斜率.由此可用三点共线解决等差数列问题.2.在等差数列前n 项和公式的变形S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n 中,两边同除以n 得S n n =d 2n +⎝⎛⎭⎫a 1-d 2.该式说明对任意n ∈N *,所有的点⎝⎛⎭⎫n ,S n n 都在同一条直线上,从而对m ,n ∈N *(m ≠n )有S n n -S mm n -m =d 2(常数),即数列{S n n }是一个等差数列.[例4] (1)(2017·石家庄三模)已知{a n }为等差数列,且a 100=304,a 300=904,则a 1 000= .解析:因为{a n }为等差数列,则(100,304),(300,904),(1 000,a 1 000)三点共线. 所以904-304300-100=a 1 000-9041 000-300,解得a 1 000=3 004.答案:3 004(2)设S n 是等差数列{a n }的前n 项和,若S n =33,S 2n =44,则S 6n 的值为 . 解析:由题意知,⎝⎛⎭⎫n ,33n ,⎝⎛⎭⎫2n ,442n ,⎝⎛⎭⎫6n ,S 6n6n 三点共线,从而有442n -33n 2n -n =S 6n 6n -442n 6n -2n ,解得S 6n =-132.答案:-132课时规范训练(限时练·夯基练·提能练)A 级 基础夯实练(30分钟,55分)1.(2018·广东六校联考)已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64解析:选A.因为a 7+a 9=2a 8=16,所以a 8=8.因为S 11=11(a 1+a 11)2=11×2a 62=11a 6=992,所以a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A.2.(2018·山东威海质检)设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S 9=( )A .1B .-1C .2D.12解析:选A.S 11S 9=11(a 1+a 11)29(a 1+a 9)2=11a 69a 5=119×911=1.3.若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为( ) A .22 B .21 C .24D .23解析:选D.因为3a n +1=3a n -2,所以a n +1-a n =-23,所以数列{a n }是首项为15,公差为-23的等差数列,所以a n =15-23·(n -1)=-23n +473,令a n =-23n +473>0,得n <23.5,所以使a k ·a k +1<0的k 值为23.4.(2018·广州模拟)等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,若a n b n =2n 3n +1,则S 21T 21的值为( )A.1315 B.2335 C.1117D.49解析:选C.由a n b n =2a n 2b n =a 1+a 2n -1b 1+b 2n -1=(2n -1)(a 1+a 2n -1)2(2n -1)(b 1+b 2n -1)2=S 2n -1T 2n -1=2n 3n +1,显然S 21T 21=S 2×11-1T 2×11-1=a 11b 11=2×113×11+1=1117,选C.5.(2018·浙江名校联考)已知每项均大于零的数列{a n }中,首项a 1=1且前n 项和S n 满足S n S n -1-S n -1S n =2S n S n -1(n ∈N *,且n ≥2),则a 81=( )A .641B .640C .639D .638解析:选B.由已知S nS n -1-S n -1S n =2S n S n -1可得,S n -S n -1=2,∴{S n }是以1为首项,2为公差的等差数列,故S n =2n -1,S n =(2n -1)2,∴a 81=S 81-S 80=1612-1592=640.故选B.6.下面是关于公差d >0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列; p 3:数列{a nn }是递增数列;p 4:数列{a n +3nd }是递增数列.其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3D .p 1,p 4解析:选D.{a n }是等差数列,则a n =a 1+(n -1)d =dn +a 1-d ,因为d >0,所以{a n }是递增数列,故p 1正确;对p 2,举反例,令a 1=-3,a 2=-2,d =1,则a 1>2a 2,故{na n }不是递增数列,p 2不正确;a n n =d +a 1-d n ,当a 1-d >0时,{a nn }递减,p 3不正确;a n +3nd=4nd +a 1-d,4d >0,{a n +3nd }是递增数列,p 4正确.故p 1,p 4是正确的,选D.7.(2018·揭阳质检)数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于( )A .0B .3C .8D .11解析:选B.∵{b n }为等差数列,设其公差为d , 由b 3=-2,b 10=12,∴7d =b 10-b 3=12-(-2)=14,∴d =2, ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6, ∴b 1+b 2+…+b 7=7b 1+7×62d=7×(-6)+21×2=0,又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3, ∴a 8-3=0,∴a 8=3.故选B.8.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|= . 解析:由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0;当n >5时,a n >0.∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.答案:1309.(2018·广东潮州二模)在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢( )A .8日B .9日C .12日D .16日解析:选 B.设n 日相逢,则依题意得103n +n (n -1)2×13+97n +n (n -1)2×⎝⎛⎭⎫-12=1 125×2,整理得n 2+31n -360=0,解得n =9(负值舍去),故选B.10.(10分)(2017·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6. 解得q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n ·2n +13.由于S n +2+S n +1=-43+(-1)n ·2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.B 级 能力升级练(20分钟,40分)1.(2018·潍坊模拟)设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7解析:选D.由条件得S n n <S n +1n +1,即n (a 1+a n )2n <(n +1)(a 1+a n +1)2(n +1),所以a n <a n +1,所以等差数列{a n }为递增数列.又a 8a 7<-1,所以a 8>0,a 7<0,即数列{a n }前7项均小于0,第8项大于零,所以S n 的最小值为S 7,故选D.2.(2016·高考浙江卷)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n}是等差数列 解析:选A.作A 1C 1,A 2C 2,A 3C 3,…,A n C n 垂直于直线B 1B n ,垂足分别为C 1,C 2,C 3,…,C n ,则A 1C 1∥A 2C 2∥…∥A n C n .∵|A n A n +1|=|A n +1A n +2|, ∴|C n C n +1|=|C n +1C n +2|.设|A 1C 1|=a ,|A 2C 2|=b ,|B 1B 2|=c ,则|A 3C 3|=2b -a ,…,|A n C n |=(n -1)b -(n -2)a (n ≥3), ∴S n =12c [(n -1)b -(n -2)a ]=12c [(b -a )n +(2a -b )], ∴S n +1-S n =12c [(b -a )(n +1)+(2a -b )-(b -a )n -(2a -b )]=12c (b -a ),∴数列{S n }是等差数列.3.(2018·烟台模拟)已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为 .解析:∵a 11a 10<-1,且S n 有最大值,∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19(a 1+a 19)2=19·a 10>0,S 20=20(a 1+a 20)2=10(a 10+a 11)<0,故使得S n >0的n 的最大值为19. 答案:194.(12分)(2017·南昌三模)设等差数列{a n }的前n 项和为S n ,且a 5+a 13=34,S 3=9. (1)求数列{a n }的通项公式及前n 项和公式;(2)设数列{b n }的通项公式为b n =a n a n +t ,问:是否存在正整数t ,使得b 1,b 2,b m (m ≥3,m ∈N )成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由.解:(1)设{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+16d =34,3a 1+3d =9,解得a 1=1,d =2, 故a n =2n -1,S n =n 2. (2)由(1)知b n =2n -12n -1+t,要使b 1,b 2,b m 成等差数列,必须有2b 2=b 1+b m , 即2×33+t =11+t +2m -12m -1+t,移项得2m -12m -1+t =63+t -11+t =6+6t -3-t (3+t )(1+t ),整理得m =3+4t -1.因为m ,t 为正整数, 所以t 只能取2,3,5.当t =2时,m =7;当t =3时,m =5;当t =5时,m =4.所以存在正整数t ,使得b 1,b 2,b m 成等差数列.5.(13分)设同时满足条件:①b n +b n +22≤b n +1(n ∈N *);②b n ≤M (n ∈N *,M 是与n 无关的常数)的无穷数列{b n }叫“特界”数列.(1)若数列{a n }为等差数列,S n 是其前n 项和,a 3=4,S 3=18,求S n ; (2)判断(1)中的数列{S n }是否为“特界”数列,并说明理由. 解:(1)设等差数列{a n }的公差为d ,则a 1+2d =4,S 3=a 1+a 2+a 3=3a 1+3d =18, 解得a 1=8,d =-2,∴S n =na 1+n (n -1)2d =-n 2+9n .(2){S n }是“特界”数列,理由如下: 由S n +S n +22-S n +1=(S n +2-S n +1)-(S n +1-S n )2 =a n +2-a n +12=d2=-1<0, 得S n +S n +22<S n +1, 故数列{S n }适合条件①.而S n =-n 2+9n =-⎝⎛⎭⎫n -922+814(n ∈N *), 则当n =4或5时,S n 有最大值20, 即S n ≤20,故数列{S n }适合条件②. 综上,数列{S n }是“特界”数列.第三节 等比数列及其前n 项和教材细梳理1.等比数列的有关概念 (1)定义:①文字语言:从第2项起,每一项与它的前一项的比都等于同一个常数. ②符号语言:a n +1a n=q (n ∈N *,q 为非零常数).(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常见性质 (1)项的性质: ①a n =a m q n -m ;②若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;③若数列{a n },{b n }(项数相同)是等比数列,则{λa n },{|a n |},⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;④在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k . (2)和的性质:①若等比数列{a n }有2k (k ∈N *)项,则S 偶S 奇=q .②公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.(3)等比数列{a n }的单调性:①满足⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }是递增数列;②满足⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列; ③⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }为常数列; [易错易混]1.由a n +1=qa n ,q ≠0,并不能立即判断{a n }为等比数列,还要验证a 1≠0.2.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.知识微思考1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)G 为a ,b 的等比中项⇔G 2=ab .( )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( ) (4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( ) (5)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(6)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 答案:(1)× (2)× (3)× (4)× (5)× (6)×2.已知数列{a n }的前n 项和S n =Aq n +B 其中q ≠0,且q ≠1,AB ≠0,则A =-B 是数列{a n }为等比数列的充要条件吗?。

2019高考数学二轮复习专题二数列第二讲大题考法——数列课件理

2019高考数学二轮复习专题二数列第二讲大题考法——数列课件理

1 1 - . 2n-1 2n+1 1 1 1 1 1 1 2n 则Sn= - + - +…+ - = . 1 3 3 5 2n-1 2n+1 2n+1
[ 类题通法]
1.公式法求和要过“3关”
定义 会利用等差数列或等比数列的定义,判断所给
关 的数列是等差数列,还是等比数列 会应用等差(比)数列的前n项和公式来求解,需 掌握等差数列的前n项和公式、等比数列的前n 项和公式 认真运算,等差数列求和要根据不同的已知条 运算 件灵活运用两个求和公式,同时注意与性质的
[ 解]
(1)设{an}的公比为q.
a1=-2, 解得 q=-2.
a11+q=2, 由题设可得 2 a 1 + q + q =-6. 1
故{an}的通项公式为an=(-2)n.
n 1 -2×[1--2n] 2 2 (2)由(1)可得Sn= =- +(-1)n . · 石家庄模拟)已知数列{an}是各项均为正数的等比数 列,若a1=1,a2· a4=16. (1)设bn=log2an,求数列{bn}的通项公式;
a1=1, 解:设数列{an}的公比为q(q>0),由 a4=16 a2·
得q4=16,∴q
=2,∴an=2n 1.又bn=log2an,∴bn=n-1.
[类题通法]
等差、等比数列的基本量的求解策略
(1)分析已知条件和求解目标,确定为最终解决问题需要 先求解的中间问题.如为求和需要先求出通项、为求出通项需 要先求出首项和公差(公比)等,即确定解题的逻辑次序.
(2)注意细节.例如:在等差数列与等比数列综合问题 中,若等比数列的公比不能确定,则要看其是否有等于1的可 能;在数列的通项问题中,第一项和后面的项能否用同一个 公式表示等.

高考数学一轮总复习第五章数列2等差数列课件高三全册数学课件

高考数学一轮总复习第五章数列2等差数列课件高三全册数学课件
(2)因为{an}是等差数列,公差为 d,所以 a3(n+1)-a3n=3d(与 n 值无关的常数),所以数列{a3n}也是等差数列.
(3)设等差数列{an},{bn}的公差分别为 d1,d2,则 pan+1+ qbn+1-(pan+qbn)=p(an+1-an)+q(bn+1-bn)=pd1+qd2(与 n 值无 关的常数),即数列{pan+qbn}也是等差数列.
钱.( C )
5
3
A.3
B.2
4
5
C.3
D.4
第二十三页,共四十八页。
解析:设甲、乙、丙、丁、戊分别为 a-2d,a-d,a,a+d, a+2d,由题意可得:
a-2d+a-d+a+a+d+a+2d=5, a-2d+a-d=a+a+d+a+2d, 联立解得 a=1,d=-16. ∴这个问题中,甲所得为 1-2×(-16)=43(钱). 故选 C.
(2)(2019·全国卷Ⅲ)记 Sn 为等差数列{an}的前 n 项和.若 a1≠0,a2
=3a1,则SS150=____4____.
第十六页,共四十八页。
【解析】 (1)解法 1:设等差数列{an}的公差为 d,
∵Sa45= =05, ,
∴4a1+4×2 3d=0, a1+4d=5,
解得da=1=2-,3,
(1)在等差数列{an}中,a2=2,a3=4,则 a10= 18 .
(2)已知等差数列{an}的前 n 项和为 Sn,若 a1=-5,S9=27,则公
差 d= 2 .
(3)在等差数列{an}中,若 a3+a4+a5+a6+a7=450,则 a2+a8
= 180 . (4)在等差数列{an}中,S6=4,S18=24,则 S12= 12 .

2019高考数学二轮复习专题二数列第二讲大题考法数列课件理

2019高考数学二轮复习专题二数列第二讲大题考法数列课件理

运算 件灵活运用两个求和公式,同时注意与性质的
关 结合使用;等比数列求和注意 q=1和q≠1两种 情况
等差、等比数列的 题型(三) 判定与证明
解题通法点拨
1
等差、等比数列 题型(一) 基本量的计算
题型(二) 数列求和问题

定义 会利用等差数列或等比数列的定义,判断所给 关 应用 关 的数列是等差数列,还是等比数列 会应用等差(比)数列的前n项和公式来求解,需 掌握等差数列的前n项和公式、等比数列的前n 项和公式 认真运算,等差数列求和要根据不同的已知条

高考数学二轮复习 专题二 数列 第二讲 大题考法——数列课件 文

高考数学二轮复习 专题二 数列 第二讲 大题考法——数列课件 文
(2)令cn=S2n,n为奇数, 设数列{cn}的前n项和为Tn,求T2n. bn,n为偶数,
[解] (1)设数列{an}的公差为d,数列{bn}的公比为q, 则由ba25+-S2b2=2=1a03,, 得q3+ +64+ d-d=2q=10,3+2d,
解得dq==22,, 所以an=3+2(n-1)=2n+1,bn=2n-1.
(2)由a1=3,an=2n+1得Sn=n(n+2),
则cn=nn2+2,n为奇数, 2n-1,n为偶数,
即cn=n1-n+1 2,n为奇数, 2n-1,n为偶数,
所以T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n) =1-13+13-15+…+2n1-1-2n1+1+(2+23+…+22n-1) =1-2n1+1+211--44n=2n2+n 1+23(4n-1).
第二讲 大题考法——数 列
主要考查等差数列、等比数 列的通项公式及前n项和的 求解,且常结合数列的递 推公式命题.
[典例感悟]
[典例1] (2017·全国卷Ⅱ)已知等差数列{an}的前n项和为
Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通项公式;
由b3=a4-2a1,可得3d-a1=8.

由S11=11b4,可得a1+5d=16.

由①②,解得a1=1,d=3,由此可得an=3n-2.
所以数列{an}的通项公式为an=3n-2,数列{bn}的通项公式
为bn=2n.
(2)设数列{a2nb2n-1}的前n项和为Tn,
由a2n=6n-2,b2n-1=2×4n-1,
[演练冲关] 2.(2017·合肥质检)已知等差数列{an}的前n项和为Sn,且满足
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型(二) 数列求和问题
主要考查错位相减法求和、裂项相消法求和以及 公式法求和,且常结合数列的递推公式命题.
[ 典例感悟]
[典例1]
(2018· 全国卷Ⅱ)记Sn为等差数列{an}的前n项
和,已知a1=-7,S3=-15. (1)求{an}的通项公式; (2)求Sn,并求Sn的最小值.
[审题定向]
应用


结合使用;等比数列求和注意 q=1和q≠1两种
情况
2.裂项相消的规律 (1)裂项系数取决于前后两项分母的差. (2)裂项相消后前、后保留的项数一样多.
3.错位相减法的关注点 (1)适用题型:等差数列{an}与等比数列{bn}对应项相乘 ({an· bn})型数列求和. (2)步骤: ①求和时先乘以数列{bn}的公比; ②将两个和式错位相减; ③整理结果形式.
(三)定思路 第(1)问应用递推关系式及an与bn的关系式求解: 2n+1 将递推关系式变形为an+1= an,结合a1求出a2, n a3,进而求得b1,b2,b3; 第(2)问应用递推关系式及等比数列定义求解: an+1 2an 由条件得 = n ,即bn+1=2bn,利用等比数列定义可 n+ 1 判定; 第(3)问应用(2)的结论,结合an与bn关系式求解: 由等比数列的通项公式先得出bn,进而求得an.
[类题通法]
等差、等比数列的基本量的求解策略
(1)分析已知条件和求解目标,确定为最终解决问题需要 先求解的中间问题.如为求和需要先求出通项、为求出通项需 要先求出首项和公差(公比)等,即确定解题的逻辑次序.
(2)注意细节.例如:在等差数列与等比数列综合问题 中,若等比数列的公比不能确定,则要看其是否有等于1的可 能;在数列的通项问题中,第一项和后面的项能否用同一个 公式表示等.

2-2n = -(n-1)· 2n=2n(2-n)-2, 1-2 ∴Sn=2n(n-2)+2.
等差、等比数列的 题型(三) 判定与证明
主要考查等差数列与等比数列的定义、等差中项及等比 中项,且常与数列的递推公式相结合命题.
[ 典例感悟]
[典例1] (2018· 全国卷Ⅰ)已知数列{an}满足a1=1,nan+1=
1 1 - . 2n-1 2n+1 1 1 1 1 1 1 2n 则Sn= - + - +…+ - = . 1 3 3 5 2n-1 2n+1 2n+1
[ 类题通法]
1.公式法求和要过“3关”
定义 会利用等差数列或等比数列的定义,判断所给
关 的数列是等差数列,还是等比数列 会应用等差(比)数列的前n项和公式来求解,需 掌握等差数列的前n项和公式、等比数列的前n 项和公式 认真运算,等差数列求和要根据不同的已知条 运算 件灵活运用两个求和公式,同时注意与性质的
an 2(n+1)an.设bn= n . (1)求b1,b2,b3; (2)判断数列{bn}是否为等比数列,并说明理由; (3)求{an}的通项公式.
[审题定向]
(一)定知识 主要考查数列的递推公式、等比数列的定义及通项公式.
(二)定能力 1.考查逻辑推理:欲求 b1,b2,b3 ,需求 a1,a2,a3;由 an+1 与 an 的关系判断 bn+1 与 bn 的关系,由 bn 的通项公式得出 an 的通 项公式. 2.考查数学抽象:由等比数列定义判断.
[典例2]
(2017· 全国卷Ⅰ)记Sn为等比数列{an}的前n项
和.已知S2=2,S3=-6. (1)求{an}的通项公式; (2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列.
[审题定向]
(一)定知识 主要考查等比数列的通项公式及其前 n 项和公式,等差数 列性质及等差数列的判断.
(二)定能力 1.考查逻辑推理:欲求通项公式,需求首项及公比,解关于首项 及公比的方程组. 2.考查数学抽象:由等差中项判断三项成等差数列.
n 1 - 2 - 若an=2n 1,则Sn= =2n-1. 1-2
由Sm=63,得2m=64,解得m=6.综上,m=6.
[典例2]
(2017· 全国卷Ⅱ)已知等差数列{an}的前n项和为Sn,
等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=2. (1)若a3+b3=5,求{bn}的通项公式; (2)若T3=21,求S3.
(一)定知识 主要考查等差数列的通项公式、数列的公式法求和及数列和 的最值.
(二)定能力 1.考查逻辑推理:欲求等差数列的通项公式,已知 a1,需求公 差 d;欲求 Sn 的最小值,需列出 Sn 的关系式. 2.考查数学运算:一元二次函数的最值求解.
(三)定思路 第(1)问应用方程思想、等差数列通项公式求解: 由题意列出关于数列公差d的方程,求出d,进而得出{an} 的通项公式; 第(2)问应用函数思想、二次函数的最值求解: 由(1)得出Sn是关于n的二次函数,进而由二次函数的性质 求出Sn的最小值.
+ +2
n+1 2 2 =2- +-1n =2Sn, 3 3
[ 对点训练]
(2018· 石家庄模拟)已知数列{an}是各项均为正数的等比数 列,若a1=1,a2· a4=16. (1)设bn=log2an,求数列{bn}的通项公式;
a1=1, 解:设数列{an}的公比为q(q>0),由 a4=16 a2·
得q4=16,∴q
=2,∴an=2n 1.又bn=log2an,∴bn=n-1.
[解]
(1)设{an}的公比为q,由题设得an=qn 1.

由已知得q4=4q2,解得q=0(舍去)或q=-2或q=2. 故an=(-2)n 1或an=2n 1.
- -
n 1 - - 2 (2)若an=(-2)n-1,则Sn= . 3
由Sm=63,得(-2)m=-188,此方程没有正整数解.

(2)求数列{an· bn}的前n项和Sn.
解:由(1)可知an· bn=(n-1)· 2n 1,

则Sn=0×20+1×21+2×22+…+(n-1)· 2n-1,① 2Sn=0×21+1×22+2×23+…+(n-1)· 2n,② ①-②得,-Sn=2+22+23+…+2n 1-(n-1)· 2n
[ 对点训练]
已知数列{an}是等差数列,满足a1=2,a4=8,数列{bn}是等 比数列,满足b2=4,b5=32. (1)求数列{an}和{bn}的通项公式; (2)求数列{an+bn}的前n项和Sn.
a4-a1 解:(1)设等差数列{an}的公差为d,由题意得d= = 2, 3 所以an=a1+(n-1)· d=2+(n-1)×2=2n.设等比数列{bn}的 b5 3 公比为q,由题意得q = =8,解得q=2. b2 b2 因为b1= q =2,所以bn=b1· qn-1=2×2n-1=2n. (2)因为an=2n,bn=2n,所以an+bn=2n+2n,所以Sn= n2+2n 21-2n + + =n2+n+2n 1-2. 2 1-2
[解]
设{an}的公差为d,{bn}的公比为q,
则an=-1+(n-1)d,bn=qn-1. 由a2+b2=2得d+q=3. (1)由a3+b3=5得2d+q2=6.
d=3, 联立①②解得 q=0 d=1, (舍去)或 q=2.
① ②
因此{bn}的通项公式为bn=2n-1. (2)由b1=1,T3=21,得q2+q-20=0, 解得q=-5或q=4. 当q=-5时,由①得d=8,则S3=21. 当q=4时,由①得d=-1,则S3=-6.
[解]
(1)设{an}的公差为d,由题意得3a1+3d=-15.又a1
=-7,所以d=2.所以{an}的通项公式为an=2n-9. na1+an (2)由(1)得Sn= =n2-8n=(n-4)2-16,所以当n 2 =4时,Sn取得最小值,最小值为-列{an}满足a1+3a2+…+
[审题定向]
(一)定知识 主要考查等比数列的通项公式及前 n 项和.
(二)定能力 1.考查数学运算:指数式的运算. 2.考查逻辑推理:欲求通项公式,需求公比q;欲求参数m, 需列出参数m的方程.
(三)定思路 第(1)问应用方程思想、等比数列通项公式求解: 列关于公比 q 的方程求 q,并写出等比数列的通项公式; 第(2)问应用方程思想、等比数列求和公式求解: 据等比数列前 n 项和公式, 结合(1)中结论列关于 m 的方程并 求解.
[审题定向]
(一)定知识 主要考查等差数列、等比数列通项公式及前n项和.
(二)定能力 1.考查数学运算:二元方程组的求解和一元二次方程的求解. 2.考查逻辑推理:由求通项公式想到求数列的公比;要求等差 数列的和需先求公差.
(三)定思路 第(1)问应用方程思想、等比和等差数列通项公式求解: 根据等差、等比数列的通项公式,结合条件建立公差d、公 比q的方程求解; 第(2)问应用方程思想、等差数列求和公式求解: 由已知条件列出q的方程,求出q,进而求出d,再由等差数 列的前n项和公式求解.
(2n-1)an=2n. (1)求{an}的通项公式;
an (2)求数列2n+1的前n项和.
[审题定向]
(一)定知识 主要考查已知 an 的关系式求通项公式及裂项求和法求数列 的和.
(二)定能力 1.考查逻辑推理:由 an 的关系式与 an-1 关系式得出 an 的式子, 即通项公式. 2.考查数学运算:分式形式的裂项及裂项相消求和.
第二讲 大题考法
——数列
等差、等比数列 题型(一) 基本量的计算
主要考查等差数列、等比数列的通项公式及前n项和 的求解,且常结合数列的递推公式命题.
[ 典例感悟]
[典例1] (2018· 全国卷Ⅲ)等比数列{an}中,a1=1,a5=4a3.
(1)求{an}的通项公式; (2)记Sn为{an}的前n项和.若Sm=63,求m.
相关文档
最新文档