黄金分割及其应用
黄金分割线的原理及应用

黄金分割线的原理及应用1. 黄金分割线的概述黄金分割线是指将一条线段划分为两部分,使得整条线段的比例等于两部分之间的比例。
这个比例被称为黄金分割比例,通常表示为1:1.618(近似值),也被称为黄金比例、黄金比例或神秘比例。
2. 黄金分割线的数学原理2.1 斐波那契数列和黄金比例黄金分割线和斐波那契数列有着密切的关系。
斐波那契数列是一系列数字,每个数字等于前两个数字之和。
例如,1,1,2,3,5,8,13,21,34等等。
如果将斐波那契数列中的相邻数字进行比值运算,将会逐渐接近黄金分割比例。
2.2 数学公式表达黄金分割比例可以用以下数学公式来表达: a / b = (a + b) / a = 1.6183.黄金分割线的应用领域黄金分割线的应用早已超出了数学的范畴,它在各个领域得到了广泛的应用。
3.1 美学和艺术黄金分割线在美学和艺术中被广泛应用,例如建筑设计、绘画和摄影。
根据黄金分割原理,可以将画面分割为多个部分,使得每个部分的比例符合黄金分割比例。
这种分割方法被认为可以创造出更加美观和和谐的作品。
3.2 设计和排版在设计和排版中,黄金分割线常被用来确定页面上元素的大小和位置关系。
通过将页面分割成黄金分割比例的部分,可以在视觉上达到更好的平衡和对称。
3.3 金融市场黄金分割线也在金融市场中被广泛应用。
金融分析师使用黄金分割线来预测股票价格走势和支持与阻力位的确定。
很多技术指标和交易工具也基于黄金分割原理。
3.4 自然科学黄金分割线在自然科学研究中也有着一定的应用。
生物学家研究植物、动物和人体各个部分之间的比例关系时,常使用黄金分割比例。
此外,在天文学和物理学领域也有相关的研究和应用。
3.5 网页设计在网页设计中,黄金分割线被应用于页面布局、图片尺寸和文字排版等方面。
通过使用黄金分割原理,可以使网页看起来更加美观和舒适。
4. 总结黄金分割线是一种既有数学原理又具有美学应用的概念。
它的比例被认为是一种对人眼极具吸引力的视觉比例,能够在艺术和设计领域起到重要的作用。
黄金分割率在生活中的应用

黄金分割率在生活中的应用
黄金分割率在生活中有许多应用,以下列举几个常见的例子:
1. 艺术和设计:黄金分割率被广泛运用于绘画、雕塑、建筑和设计领域。
艺术家和设计师使用黄金分割率来确定作品的比例和结构,以获得更美观和谐的效果。
2. 美学:黄金分割率被视为一种美学理论,应用于音乐、文学和摄影等领域。
例如,许多古典音乐作品和诗歌使用黄金分割率来构造和组织节奏和韵律。
3. 建筑和城市规划:黄金分割率在建筑和城市规划中也经常被运用。
建筑师使用黄金分割率来确定建筑物的比例、尺寸和布局,以创造宜人和谐的空间。
城市规划师也可以使用黄金分割率来规划城市街道和公园的布局和位置。
4. 广告和市场营销:黄金分割率也被一些广告和市场营销专家认为是一种有效的设计和排版原则。
通过应用黄金分割率,可以创造出更吸引人的广告布局和设计,从而吸引更多的目标群体。
总体来说,黄金分割率在生活中的应用主要是以美学和设计原则的形式出现,用于提高视觉效果和吸引力,创造出更美观和谐的作品和环境。
黄金分割及其应用知识点

黄金分割及其应用知识点黄金分割是一种数学比例,被广泛应用于艺术、建筑、设计、金融等领域。
它在人类历史中扮演着重要的角色,并被认为是一种美学原则。
本文将介绍黄金分割的概念、特点以及其在不同领域的应用知识点。
1. 黄金分割的定义和原理黄金分割是指将一条线段分割为两部分,使较长部分与全长之比等于较短部分与较长部分之比。
这个比例通常用希腊字母φ(phi)表示,其值约为1.618。
黄金分割原理基于数学上的黄金数,即满足以下关系式:物体的全长 / 较长部分 = 较长部分 / 较短部分= φ2. 黄金分割的特点黄金分割具有以下几个显著的特点:- 唯一性:黄金分割的比例是唯一确定的,不受线段长度的影响。
无论线段长短如何,比值始终为φ。
- 不变性:进行黄金分割后所得到的较长部分与全长的比例,与全长与较短部分的比例相等,始终为φ。
- 近似性:黄金分割是一种无理数,无法精确表示,但可以通过不断逼近φ来得到近似值。
由于黄金分割在视觉上产生一种和谐、美感的效果,它经常在建筑和艺术中得到应用:- 建筑设计:黄金分割被广泛用于建筑中的比例和布局,例如古希腊的帕特农神庙和文艺复兴时期的建筑。
建筑师可以利用黄金分割比例来划分空间、安放柱子和窗户等,以达到视觉上的和谐与美感。
- 绘画与摄影:艺术家常常使用黄金分割来划定画面的重要元素和构图,使画面更具吸引力与平衡感。
摄影中的黄金分割线条也有助于构建有层次感的照片。
- 雕塑与雕刻:黄金分割比例被广泛用于人物雕塑和艺术品的创作,帮助艺术家在立体空间上的分配和平衡。
4. 黄金分割在设计和排版中的应用可视化设计和排版领域也广泛应用黄金分割,以达到更好的视觉效果和用户体验:- 网页设计:黄金分割可以用来划分网页的布局、排列网页元素和图像,使界面更具吸引力和可读性。
- 平面设计:海报、名片、杂志等平面设计常使用黄金分割比例进行版面的构图和内容的排列,使视觉效果更加平衡和美观。
- 字体排版:黄金分割比例可用于确定文字的行高、字母间距、段落长度等,以提供更好的阅读体验。
黄金分割比例的应用

黄金分割比例的应用
黄金分割比例在许多领域都有应用,包括艺术、建筑、设计、市场营销等等。
以下是一些常见的应用:
1. 艺术:黄金分割比例被广泛应用于绘画、摄影、雕塑等艺术形式中。
根据黄金分割比例,艺术家可以将画布或图像分成不同的区域,以创造出视觉上的平衡和美感。
2. 建筑:黄金分割比例在建筑设计中被用于确定建筑物的比例和形状。
许多古代建筑物,如埃及金字塔和希腊神庙,就采用了黄金分割比例来确保它们的比例和对称性。
3. 设计:黄金分割比例在平面设计、产品设计和网页设计中被广泛应用。
通过使用黄金分割比例,设计师可以创建出更具吸引力和平衡的设计作品。
4. 市场营销:黄金分割比例的原理也被应用于市场营销中的广告和销售推广。
通过使用黄金分割比例,可以在广告中创造出更具吸引力和视觉上的平衡的元素,以吸引消费者的注意力并提高销售。
总之,黄金分割比例在许多领域中被广泛应用,可以帮助创造出更具吸引力和平衡的作品和设计。
(完整word版)黄金分割在生活中的应用

研究报告黄金分割在生活中的应用东北育才学校马艺宸一.黄金分割的定义之比等于整体与较大部分之比,其比值为1∶0.618或1。
618∶1,即长段为全段的0.618.0.618被公认为最具有审美意义的比例数字.上述比例是最能引起人的美感的比例,因此被称为黄金分割。
二.黄金分割在生活中的应用(一)艺术中的黄金分割1。
人体上的黄金分割。
最完美的人体:肚脐到脚底的距离/头顶到脚的距离=0.618。
最漂亮的脸庞:眉毛到脖子的距离/头顶到脖子的距离=0。
618。
达·芬奇的《蒙娜丽莎》、拉斐尔笔下温和俊秀的圣母像,都有意无意地用上了这个比值。
人们公认的最完美的脸型——“鹅蛋"形,脸宽与脸长的比值约为0.618,如果计算一下翩翩欲仙的芭蕾演员的优美身段,可以得知,他们的腿长与身长的比值也大约是0.618,组成了人体的美.2.中国最古老的古琴,处处透着黄金分割的神奇,琴背两池,左龙右凤。
控制琴弦发音的枢纽有三:轸,凫掌,凤嗉.琴有五弦,音有八度,琴节为徽。
“以琴长全体三分损一,又三分益一,而转相增减”,全弦共有十三徽。
把这些排列到一起,二池,三纽,五弦,八音,十三徽。
多么奇妙的排列,恰是费波那奇数,而两个相邻费波那奇数比率则越来越接近黄金分割率,是有意还是巧合?看来,中国古人对黄金分割的领悟与运用,与西方确有异曲同工之妙.3.1483年左右,达芬奇画的一副未完成的油画,包围着圣杰罗姆躯体的黑线,就是一个黄金分割的矩形,当时达芬奇似乎有意利用这一黄金分割的比值.“检阅”是法国印象派画家舍勒特的一副油画,它的画杠结构比例也正是0.618的比值。
英国在画家斐拉克曼的名著《希腊的神话和传说》一书中,工绘有96幅美人图。
每一幅画上的美人都妩媚无比婀娜多姿.如果仔细量一下她们的比例也都也雅典娜相似。
4。
音乐家发现,二胡演奏中,“千金"分弦的比符合0。
618∶1时,奏出来的音调最和谐、最悦耳。
5。
希腊古城雅典有一座用大理石砌成的神妙,神庙大殿中央的女神像是用象牙和黄金雕成的。
2024年九年级中考数学复习——黄金分割及其应用含参考答案

2024年新课标中考数学二轮专题黄金分割及其应用1如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,C,D之间的距离为.2在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE⋅AB.已知AB为2米,则线段BE的长为米.3在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是()(结果精确到0.01m.参考数据:2≈1.414,3≈1.732,5≈2.236)A.0.73mB.1.24mC.1.37mD.1.42m4古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12≈0.618,称为黄金比例),如图,著名的“断臂维纳斯”便是如此,此外,最美人体的头顶与咽喉至肚脐的长度之比也是5-12,若某人的身材满足上述两个黄金比例,且头顶至咽喉的长度为26cm,则其身高可能是()A.165cmB.178cmC.185cmD.190cm5人们把5-12这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a=5-12,b=5+12得ab=1,记S1=11+a+11+b,S2=11+a2+11+b2,⋯,S10=11+a10+11+b10,则S1+S2+⋯+S10=.6黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.如图1,我们已经学过,点C将线段AB分成两部分,如果AC:AB=BC:AC,那么称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.7两千多年前,古希数学家欧多克索斯(Eudoxus,约公元前400年一公元前347年)发现;将一条线段AB分割成长、短两条线段AP、PB,若短线段与长线段的长度之比等于长线段的长度与全长之比,即PBAP=APAB,则点P叫做线段AB的黄金分割点.如图,在△ABC中,点D是线段AC的黄金分割点,且AD< CD,AB=CD.(1)求证:∠ABC=∠ADB;(2)若BC=4cm,求BD的长.8以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图所示,(1)求AM,DM的长,(2)试说明AM2=AD·DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?2024年新课标中考数学二轮专题黄金分割及其应用1如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,C,D之间的距离为.【答案】(805-160)cm【解析】【分析】黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比.其比值是一个无理数,用分数表示为5-12,由此即可求解.【详解】解:弦AB=80cm,点C是靠近点B的黄金分割点,设BC=x,则AC=80-x,∴80-x80=5-12,解方程得,x=120-405,点D是靠近点A的黄金分割点,设AD=y,则BD=80-y,∴80-y80=5-12,解方程得,y=120-405,∴C,D之间的距离为80-x-y=80-120+405-120+405=805-160,故答案为:(805-160)cm.【点睛】本题主要考查线段成比例,掌握线段成比例,黄金分割点的定义是解题的关键.2在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE⋅AB.已知AB为2米,则线段BE的长为米.【答案】(5-1)或者-1+5【解析】根据点E是AB的黄金分割点,可得AEBE=BEAB=5-12,代入数值得出答案.∵点E是AB的黄金分割点,∴AE BE =BEAB=5-12.∵AB=2米,∴BE=(5-1)米.【点睛】本题主要考查了黄金分割的应用,掌握黄金比是解题的关键.3在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是()(结果精确到0.01m.参考数据:2≈1.414,3≈1.732,5≈2.236)A.0.73mB.1.24mC.1.37mD.1.42m 【答案】B 【解析】设雕像的下部高为x m ,由黄金分割的定义得x 2=5-12,求解即可.设雕像的下部高为x m ,则上部长为(2-x )m ,∵雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,雷锋雕像为2m ,∴x 2=5-12, ∴x =5-1≈1.24,即该雕像的下部设计高度约是1.24m .【点睛】本题考查了黄金分割的定义,熟练掌握黄金分割的定义及黄金比值是解题的关键.4古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12≈0.618,称为黄金比例),如图,著名的“断臂维纳斯”便是如此,此外,最美人体的头顶与咽喉至肚脐的长度之比也是5-12,若某人的身材满足上述两个黄金比例,且头顶至咽喉的长度为26cm ,则其身高可能是()A.165cmB.178cmC.185cmD.190cm【答案】B 【解析】设某人的咽喉至肚脐的长度为xcm ,则26x≈0.618,解得x ≈42.072,设某人的肚脐至足底的长度为ycm ,则26+42.072y≈0.618,解得y ≈110.149,∴其身高可能是110.149÷0.618≈178(cm)。
生活中的黄金分割比
生活中的黄金分割例子有:
1、比如,演员在台上的时候,如果站在台中央,就显得太呆板了,而如果站在黄金分割的位置上,就会显得活泼和生动。
2、而我们看的书:书的长/(书的长+书的宽)=0.618。
3、还有世界名画《蒙娜丽莎》,就是根据黄金分割的比例来构图的。
4、正五角形里同样也有黄金分割。
黄金分割比例的应用:
1、应用于摄影,运用黄金比例拍摄的摄影作品更符合人眼的生理结构,让人更容易发现它的美。
2、应用于人体雕塑,古希腊的著名雕像断臂维纳斯及太阳神阿波罗在设计时,都被延长过双腿,使之与身高的比值为0.618。
3、应用于绘画,在达·芬奇的作品《维特鲁威人》、《蒙娜丽莎》和《最后的晚餐》中都运用了黄金分割。
黄金分割在室内设计中的应用
黄金分割在室内设计中的应用一、前言黄金分割是一种广泛应用于艺术、设计等领域的比例关系,它源于自然界中的规律,被认为是一种最美的比例。
在室内设计中,黄金分割也有着非常广泛的应用。
本文将从什么是黄金分割开始,逐步介绍黄金分割在室内设计中的应用。
二、什么是黄金分割黄金分割指的是将整个长度或面积分成两部分,使其中一部分与另一部分之和的比等于整体与这部分之比相同。
这个比值通常用希腊字母φ(phi)表示,其值约为1.618。
三、黄金分割在室内设计中的应用1. 空间布局在室内设计中,空间布局是非常重要的一个环节。
而黄金分割可以帮助我们更好地规划空间布局。
例如,在客厅布置时可以使用黄金长方形来规划沙发和茶几等家具的位置和大小,使得整个空间更加协调美观。
2. 家具搭配家具搭配也是一个需要考虑比例关系的问题。
使用黄金分割来规划家具的大小和位置,可以使得家具之间的比例更加协调,整个空间更加和谐。
3. 色彩搭配色彩搭配也是室内设计中非常重要的一个环节。
使用黄金分割来规划不同颜色的比例关系,可以使得整个空间更加美观。
例如,在选择沙发、窗帘等大面积物品的颜色时,可以使用黄金分割来规划不同颜色之间的比例关系。
4. 灯光设计灯光设计也是室内设计中非常重要的一个环节。
使用黄金分割来规划灯光的位置和数量,可以使得整个空间更加明亮舒适。
例如,在客厅中使用三盏吊灯时,可以使用黄金分割来规划吊灯之间的距离和高度。
5. 装饰品摆放装饰品摆放也是室内设计中非常重要的一个环节。
使用黄金分割来规划装饰品之间的距离和大小,可以使得整个空间更加精致美观。
例如,在书房里放置书架时,可以使用黄金分割来规划书架上不同大小书籍之间的距离和摆放位置。
四、总结黄金分割在室内设计中的应用非常广泛,可以帮助我们更好地规划空间布局、家具搭配、色彩搭配、灯光设计以及装饰品摆放等方面。
当然,在实际应用中,不一定要严格按照黄金分割来规划,可以根据实际情况进行适当调整。
但是,了解黄金分割的基本原理和应用方法,对于提高室内设计的美感和协调性是非常有帮助的。
数学中的黄金分割比例及其应用
数学中的黄金分割比例及其应用黄金分割比例是一组特殊的比例,也叫做黄金比例或黄金分割点。
它的比例为1:1.618。
黄金分割比例在数学、美学、艺术等领域都有广泛的应用。
在这篇文章中,我们将探讨黄金分割比例的一些基本概念及其应用。
一、什么是黄金分割比例?黄金分割比例可以通过一个简单的公式来计算:a:b = b:(a+b)其中,a和b分别是整个和部分的两个数字。
这个公式可以被推广到更大的比例中:1:(1+√5)/2 = (1+ √5)/2:√5这个比例也可以被称为黄金比例或者黄金分割点。
它被广泛应用于设计、艺术、建筑和数学领域中。
二、黄金分割比例在数学领域的应用黄金分割比例在数学领域中有着广泛的应用,其中最著名的应该就是斐波那契数列。
斐波那契数列是一个无限数列,它的前两位是0和1,其余的数都是前两个数之和。
斐波那契数列的前10个数字是0、1、1、2、3、5、8、13、21和34。
斐波那契数列中的每个数字都可以用黄金分割比例来计算。
当n趋近于无限大时,斐波那契数列中相邻两个数字的比值趋近于黄金分割比例。
三、黄金分割比例在艺术领域的应用黄金分割比例在艺术领域中也有着广泛的应用。
例如,黄金分割比例可以用于绘画、摄影和设计等领域中。
如果我们将画布或者照片按黄金分割比例进行分割,就会产生一种视觉上的和谐感。
因此,很多画家、摄影师和设计师都会使用黄金分割比例来构图。
四、黄金分割比例在建筑领域的应用黄金分割比例也可以应用于建筑领域中。
在建筑设计中,黄金分割比例可以用来确定建筑物的高度、宽度和长度等参数。
黄金分割比例还可以用于确定建筑物中某些部分的位置和尺寸。
五、总结综上所述,黄金分割比例在数学、艺术和建筑领域中都有广泛的应用。
无论是在设计、构图还是在建筑设计中,黄金分割比例都能帮助我们创建出一种视觉上的和谐感,使得我们的作品更加吸引人。
因此,如果您是一个数学家、艺术家或者建筑师,建议您多加了解和使用黄金分割比例。
它可以帮助您创造出更加美妙和完美的作品。
黄金分割法及其应用
黄金分割法及其应用黄金分割法及其应用黄金分割法,又称为黄金比例、黄金分割比等,是一种比例关系,源自于古希腊文化。
它指的是,将一条线段分割为两部分,使其中一部分与另一部分之和的比等于整条线段与其中一部分的比。
这个比例值被称为“黄金分割比”,通常表示为1:φ(phi),φ是一个无理数,约等于1.6180339887。
应用黄金分割法在设计、艺术、建筑等领域广泛应用,被认为是一种非常美学的比例关系。
以下是一些常见的应用方法:1. 黄金矩形黄金矩形是一种矩形,其长和宽按照黄金分割比例进行分割。
这种矩形具有一种非常美学的形态,被广泛应用于设计和艺术领域。
例如,著名的维特鲁威斯男爵的画作中,经常使用黄金矩形比例来构图。
2. 身体比例黄金分割法在人体比例上也有应用。
例如,人体的身高和臂展、腿长等比例,都可以按照黄金分割比例进行分割。
这种比例关系在雕塑和肖像绘画中经常被使用,可以使得作品更加真实生动,具有感染力。
3. 建筑设计建筑中的黄金分割法也常常应用。
例如,建筑的外观比例、窗户的位置和尺寸等都可以按照黄金分割比例进行分配。
这种比例关系能够创造一种和谐而宁静的感觉,符合人们的审美标准。
4. 广告设计广告设计中常常也会使用黄金分割法。
例如,在广告中,图片、文字和背景的比例、位置、大小等都可以进行合理的黄金分割设计,从而产生更好的视觉效果。
5. 网页设计在网页设计中,黄金分割法也是一种比较常用的设计原则。
例如,网页布局、按钮大小、文本位置等都可以按照黄金分割设计,这样可以让网页看起来更加优美和协调。
总结黄金分割法是一种非常美学的比例关系,被广泛应用于各个领域。
黄金分割法比例的应用可以让设计更加美观和协调,符合人们的审美标准,从而产生更好的视觉效果和感官体验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被 称为"菲波那契数"。
特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
经研究发现菲波那契数列相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。
即f(n)/f(n-1)-→0.618…。
由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。
但是当我们继续计算出后面更常接近黄金分割比的. 一 五角星是 36度,这样割的数值为三大算学家欧道克萨斯首先提出黄金分割。
所谓黄金分割,指的是把长为L 的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。
而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。
这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。
黄金分割在我国是我国古代数学家独立创造的,后来传入了印度。
经考证。
欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。
就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。
在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。
正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为“黄金分割”。
(2)黄金分割的发现历史公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,于是人们推断当时他们已经触及甚至掌握了黄金分割。
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步论述了黄金分割,成为最早的有关黄金分割的论著。
中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,德国天文学家开普勒称黄金分割为神圣分割。
到19世纪黄金分割这一名称才逐渐通行。
黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。
最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。
(3)黄金分割神圣的应用黄金分割被广泛地应用于建筑、设计、绘画等各方面。
特别是在摄影技术的发展过程中,黄金分割也因此成为摄影构图中最神圣的观念。
0.618,以严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。
无论是古希腊帕特农神庙,还是中国古代的兵马俑,它们的垂直线与水平线之间竟然完全符合1比0.618的比例。
0.618与武器装备在冷兵器时代,虽然人们还根本不知道黄金分割率这个概念,但人们在制造宝剑、大刀、长矛等武器时,黄金分割率的法则却早已处处体现了出来,因为按这样的比例制造出来的兵器,用起来会更加得心应手。
当步枪刚刚制造出来的时候,它的枪把和枪身的长度比例很不科学合理,很不方便于抓握和瞄准。
直到了1918年,一个名叫阿尔文·约克的美远征军下士,对这种步枪进行了改造,改进后的枪型枪身和枪把的比例恰恰符合0.618的比例。
实际上,从锋利的马刀刃口的弧度,到子弹、炮弹、弹道导弹沿弹道飞行的顶点;从飞机进入俯冲轰炸状态的最佳投弹高度和角度,到坦克外壳设计时的最佳避弹坡度,我们也都能很容易地发现黄金分割率无处不在。
0.618与战术布阵战略在我国历史上很早发生的一些战争中,就无不遵循着0.618的规律。
春秋战国时期,晋厉公率军伐郑,与援郑之楚军决战于鄢陵。
厉公听从楚叛臣苗贲皇的建议,把楚之右军作为主攻点,因此以中军之一部进攻楚军之左军;以另一部进攻楚军之中军,集上军、下军、新军及公族之卒,攻击楚之右军。
其主要攻击点的选择,恰在黄金分割点上。
把黄金分割率在战争中体现得最为出色的还应首推成吉思汗。
蒙古骑兵的战斗队形与西方传统的方阵大不相同,在它的5排制阵型中,人盔马甲的重骑兵和快捷灵动轻骑兵的比例为2:3,这又是一个黄金分割!你不能不佩服那位马背军事家的天才妙悟,被这样的天才统帅统领的大军,不纵横四海、所向披靡,那才怪呢。
基督教欧洲人除了把黄金分割率运用到宗教艺术方面天赋甚高外,对这一定律在其他方面是否有用,似乎开悟得很晚。
直到黑火药时期瑞典军队将在摩利士原来的216名长矛兵+198名滑膛枪兵中队之外,增加96名滑膛枪兵,这一改变顿时突出了火器的作用,使其成为当时欧洲最强的军队。
而198+96名滑膛枪兵与216长矛兵之比恰恰是黄金分割率。
在马其顿与波斯的阿贝拉的战役中,马其顿的亚历山大大帝把他的军队的攻击点,选在了波斯大流士国王的军队的左翼和中央结合部。
巧的是,这个部位正好也是整个战线的“黄金点”,所以尽管波斯大军多于亚历山大的兵马数十倍,但凭借自己的战略智慧,亚历山大把波斯大军打得溃不成军。
这一战争的深刻影响直到今天仍清晰可见,在海湾战争中,多国部队就是采用了类似的布阵法打败了伊拉克军队。
两支部队交战,如果其中之一的兵力、兵器损失了1/3以上,就难以再同对方交战下去。
正因为如此,在现代高技术战争中,有高技术武器装备的军事大国都采取长时间空中打击的办法,先彻底摧毁对方1/3以上的兵力、武器,尔后再展开地面进攻。
在现代战争中,许多国家的军队在实施具体的进攻任务时,往往是分梯队进行的,第一梯队的兵力约占总兵力的2/3,第二梯队约占1/3。
在第一梯队中,主攻方向所投入的兵力通常为第一梯队总兵力的2/3,助攻方向则为1/3。
防御战斗中,第一道防线的兵力通常为总数的2/3,第二道防线的兵力兵器通常为总数的1/3。
一代枭雄的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。
1812拿破仑三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。
法军不得不在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。
被所有战争史学家公认为苏联卫国战争转折点的斯大林格勒战役,就发生在战争爆发后的第17个月,正是德军由盛而衰的26个月时间轴线的黄金分割点。
(4)为什么人们对他如此的信赖为什么人们对这样的比例,会本能地感到美的存在?其实这与人类的演化和人体正常发育密切相关。
据研究,从猿到人的进化过程中,骨骼方面以头骨和腿骨变化最大,躯体外形由于近似黄金而矩形变化最小,人体结构中有许多比例关系接近0.618,从而使人体美在几十万年的历史积淀中固定下来。
人类最熟悉自己,势必将人体美作为最高的审美标准,由物及人,由人及物,推而广之,凡是与人体相似的物体就喜欢它,就觉得美。
于是黄金分割律成为世代相传的审美经典规律,至今不衰!近年来,在研究黄金分割与人体关系时,发现了人体结构中有14个“黄金点”(物体短段与长段之比值为0.618),12个“黄金矩形”(宽与长比值为0.618的长方形)和2个“黄金指数”(两物体间的比例关系为0.618)。
■人体黄金点脐以上与脐以下的比值是0.618:1。
喉结头顶至脐部,喉结是分割点,之间的比值近似0.618。
眉间前发际至颏底连线,上1/3与下2/3之分割点。
鼻下点前发际至颏底连线,下1/3与上2/3之分割点。
唇珠鼻底至颏底连线,上1/3与下2/3之分割点。
口角正面观,口裂水平线左(右)侧1/3与对侧2/3之分割点。
肘关节(鹰嘴)肩峰至中指尖之分割点。
膝关节(髌骨)足底至脐之分割点。
乳头乳头垂直线,锁骨至腹股沟之分割点。
■人体黄金矩形头部轮廓头部长(颅顶至颏部)与宽(两侧颧弓突端中间距)。
面部轮廓眼水平线的面宽为宽,前发际至颏底间距为长。
鼻部轮廓鼻翼为宽,鼻根至鼻下点间距为长。
唇部轮廓静止状态时,上下唇峰间距为宽,口角间距为长。
躯干轮廓肩宽与臀宽的平均数为宽,肩峰至臀底间距为长。
手部轮廓手指并拢时,掌指关节水平线为宽,腕关节至食指尖间距为长。
■人体黄金指数黄金指数即两条线段之比例关系为0.618,或近似于此值。
人体面部躯干四肢中有许多线段之间存在着这种比例关系。
鼻唇指数鼻翼宽度与口角间距宽度之比。
目唇指数口角间距宽度与两眼外眦宽度之比。
上下唇高指数面部中线的上下唇红高度之比。
目面指数两眼外眦间距与眼水平线的面宽之比。
四肢指数肩峰至中指尖连线为上肢长,髂嵴至足底连线为下肢长,两者之比,近似于0.618。
■人体黄金三角腰底之比为0.618或近似值的等腰三角形,其内角分别为36゜、72゜、72゜,为黄金三角形。
人体黄金三角形有:外鼻正面观呈黄金三角;外鼻侧面观呈黄金三角;鼻根尖与两侧口角点组成的三角形;两肩端点与头顶中央组成的三角形。
此外,一个体形匀称的人,体重与身高,腰围与胸围,腰围与臀围的理想比例,也都接近于黄金分割律。