spss的多独立样本的非参数检验论文
spss非参数检验K多个独立样本检验KruskalWallis检验案例解析

spss-非参数检验-K多个独立样本检验
(Kruskal-Wallis检验)案例解析Kruskal-Wallis检验,也称为KW检验,是一种非参数检验方法,用于比较两个或多个独立样本的中位数是否相等。
它利用秩(等级)来进行统计分析,而不是直接使用原始数据。
假设有一个关于人们在不同饮料中的品尝体验的数据集。
数据集中包含了人们在红酒、白酒和啤酒中品尝的感受,包括甜度、酸度、苦度等。
现在想要比较这三种饮料在甜度方面的中位数是否有显著差异。
首先,对每种饮料的甜度进行排序,得到每个人的秩。
然后,将每个人的秩平均分到他们所对应的饮料中,得到每个饮料的平均秩。
接着,对这些平均秩进行比较。
如果红酒、白酒和啤酒的平均秩存在显著差异,则说明这三种饮料在甜度方面的中位数存在显著差异。
如果平均秩没有显著差异,则说明这三种饮料在甜度方面的中位数没有显著差异。
下面是一个具体的案例数据:
根据上述数据,我们可以计算出每种饮料的平均秩:
红酒: (2+1)/2 = 1.5
白酒: (4+3)/2 = 3.5
啤酒: (6+5)/2 = 5.5
然后对这些平均秩进行比较。
由于红酒的平均秩最小,白酒的平均秩次之,啤酒的平均秩最大,因此可以得出结论:这三种饮料在甜度方面的中位数存在显著差异,其中啤酒的甜度最高,白酒次之,红酒最低。
需要注意的是,KW检验的前提假设是各个样本是独立同分布的,且样本容量足够大。
如果样本不满足这些条件,可能会导致检验结果出现偏差。
此外,KW检验只能告诉我们是否存在显著差异,但不能告诉我们差异的具体原因。
如果想要了解更多信息,需要进行后续的统计分析。
07非参数检验-SPSS

穿 4 种防护服时的脉搏数(次 /分) 编号 1 2 3 4 5 6 秩和 Ri 防护服 A 脉搏 秩号 144.4 4 116.2 2 105.8 1 98.0 1 103.8 2 121.4 4 14 防护服 B 脉搏 秩号 143.0 3 119.2 4 114.8 3 120.0 3 110.6 4 107.3 1 18 防护服 C 脉搏 秩号 133.4 1 118.0 3 113.2 2 104.0 2 109.8 3 115.6 2 13 防护服 D 脉搏 秩号 142.8 2 110.8 1 115.8 4 132.8 4 100.6 1 119.2 3 15
新法 原法 ( 3) ( 2) 80 60 152 142 243 195 82 80 240 242 227 220 205 190 38 25 243 212 44 38 200 236 100 95
T 66
差值 d 新法 (4)=(3)-(2) (3) 20 80 10 152 48 243 82 2 240-2 227 7 15 205 13 38 36 243 44 6 -36 200 100 5
DATA
→ Weight Cases …
Weight Cases对话框
(2)秩和检验 Analyze
→Nonparametric Tests → K Independent Samples …
Test for Several Independent Samples对话框
检验变量(即 等级变量)
→ K Independent Samples …
Test for Several Independent Samples对话框
SPSS的非参数检验

02
SPSS非参数检验概述
定义与特点
定义
非参数检验是在统计分析中,相对于参数检验的一种统计方法。 它不需要对总体分布做严格假定,只关注数据本身的特点,因此 具有更广泛的适用范围。
特点
非参数检验对总体分布的假设较少,强调从数据本身获取信息, 具有灵活性、稳健性和适用范围广等优点。
局限性
计算量大
对于大规模数据集,非参数检验的计算量可 能较大,需要较长的计算时间。
对数据要求高
非参数检验要求数据具有可比性,对于不可 比的数据集可能无法得出正确的结论。
解释性较差
非参数检验的结果通常较为简单,对于深入 的统计分析可能不够满足。
对异常值敏感
非参数检验对异常值较为敏感,可能导致结 果的偏差。
THANK YOU
感谢聆听
常用非参数检验方法
独立样本非参数检验
用于比较两个独立样本的差异 ,如Mann-Whitney U 检验 、Kruskal-Wallis H 检验等。
相关样本非参数检验
用于比较相关样本或配对样本 的关联性,如Wilcoxon signed-rank 检验、Kendall's tau-b 检验等。
等级排序非参数检验
案例二:两个相关样本的非参数检验
总结词
适用于两个相关样本的比较,如同一班级内不同时间点的成绩比较。
描述
使用SPSS中的两个相关样本的非参数检验,如Wilcoxon匹配对检验,可以比较两个相关样本的总体分布是否相 同。
案例二:两个相关样本的非参数检验
01
步骤
02
1. 打开SPSS软件,输入数据。
第七章SPSS非参数检验

二、SPSS两独立样本非参数检验
(一)目的 由独立样本数据推断两总体的分布是否存在显著差异
(或两样本是否来自同一总体)。 (二)基本假设 H0:两总体分布无显著差异(两样本来自同一总体) (三)数据要求 样本数据和分组标志
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
– 与样本在相同点的累计频率进行比较。如果相差较小,则认为样
本所代表的总体符合指定的总体分布。
•第七章SPSS非参数检验
一、SPSS单样本非参数检验
(三)K-S检验 (4)基本步骤
菜单选项:analyze->nonparametric tests->1-sample k-s 选择待检验的变量入test variable list 框 指定检验的分布名称(test distribution)
将两样本混合并按升序排序 分别计算两个样本在相同点上的累计频数和累计频率 两个累计频率相减。 如果差距较小,则认为两总体分布无显著差异
应保证有较大的样本数
案例:7-5 p194使用寿命
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
3.游程?检验(Wald-Wolfowitz runs)
一、SPSS单样本非参数检验
(二)总体分布的二项分布检验 (1)目的
通过样本数据检验样本来自的总体是否服从指定的 概率p的二项分布根据 (2)原假设 样本来自的总体与指定的二项分布无显著差异。 (3)案例7-2 p187 产品合格率
•第七章SPSS非参数检验
一、SPSS单样本非参数检验
(三)K-S检验 (1)目的
•第七章SPSS非参数检验
五、SPSS多配对样本非参数检验
spss非参数检验K多个独立样本检验KruskalWallis检验重点学习学习案例分析.doc

spss- 非参数检验 -K 多个独立样本检验(Kruskal-Wallis检验)案例解析2011-09-19 15:09最近经常失眠,好痛苦啊!大家有什么好的解决失眠的方法吗?希望知道的能够告诉我,谢谢啦,今天和大家一起探讨和分下一下SPSS非-参数检验 --K 个独立样本检验(Kruskal-Wallis检验)。
还是以 SPSS教程为例:假设: HO:不同地区的儿童,身高分布是相同的H1:不同地区的儿童,身高分布是不同的不同地区儿童身高样本数据如下所示:提示:此样本数为 4 个(北京,上海,成都,广州)每个样本的样本量(观察数)都为 5 个即:K=4>3 n=5,此时如果样本逐渐增大,呈现出自由度为K-1 的平方的分布,(即指:卡方检验)点击“分析”——非参数检验——旧对话框—— K 个独立样本检验,进入如下界面:将“周岁儿童身高”变量拖入右侧“检验变量列表”内,将“城市( CS)变量”拖入“分组变量”内,点击“定义范围” 输入“最小值”和“最大值”(这里的变量类型必须为“数字型”)如果不是数字型,必须要先定义或者重新编码。
在“检验类型”下面选择“秩和检验”(Kruskal-Wallis检验)点击确定运行结果如下所示:对结果进行分析如下:1:从“检验统计量a,b ”表中可以看出:秩和统计量为:13.900自由度为: 3=k-1=4-1下面来看看“秩和统计量”的计算过程,如下所示:假设“秩和统计量”为kw那么:其中: n+1/2为全体样本的“秩平均”Ri./ni为第i个样本的秩平均Ri. 代表第 i 个样本的秩和, ni 代表第 i 个样本的观察数)最后得到的公式为:北京地区的“秩和”为:秩平均 * 观察数( N) = 14.4*5=72上海地区的“秩和”为:8.2*5=41成都地区的“秩和”为:15.8*5=79广州地区的“秩和”为: 3.6*5=18接近 13.90 (由于中间的计算,我采用四舍五入,丢弃了部分数值,所以,会有部分误差)2:“检验统计量 a,b ”表中可以看出:“渐进显著性为0.003 ,由于0.003<0.01所以得出结论:H1:不同地区的儿童,身高分布是不同的。
SPSS操作:多个独立样本的非参数检验及两两比较

SPSS操作:多个独立样本的非参数检验及两两比较一、问题与数据某研究者想探讨不同体力活动的人,应对职场压力的能力是否不同。
因此,研究招募了31名研究对象,测量了他们每周进行体力活动的时间(分钟),以及应对职场压力的能力。
根据体力活动的时间长短,研究对象被分为4组:久坐组、低、中、高体力活动组(变量名为group)。
利用Likert量表调查的总得分(CWWS得分)来评估应对职场压力的能力,分数越高,表明应对职场压力的能力越强(变量名为coping_stress)。
部分数据如下图。
二、对问题的分析研究者想知道不同体力活动组之间CWWS得分是否不同,可以使用Kruskal-Wallis H检验。
Kruskal-Wallis H检验(有时也叫做对秩次的单因素方差分析)是基于秩次的非参数检验方法,用于检验多组间(也可以是两组)连续或有序变量是否存在差异。
使用Kruskal-Wallis H test进行分析时,需要考虑以下3个假设。
假设1:有一个因变量,且因变量为连续变量或等级变量。
假设2:存在多个分组(≥2个)。
假设3:具有相互独立的观测值,如本研究中各位研究对象的信息都是独立的,不存在相互干扰作用。
三、SPSS操作1. Kruskal-Wallis H检验在主界面点击Analyze→Nonparametric Tests→Independent Samples,出现Nonparametric Tests: Two or More Independent Samples对话框,默认选择Automatically compare distributions across groups。
点击Fields,在Fields下方选择Use custom field assignments,将变量coping_stress放入Test Fields框中,将变量group放入Groups框中。
点击Settings→Customize tests,在Compare MedianDifference to Hypothesized区域选择Kruskal-Wallis 1-way ANOVA (k samples),如下图。
spss实验报告——非参数检验

实验报告——(非参数检验)实验目的:1、学会使用SPSS软件进行非参数检验。
2、熟悉非参数检验的概念及适用范围,掌握常见的秩和检验计算方法。
实验内容:1、某公司准备推出一个新产品,但产品名称还没有正式确定,决定进行抽样调查,在受访200人中,52人喜欢A名称,61人喜欢B名称,87人喜欢C 名称,请问ABC三种名称受欢迎的程度有无差别?(数据表自建)SPSS计算结果如下:此题为总体分布的卡方检验。
零假设:样本来自总体分布形态和期望分布没有显著差异。
即ABC三种名称受欢迎的程度无差别,分布形态为1:1:1,呈均匀分布。
观察结果,上表为200个观察数据对A、B、C三个名称(分别对应1,2,3)的喜爱的期望频数以及实际观察频数和期望频数的差。
从下表中可以看出相伴概率值为0.007小于显著性水平0.05,因此拒绝零假设,认为样本来自的总体分布与制定的期望分布有显著差异,即A、B、C三种名称受欢迎的程度有差异。
2、某村庄发生了一起集体食物中毒事件,经过调查,发现当地居民是直接饮用河水,研究者怀疑是河水污染所致,县按照可疑污染源的大致范围调查了沿河居民的中毒情况,河边33户有成员中毒(+)和均未中毒(-)的家庭分布如下:(案例数据run.sav)-+++*++++-+++-+++++----++----+----毒源问:中毒与饮水是否有关?SPSS计算结果如下:此题为单样本变量值随机检验零假设:总体某变量的变量值是随机出现的。
即中毒的家庭沿河分布的情况随机分布,与饮水无关。
相伴概率为0.036,小于显著性水平0.05,拒绝零假设,因此中毒与饮水有关。
3、某试验室用小白鼠观察某种抗癌新药的疗效,两组各10只小白鼠,以生存日数作为观察指标,试验结果如下,案例数据集为:npara1.sav,问两组小白鼠生存日数有无差别。
试验组:24 26 27 30 32 34 36 40 60 天以上对照组:4 6 7 9 10 10 12 13 16 16SPSS计算结果如下:此题为两独立样本非参数检验。
使用SPSS软件进行非参数检验

使用SPSS软件进行非参数检验作者:崔红芳来源:《科技创新与应用》2015年第33期摘要:非参数检验是数理统计学中对样本数据进行检验的一种重要检验方法,文章具体讲述了SPSS统计软件对3个班级中21个学生的成绩样本进行非参数检验分析,得出总体成绩存在显著性差异,说明了SPSS统计软件应用于概率论与数理统计教学的可行性。
关键词:SPSS软件;非参数检验;显著性差异;可行性非参数检验是数理统计学的一个分支,它与参数检验相对应。
参数检验是一种适应于在特定环境下的检验,对总体分布参数的均值或方差等进行推断的方法。
非参数检验是假定总体分布的具体形式未知,从样本的数据获得需要的信息,对总体分布的类型和位置进行检验。
1 非参数检验方法的特点和分类非参数检验适用性很广,不要求有精确的观测值,SPSS软件是一种易学易操作的软件,软件中包括8种非参数检验的分析方法,这8种方法被分为了两大类:分布类型检验方法和分布位置检验方法,在第二大类中包括以下4中检验:两个独立样本显著性差异、多个独立性样本显著性差异、两个相关样本差异的显著性检验和多个相关样本差异的显著性检验。
文章主要研究多个独立性样本的显著性差异。
2 应用实例随机抽取3个班级的学生,得到21个学生的成绩样本,成绩如表1所示,问总体成绩是否存在显著差异?(1)假设H0:总体成绩没有显著差异(2)操作步骤:a.在SPSS软件的数据编辑窗口中输入数据,两个变量(banji,chengji),21个样本,即输入2列21行;b.单击分析→非参数检验→K个独立样本命令,打开多个独立样本对话框;c.将变量chengji移入到检验变量列表,将banji移入分组变量列表,在分组变量定义框内定义分组变量的范围,最小值为1,最大值为3,选择检验类型中的前两个,第三种方法不适合本题目;如图1所示。
d.单击OK按钮,即在输出窗口显示Kruskal-Wallis检验和中值检验的计算结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.为研究烫伤后不同时间切痂对大鼠肝脏三磷酸腺苷(ATP)的影响,现将30只雄性大鼠随机分成3组,每组10只:A组为烫伤无切痂,B组为烫伤后24小时时切痂组,C组为烫伤后96小时切痂组,全部大鼠在烫伤168小时后测量其肝脏ATP含量。
试检验3组大鼠肝脏ATP总数均数是否相同。
表。
大鼠烫伤后肝脏ATP含量(mg)
解:由题意可知,通过分析多组独立样本的数据,推断样本来自多个总体的中位数或分布是否存在差异,所以可以选用多独立样本的Kruskal-Wallis检验
数据的组织方式如下:
30只雄性大鼠的多独立样本非参数检验的基本操作步骤如下:
(1)选择菜单:【Nnalyze】→【Nonparametric Tests】→【K Independent Samples】于是出现以下所示的窗口。
(2)、选择ATP 到【Test Variable List 】框中。
(3)、指定分组的变量到【Grouping Variable 】框,并按Define Range 按钮给出组标志值的而取之范围。
(4)、在【Test Type 】框中选择三种检验方法。
一、中位数检验结果如下图所示
表(a ) 三组雄性大鼠的中位数检验结果(一)·
Fr equencies
2948
1
6
> Median <= Median
ATP
A 组
B 组
C 组
分组
表(b ) 三组雄性大鼠的中位数检验结果(二)
表(a)与表(b)中,三组共同的中位数为9.5150,计算出卡方统计量为10.400,
概率P-值为0.006。
如果显著性水平α为0.05,由于概率
P-值小于显著性水平α,
应拒绝原假设,认为三组雄性大鼠的分布存在显著性差异。
二、多独立样本Kruskal-Wallis检验结果
表(c)三组雄性大鼠的Kruskal-Wallis检验结果(一)
表(d)三组雄性大鼠的Kruskal-Wallis检验结果(二)
由表(c)和表(d)可知:三组雄性大鼠的平均秩分别为8.7、23.6、14.2,K-W 统计量为14.65,概率P值为0.001。
如果显著性水平α为0.05,由于概率P-值小于显著性水平α,应拒绝原假设,认为三组雄性大鼠的平均秩差异是显著的,总体分布存在显著性差异。
三、多独立样本Jonckheere-Terpstra检验结果
表(e)三组雄性大鼠的Jonckheere-Terpstra检验结果
由表(e)可知,观测的J-T值为179.0,所有J-T值的平均值为150.0,标准差为26.30,观测的J-T值的标准化值为1.103,小于平均值相距较明显。
J-T统计量的概率P-值为0.27,如果显著性水平α为0.05,由于概率P-值大于显著性水平,不应拒绝原假设,认为三组雄性大鼠的分布不存在显著性差异。
心得
通过该次数理统计课程设计学习,使我更加深刻地体会到做任何事都要有耐心,不要一遇到困难就退缩,实验操作使我们巩固了原有的理论知识,培养了我们灵活运用所学过知识及技能来分析、解决实际问题的能力。
让我们运用自身知识和能力能在实际中的应用和发挥,激发创新意识,经过一周课程设计的学习,让我熟练的掌握了运用spss分析数据,尤其在求均数、频数、方差、标准差、T检验、相关分析、方差分析、回归分析。
在SPSS学习中,对它的认识由浅入深,循序渐进,实践中遇到的各种问题逐个攻克,学习这种在日常工作中有价值的分析方法,使我们更能轻易应付日后的社会的信息工作;掌握这种高级的技能,对我们工作就业提供了竞争优势。
在操作的过程中,由于对操作过程的不熟悉,导致输出数据的错误,经过我们耐心的学习,我们发现错误,寻找错误,更改错误,出于对知识的渴望,出于对新技术的好奇,出于对一切未知的求知。
我完成了这次数理统计的课程设计,不过这只是我学习路上的驿站,我会继续学习它。