集合与命题练习

合集下载

第一章-集合与命题

第一章-集合与命题

第一章 集合与命题 (一)集合的概念与运算 【集合的基本概念】❖ 知识点归纳 1. 集合的定义: 2. 集合的特征: 3. 集合的表示法: 4. 集合的分类: 5. 数集: 6. 集合的关系: 7. 集合的运算: 8. 集合的运算性质:❖ 例题讲解 例1(1) 已知集合{}3M x x n n ==∈Z ,,{}31N x x n n ==+∈Z ,,{}31P x x n n ==-∈Z ,,且a M ∈,b N ∈,c P ∈,设d a b c =-+,则( ).A. d M ∈B. d N ∈C. d P ∈D. 以上都不正确 (2) 若集合2442k k A x x k B x x k ⎧⎫⎧⎫ππππ==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭Z Z ,,,,则( ).A. A B =B. B ⊂≠AC. A ⊂≠BD.AB =∅例2 写出满足{},M a b ⊆的所有集合M .例3 已知集合{}2340A x x x x =--<∈R ,,求A N 的真子集的个数.例4 已知全集{}1,2,3,4,5,6,7,8,9U =,{}2A B =,∁{}()1,9U A B =,∁{}4,6,8U A B =,求集合A 、B .(1) {}{}2223213A y y x x x B y y x x x ==--∈==-++∈R R ,,,;(2) {}{}22(,)23(,)213A x y y x x x B x y y x x x ==--∈==-++∈R R ,,,;(3) {}{}2223213A y y x x x B y y x x x ==--∈==-++∈Z Z ,,,.例6同时满足下列两个条件: ①{}1,2,3,4,5M ⊆,②若a M ∈,则6a M -∈,这样的集合M 有多少个? 写出这些 集合. 例7 已知集合{}{}222280320A x x x x B x x ax a x =--<∈=-+=∈R R ,,, (1) 实数a 在什么范围内取值时,B ⊂≠A ?(2) 实数a 在什么范围内取值时,AB =∅.❖ 回顾反思 1. 主要方法:① 解决集合问题,首先要分析集合中的元素是什么; ② 抓住集合中元素的3个性质,对互异性要注意检验;③ 弄清集合元素的本质属性,正确进行“集合语言”和“文字语言”的相互转化; ④ 了解空集的意义,在解题中强化空集的意识; ⑤ 借助数轴和文氏图进行求解. 2. 易错、易漏点:① 辨清: 子集、真子集、非空真子集的区别。

高中数学 必修1 集合(常见考题 例题 专项练习)附答案

高中数学 必修1 集合(常见考题 例题 专项练习)附答案

集合知识宝典1.集合的含义与表示方法(1)集合的含义:研究对象叫做元素,一些元素组成的总体叫做集合。

集合中元素的性质:确定性、无序性、互异性。

(2)元素与集合的关系:①属于,记为∈;②不属于,记为∉。

(3)集合的表示方法:列举法、描述法和图示法。

(4)常用数集的记号:自然数集N,正整数集N*或N+,整数集Z,有理数集Q,实数集R。

2.集合间的基本关系A B或B A3.集合的基本运算表示运算文字语言符号语言图形语言记法交集属于集合A且属于集合B的元素组成的集合{x|x∈A,且x∈B}A∩B并集属于集合A或属于集合B的元素组成的集合{x|x∈A,或x∈B}A∪B补集全集U中不属于集合A的元素组成的集合{x|x∈U,x∉A}∁U A特别提醒1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解集合问题的两个先决条件。

2.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身。

3.运用数轴图示法易忽视端点是实心还是空心。

4.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性\”而导致解题错误。

5.记住以下结论(1)若集合A中有n个元素,则其子集的个数为2n,真子集的个数为2n-1。

(2)A∪B=A⇔B⊆A;A∩B=A⇔A⊆B。

基础专练一、细品教材1.(必修1P12B组T4改编)满足{0,1}⊆A{0,1,2,3}的集合A的个数为()A.1 B.2 C.3 D.42.(必修1P12B组T1改编)已知集合A={0,1,2},集合B满足A∪B={0,1,2},则集合B有___个。

细品教材答案1.C;2.8;二、查漏补缺1.已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1} B.{-1,0,1,2}C.{-1,0,2} D.{0,1}2.设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1]B.[0,1)C.(0,1] D.(0,1)3.设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5} D.{2,5}4.已知集合A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)=________。

集合命题练习题

集合命题练习题

集合命题练习题一、选择题1. 设集合A={1, 2, 3},集合B={2, 3, 4},则A∩B的结果是()A. {1, 2, 3}B. {2, 3, 4}C. {2, 3}D. {1, 4}2. 下列命题中,真命题的是()A. 若x∈∅,则x∈RB. 若A⊆B,则B⊆AC. 集合{1, 2}与集合{2, 3}相等D. 空集是任何集合的子集3. 设集合A={x | x²3x+2=0},则A中元素的个数为()A. 0B. 1C. 2D. 3二、填空题1. 设集合A={1, 2, 3},集合B={x | x=2a,a∈A},则集合B=______。

2. 若集合A={x | x²5x+6=0},集合B={2, 3, 4},则A∪B=______。

3. 设集合M={x | x²x6=0},集合N={x | x²4x+3=0},则M∩N=______。

三、解答题1. 设集合A={x | x²4x+3=0},集合B={x | x²3x+2=0},求A∪B。

2. 已知集合A={1, 2, 3, 4, 5},集合B={x | x=2a1,a∈A},求集合B。

3. 设集合M={x | x²5x+6=0},集合N={x | x²4x+3=0},求M∩N。

4. 已知集合P={x | x²x6=0},集合Q={x | x²4x+3=0},求P∩Q。

5. 设集合A={1, 2, 3},集合B={x | x=3a,a∈A},求集合B。

6. 已知集合X={x | x²2x3=0},集合Y={x | x²5x+6=0},求X∩Y。

7. 设集合M={x | x²3x+2=0},集合N={x | x²4x+3=0},求M∪N。

8. 已知集合P={x | x²x6=0},集合Q={x | x²4x+3=0},求P∪Q。

(完整)2019-2020年高考数学专题练习——集合与逻辑(一)(含解析)

(完整)2019-2020年高考数学专题练习——集合与逻辑(一)(含解析)

2019-2020年高考数学专题练习——集合与逻辑(一)一、选择题1.已知集合{}2320A x x x =-+≥,(){}321B x log x +<,则A B =( ) A. {}21x x -<< B.{} 12x x x ≤≥或 C.{} 1x x < D.∅2.集合{}2log 2A x Z x =∈≤的真子集个数为( ) A .7 B .8 C .15 D .163.若复数z =(x 2-4)+(x +3)i (x ∈R ),则“z 是纯虚数”是“x =2”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件4.设有下面四个命题:1P :若z 满足z C ∈,则 z z R ⋅∈;2P :若虚数(),a bi a R b R +∈∈是方程32 1 0x x x +++=的根,则a bi -也是方程的根: 3P :已知复数12,z z 则12z z =的充要条件是12z z R ∈: 4P ;若复数12z z >,则12,z z R ∈.其中真命题的个数为( )A .1B .2C .3D .45. “221a b +=”是“sin cos 1a b θθ+≤恒成立”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件6.已知集合{}{}2320,230A x x x B x x =-+<=->,则R A C B ⋂= ( )A .31,2⎛⎫-- ⎪⎝⎭B.31,2⎛⎫ ⎪⎝⎭C .31,2⎛⎤⎥⎝⎦D .3,22⎛⎫⎪⎝⎭7.设集合2{|60,}A x x x x Z =--<∈,{|,,}B z z x y x A y A ==-∈∈,则A ∩B =( ) A .{0,1} B .{0,1,2} C .{0,1,2,3} D .{-1,0,1,2}8.已知p :x R ∀∈,220x x a ++>;q :28a <.若“p q ∧”是真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,3)C .(1,3)D .(-∞,1)∪(3,+∞)9.设R θ∈,则“66ππθ-<”是“3sin 2θ<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件10.设集合{}2|670A x x x =--<,{}|B x x a =≥,现有下面四个命题: p 1:a R ∃∈,A B =∅;p 2:若0a =,则(7,)A B =-+∞; p 3:若(,2)R C B =-∞,则a A ∈;p 4:若1a ≤-,则A B ⊆. 其中所有的真命题为( ) A .p 1,p 4 B .p 1,p 3,p 4 C .p 2,p 3 D .p 1,p 2,p 411.已知命题P :存在n R ∈,使得223()n nf x nx-=是幂函数,且在(0,+∞)上单调递增; 命题q :“2,23x R x x ∃∈+>”的否定是“2,23x R x x ∀∈+<”.则下列命题为真命题的是 A .p q ∧ B .p q ⌝∧ C .p q ∧⌝ D .p q ⌝∧⌝12.已知集合M ={x |22194x y +=},N ={y|132x y+=},则M ∩N =A .∅B .{(3,0),(2,0)}C .{3,2}D .[-3,3]13.设集合{}{}m B m A 2,2,42==,,若φ≠⋂B A ,则m 的取值可能是( ) A.1 B.2 C.3 D.214.下列判断错误..的是 ( ) A .“22bm am <”是“b a <”的充分不必要条件B .命题“01,23≤--∈∀x x R x ”的否定是“01,23>--∈∃x x R x ”C .若p ,q 均为假命题,则q p Λ为假命题D .命题:若12=x ,则1=x 或1-=x 的逆否命题为:若1≠x 或1-≠x ,则12≠x15.已知A ,B ,C ,D ,E 是空间五个不同的点,若点E 在直线BC 上,则“AC 与BD 是异面直线”是“AD 与BE 是异面直线”的( ) A .充分不必要条件 B .充分必要条件 C.必要不充分条件 D .既不充分也不必要条件16.下列选项错误的是( )A .命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =”B .“2x >”是“2320x x -+>”的充分不必要条件;C.若命题p :x R ∀∈,210x x ++≠,则p ⌝:0x R ∃∈,20010x x ++=; D .在命题的四种形式中,若原命题为真命题,则否命题为假命题17.对于常数m 、n ,“0mn >”是“方程221mx y +=的曲线是椭圆”的( )条件 A .充分不必要 B .必要不充分 C.充分必要D .既不充分也不必要条件18.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的. 若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是()A. ,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C. ,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的19.设集合S={1,2,3,4,5,6},定义集合对(A ,B)::,A 中含有3个元素,B 中至少含有2个元素,且B 中最小的元素不小于A 中最大的元素.记满足的集合对(A ,B)的总个数为m ,满足的集合对(A ,B)的总个数为n ,则的值为( )A.111 B.161C.221 D.29220.定义非空集合A 的真子集的真子集为A 的“孙集”,则集合{1,3,5,7,9}的孙集的个数为 () A .23B .24C .26D .3221.已知:集合2012,3,2,{1,A =},A B ⊆,且集合B 中任意两个元素之和不能被其差整除。

集合与命题

集合与命题

集合与命题一、集合1、集合中元素的三大特征:①无序性②互异性③确定性这三个性质在解题时要注意应用,特别是互异性。

例1:下列事件可构成集合的有____①优秀的学生;②老年人;③漂亮的衣服;④方程x2+x+1=0的实数解;⑤|x+y|=|x|+|y|的实数解。

例2:集合P={1,a,b},Q={1,a2,b2},若P=Q,则a+b=__注意到集合中元素的互异性,则只能是2ba=且2ab=可能多数同学都是解出a,b,再得a+b的,结果a,b还是虚数,其实只要两式相减就有a-b=(b-a)(b+a)∵a≠b ∴a+b=-1例3:①设A={x|x=2k-1,k∈N且1≤k≤10}B={y|y=3k,,k∈N且1≤k≤10}求A∪B中所有元素之和。

(高二、高三的同学可以将k的范围改为1≤k≤100)②设Sn 数列{an}的前n项和,an=sin5πn,n∈N,且1≤n≤100,i)设集合A是由数列{an}中的所有的值构成的集合,求集合A。

ii)设集合B是由数列{Sn}n∈N,且1≤n≤100,中的所有的值构成的集合,求集合B中的所有元素和。

2、集合的表示法:①列举法②描述法③图示法说明:1)在描述法中,必须弄清楚在“|”的前后各表示什么?如下面的问题:①已知A={y|y=x2,x∈R},B={y|y=8-x2,x∈R}求A∩B;②已知A={(x,y)|y=x2,x∈R},B={(x,y)|y=8-x2,x∈R}求A∩B。

2)图示法虽然不能准确表达集合中元素情况,但它能简单明了把两个集合的关系等表示出来。

例如:例:A 、B 、C 三厂联合生产一种产品,哪个厂生产的就盖上哪个厂的厂名,如果是两个或三个厂联合生产的就盖上两个或三个厂的厂名。

今有一批产品,发现盖过A 厂、B 厂、C 厂的厂名的产品分别有18件、24件、30件,同时盖过AB 厂、BC 厂、CA 厂的厂名的产品分别有12件、14件、16件,问这批产品最多有多少件?最少有多少件? 解:设盖有三个厂的厂名的产品有x 件,如图: 则12-x ≥0,16-x ≥0,14-x ≥0,x ≥0且18-(12-x+x+16-x )≥0,24-(12-x+x+14-x )≥0 30-(16-x+x+14-x )≥0,∴10≤x ≤12而总数为:18+[24-(12-x )-14]+[30-(16-x )-14] +14-x=30+x所以这批产品最少有40件,最多有42件。

高中数学集合练习与答案

高中数学集合练习与答案

高中数学集合练习与答案一、选择题1. 已知集合{}6A x N x =∈<,{}2,xB y y x A ==∈,则A B 中元素的个数是( )A .1B .2C .3D .42.已知集合(){}|10A x x x =-≤,(){}|ln B x y x a ==-,若A B A =,则实数a 的取值范围为( ) A .(),0-∞ B .(],0-∞C .()1,+∞D .[)1,+∞ 3.已知集合,,则( )A .B .C .D .4.已知全集,集合为A .B .C .D .5. 若命题p 为:为A .B .C .D .6.下列命题正确的个数为①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行; ③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. A .0 B .1 C .2 D .37.设集合, ,则( )A .B .C .D . 8. 已知,则( )A .B .C .D .9. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题10. 设集合,集合,则集合( ) A .B .C .D .11 已知集合,,则=( ) A .B .C .D .12. 【河北省衡水中学2018届高三高考押题(一)理数试题试卷】在等比数列中,“是方程的两根”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件13. 设集合{|2}A x x =<, {}B x x a =,全集U R =,若UA B ⊆,则有( )A .0a =B .2a ≤C .2a ≥D .2a <14. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题 15. 设集合,,则( )A .B .C .D .16. 已知集合2{6}A x y x x ==-++,集合{1}B x x =≥,则A B =A.{23}x x -≤≤ B {1}x x ≥ C {13}x x ≤≤. D.{2}x x ≥-17.已知全集U=R ,则A .B .C .D .18.集合,,,若,则的取值范围是( )A .B .C .D . 19. 设集合{|1},{|1}A x x B x x =>-=≥,则“x A ∈且x B ∉”成立的充要条件是( )A .11x -<≤B .1x ≤C .1x >-D .11x -<<20.下列命题中的假命题是( )A .B .C .D .21. 已知全集,集合和的关系的韦恳(V enn )图如图所示,则阴影部分所示的集合的元素共有( )A .1个B .2个C .3个D .无穷个22. 设,,a b c R ∈,则“1abc =”是a b c a b c≤+=”的 A .充分条件但不是必要条件, B .必要条件但不是充分条件 C .充分必要条件 D .既不充分也不必要的条件23. 已知集合{|1}A x x =<,{|1x B x e =< },则( ) A .{|1}A B x x ⋂=< B .()R A C B R ⋃=C .{|}A B x x e ⋃=<D .(){|01}R C A B x x ⋂=<< 二、填空题 1.已知下列命题:①命题“2,35x R x x ∀∈+<”的否定是“2,35x R x x ∃∈+<”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝⌝∧为真命题”;③“2015a >”是“2017a >”的充分不必要条件;④“若0xy =,则0x =且0y =”的逆否命题为真命题 其中,所有真命题的序号是__________.答案一、选择题1. 已知集合{}6A x N x =∈<,{}2,xB y y x A ==∈,则A B 中元素的个数是( )A .1B .2C .3D .4【答案】C【解析】∵{}6A x N x =∈<, ∴{}0,1,2,3,4,5A =, 又{}2,xB y y x A ==∈, ∴{}1,2,4,8,16,32B =, ∴{}1,2,4AB =,有3个元素,故选:C .2.已知集合(){}|10A x x x =-≤,(){}|ln B x y x a ==-,若A B A =,则实数a 的取值范围为( ) A .(),0-∞ B .(],0-∞C .()1,+∞D .[)1,+∞【答案】A【解析】(){}|1001A x x x x =-≤⇒≤≤(){}|ln B x y x a x a ==-⇒>A B A A B ⋂=⇒⊆所以0a < 故答案选A 3.已知集合,,则( )A .B .C .D .【答案】A 【解析】集合集合,则,故选A.4. 已知全集,集合为A .B .C .D .【解析】因为,所以或.所以.故选B.5.若命题p为:为A.B.C.D.【答案】C【解析】根据的构成方法得,为.故选C.6.下列命题正确的个数为①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A.0 B.1 C.2 D.3【答案】C分析:逐一判断每个命题的真假,得到正确命题的个数.详解:对于①,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,所以该命题是真命题;对于②,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,所以该命题是假命题;对于③,两两相交的三条直线最多可以确定三个平面,是真命题;对于④,如果两个平面有三个公共点,则这两个平面相交或重合,所以该命题是假命题.故答案为:C.7.设集合,,则()A.B.C.D.【答案】B【解析】A={x|y=log2(2﹣x)}={x|x<2},B={x|x2﹣3x+2<0}={x|1<x<2},则∁A B={x|x≤1},故选:B.8.已知,则()A.B.C.D.【解析】试题分析:因为,,所以,.选.9.下列有关命题的说法正确的是()A.命题“若,则”的否命题为“若,则”B.命题“若,则,互为相反数”的逆命题是真命题C.命题“,使得”的否定是“,都有”D.命题“若,则”的逆否命题为真命题【答案】B【解析】“若,则”的否命题为“若,则”,错误;逆命题是“若则,互为相反数,”,正确;“,使得”的否定是“,都有”,错误;“若,则”为假命题,所以其逆否命题也为假命题,错误,故选B.10.设集合,集合,则集合()A.B.C.D.【答案】C【解析】由题意得,,∴,∴.故选C.11已知集合,,则=()A.B.C.D.【答案】B【解析】由题知,,则故本题答案选.12.在等比数列中,“是方程的两根”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】由韦达定理知,则,则等比数列中,则.在常数列或中,不是所给方程的两根.则在等比数列中,“,是方程的两根”是“”的充分不必要条件.故本题答案选.13. 设集合{|2}A x x =<, {}B x x a =,全集U R =,若UA B ⊆,则有( )A .0a =B .2a ≤C .2a ≥D .2a < 【答案】C【解析】(){}2,2,U A C B x a =-=≤,所以2a ≤,故选C.14. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题【答案】B 【解析】 “若,则”的否命题为“若,则”,错误;逆命题是 “若则,互为相反数,”,正确; “,使得”的否定是“,都有”,错误;“若,则”为假命题,所以其逆否命题也为假命题,错误,故选B.15. 设集合,,则( )A .B .C .D .【答案】B【解析】由题意可得:,则集合=.本题选择B 选项.16. 已知集合2{6}A x y x x ==-++,集合{1}B x x =≥,则A B =A.{23}x x -≤≤ B {1}x x ≥C {13}x x ≤≤. D.{2}x x ≥-【答案】C【解析】由题意知集合2{|60}{|23}A x x x x x =--≤=-≤≤,所以{|13}AB x x =≤≤ ,故选C 。

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。

集合练习题及答案

集合练习题及答案

集合练习题及答案集合是数学中的一个重要概念,它描述了一组对象的全体,这些对象被称为集合的元素。

下面是一些集合的练习题以及它们的答案。

练习题1:确定下列集合的元素:- A = {x | x 是一个正整数,且x ≤ 10}- B = {x | x 是一个偶数}答案1:- A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}- B = {..., -4, -2, 0, 2, 4, 6, 8, ...}练习题2:判断以下两个集合是否相等:- C = {x | x 是一个质数}- D = {2, 3, 5, 7, 11, 13, ...}答案2:C 和D 是相等的,因为 D 中列出的所有元素都是质数,且质数集合是无限的,所以用省略号表示。

练习题3:找出集合 A 和集合 B 的交集:- A = {1, 3, 5, 7, 9}- B = {2, 4, 6, 8, 10}答案3:A ∩B = {}(空集,因为 A 和 B 中没有共同的元素)练习题4:找出集合 A 和集合 B 的并集:- A = {1, 2, 3}- B = {3, 4, 5}答案4:A ∪B = {1, 2, 3, 4, 5}练习题5:找出集合 A 的补集(设全集 U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}):- A = {1, 2, 3, 4}答案5:A' = {5, 6, 7, 8, 9, 10}练习题6:判断以下命题的真假:- 如果x ∈ A 且y ∈ A,则 x = y。

答案6:这个命题是假的。

因为集合中的元素是互不相同的,如果 x 和 y 都是 A 的元素,它们不一定相等。

练习题7:给定集合 E = {x | x 是一个小于 20 的正整数},找出 E 的子集数量。

答案7:E 有 2^19 - 1 个子集,因为每个元素可以选择包含或不包含在子集中,有 19 个元素,所以有 2^19 种可能的组合,但全包含和全不包含是同一个集合,所以要减去 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值.
20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足
B C ⊆,求实数a 的取值范围.
附加题:
1.(13分)已知全集U =R ,非空集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪

x -2
x -
3a +1
<0
,B =⎩
⎪⎨⎪⎧⎭
⎪⎬⎪
⎫x ⎪⎪⎪
x -a 2
-2x -a <0
. (1)当a =1
2
时,求(∁U B )∩A ;
(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围.
2.(14分)p :函数f (x )=x 2
-2mx +4在[2,+∞)上单调递增;
q :关于x 的不等式4x 2+4(m -2)x +1>0的解集为R .若p ∨q 为真命题,p ∧q 为
1.[解答] (1)当a =1
2
时,A =⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫x ⎪⎪⎪⎪
x -2x -52
<0=⎩⎪⎨⎪⎧
⎭⎪⎬⎪
⎫x ⎪⎪⎪ 2<x <52
,B =⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫x ⎪⎪⎪
x -94x -12
<0
=⎩⎨⎧
x ⎪⎪⎪⎭⎬

12
<x <94.
∴(∁U B )∩A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪
⎪⎪
x ≤12或x ≥
9
4∩⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪
⎪⎪
2<x <
5
2=⎩⎨⎧
x ⎪⎪⎪⎭⎬

94
≤x <52.
(2)若q 是p 的必要条件,
即p ⇒q ,可知A ⊆B ,
由a 2+2>a ,得B ={x |a <x <a 2
+2},
当3a +1>2,即a >1
3
时,A ={x |2<x <3a +1},
则⎩
⎪⎨⎪⎧
a ≤2,a 2
+2≥3a +1,解得13<a ≤3-5
2

当3a +1=2,即a =1
3时,A =∅,符合题意;
当3a +1<2,即a <1
3时,A ={x |3a +1<x <2}.
则⎩⎪⎨


a ≤3a +1,a 2
+2≥2,
解得-12≤a <1
3
.
综上,a ∈⎣⎢⎡⎦⎥⎤
-12
,3-52.
2.[解答] 函数f (x )=x 2
-2mx +4图象的对称轴为x =m ,
故p 为真命题⇔m ≤2,
q 为真命题⇔Δ=[4(m -2)]2-4×4×1<0⇔1<m <3, ∵p ∨q 为真,p ∧q 为假,∴p 与q 一真一假. 若p 真q 假,则m ≤1, 若p 假q 真,则2<m <3,
综上所述,m 的取值范围为{m |m ≤1或2<m <3}.
3.[解答] 依题意,有⎩
⎪⎨⎪⎧
a x -2+1>0,
x -12
>a x -2+1. 解得⎩⎪⎨⎪⎧
x >2-1a ,x -a
x -2>0.
①若1<a <2,则有⎩⎪⎨⎪⎧
x >2-1a ,
x >2或x <a ,
而a -⎝ ⎛⎭
⎪⎫2-1a =a +1a -2>0,即a >2-1a

∴x >2或2-1
a
<x <a .
教案审核:。

相关文档
最新文档