初一几何难题例题_练习题(含答案)

初一几何难题例题_练习题(含答案)
初一几何难题例题_练习题(含答案)

1、证明线段相等或角相等

两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

ACB

AD D B

CD BD AD D CB B A AE CF A D CB AD CD

∠=?=∴==∠=∠=∠=∠=∠=90,,,,

∴?∴=??ADE CDF DE DF

例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。 求证:∠E =∠F

在?ABC 和?CD A 中,

A B C D B C A D A C C A A B C C D A SSS B

D

A B C D A E C F B E D F

===∴?∴∠=∠==∴=,,,??()

在?BCE 和?D A F 中,

BE D F B D BC D A BC E D AF SAS E F

=∠=∠=???

?

?∴?∴∠=∠??()

例3. 如图3所示,设BP 、CQ 是?ABC 的内角平分线,AH 、AK 分别为A 到BP 、CQ 的

交BC 于M ∴=∠∠ABH

NBH

又BH ⊥AH ∴==?∠∠AHB

NHB 90

BH =BH

∴?∴==??ABH NBH ASA BA BN AH H N

(),

同理,CA =CM ,AK =KM ∴KH 是?A M N 的中位线 ∴K H

M N

//

即KH//BC

例4. 已知:如图4

求证:FD ⊥ED

证明一:连结AD

AB AC BD D C

D A

E BAC

BD D C

BD AD

B D AB D AE

==∴+=?=?=∴=∴==,∠∠,∠∠,∠∠∠129090

在?A D E 和?B D F 中,

AE BF B D AE AD BD AD E BD F

FD ED

===∴?∴∠=

∠∴∠+∠=?∴⊥,∠∠,??31

3290

证明二:如图5所示,延长ED 到M ,使DM =ED ,连结FE ,FM ,BM

BD M C D E

C E BM C C BM

BM AC

A

ABM A

AB AC BF AE

AF C E BM

∴?

∴=∠=∠

∠=?

∴∠=?=∠

==

∴==

??

//

90

90

∴?

∴=

=

∴⊥

??

AEF BFM

FE FM

D M D E

FD ED

3、证明一线段和的问题

(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法)

例5. 已知:如图6所示在?ABC中,∠=?

B60,∠BAC、∠BCA的角平分线AD、CE相交于O。

证明:在AC 上截取AF =AE

()

∠=∠=∴?∴∠=∠BAD CAD AO AO

AEO AFO SAS ,??42

又∠=?B

60

∴∠+∠=?∴∠=?

∴∠+∠=?

∴∠=∠=∠=∠=?∴?∴=566016023120123460??FO C D O C AAS FC D C

()

即AC

AE CD

=+

例6. 已知:如图7所示,正方形ABCD 中,F 在DC 上,E 在BC 上,∠=?

EAF 45。

∴?∴=∠=∠??ABG AD F SAS AG AF (),13

又∠=?EAF 45

∴∠+∠=?∴∠+∠=?

23452145

即∠GAE =∠FAE ∴=∴=+G E E F E F B E D F

4、中考题:

如图8所示,已知?ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连结CE、DE。

∴?BFD是正三角形

又AE=BD

∴==

∴==

A E F D

B F

B A A F E F

即EF=AC

AC FD

EAC EFD

EAC D FE SAS

EC ED

//

()

∴∠=∠

∴?

∴=

??

例题:已知:如图9所示,∠=∠>

12,AB AC

,连结DE

在?A D E 和?AD B 中,

AE AB AD AD AD E AD B

BD D E E B D C E B D C E E

D E D C BD D C

=∠=∠=∴?∴=∠=∠∠>∠∴∠>∠∴>∴>,,,,21??

AF =AC ,连结DF

∴>∴>B D D F B D D C

DE ⊥CD 于D ,交BC 于

2. 已知:如图12所示,在?ABC 中,∠=∠A B 2,CD 是∠C 的平分线。

3. 已知:如图13所示,过?ABC 的顶点A ,在∠A 内任引一射线,过B 、C 作此射线的垂线BP 和CQ 。设M 为BC 的中点。

)C B C +

【试题答案】

1. 证明:取CD A C A D

A F C D

A F C C D E =∴

⊥∴∠=∠= 又∠+∠=?∠+∠=?14901390,

∴∠=∠=∴?∴=

43 AC C E

AC F

C E

D ASA C F ED

??() C B C E B C D E C D C D C D C B D C E D

B

E

B A

C B B A C E

=∠=∠=???

??∴?∴∠=∠∠=∠∴∠=∠??22

又∠=∠+∠BAC AD E E

∴∠=∠∴=∴==+ADE E AD AE BC CE AC ,

3. 证明:延长PM 交

CQ AP BP AP

BP CQ

PBM RCM

⊥⊥∴∴∠=∠,//

又BM CM BM P CM R

=∠=∠,

∴?∴=??BPM CRM PM RM

∴QM 是Rt QPR ?斜边上的中线

()

BC AB AC BC

AD

AB AC BC AD AB AC BC ∴<++∴<++∴<

++2414

初中数学几何图形初步经典测试题及答案解析

初中数学几何图形初步经典测试题及答案解析 一、选择题 1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( ) A .主视图 B .俯视图 C .左视图 D .一样大 【答案】C 【解析】 如图,该几何体主视图是由5个小正方形组成, 左视图是由3个小正方形组成, 俯视图是由5个小正方形组成, 故三种视图面积最小的是左视图, 故选C . 2.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( ) A .210824(3) cm - B .(2 108123cm - C .(2 54243cm - D .(2 54123cm - 【答案】A 【解析】 【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9?36ah 求解. 【详解】 解:设正六棱柱的底面边长为acm ,高为hcm ,

如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°, ∴BD = 12a cm ,AD =32 a cm , ∴AC =2AD =3a cm , ∴挪动前所在矩形的长为(2h +23a )cm ,宽为(4a + 1 2 a )cm , 挪动后所在矩形的长为(h +2a +3a )cm ,宽为4acm , 由题意得:(2h +23a )?(h +2a +3a )=5,(4a +1 2 a )?4a =1, ∴a =2,h =9?23, ∴该六棱柱的侧面积是6ah =6×2×(9?23)=210824(3) cm -; 故选:A . 【点睛】 本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键. 3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( ) A .90° B .75° C .105° D .120° 【答案】B 【解析】 【分析】 根据平行线的性质可得30E BCE ==?∠∠,再根据三角形外角的性质即可求解AFC ∠的度数. 【详解】

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

初一下册几何练习题

初一下册几何练习题 1.如图1,推理填空: (1)∵∠A =∠ (已知), ∴AC ∥ED ( ); (2)∵∠2 =∠ (已知), ∴AC ∥ED ( ); (3)∵∠A +∠ = 180°(已知), ∴AB ∥FD ( ); (4)∵∠2 +∠ = 180°(已知), ∴AC ∥ED ( ); 2.如图9,∠D =∠A ,∠B =∠FCB ,求证:ED ∥CF . 3.如图3,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理 由. 4.如图4,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME 。求证:AB ∥CD ,MP ∥NQ . 5.如图5,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G . 1 2 3 A F C D B E 图1 E B A F D C 图2 1 3 2 A E C D B F 图2 F 2 A B C D Q E 1 P M N 图4 图5 1 2 A C B F G E D

6.如图10,DE ∥BC ,∠D ∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数. 7.如图11,已知AB ∥CD ,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明) 8.如图12,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°. 求证:(1)AB ∥CD ; (2)∠2 +∠3 = 90°. 9.已知:如图:∠AHF +∠FMD =180°,GH 平分∠AHM ,MN 平分∠DMH 。 求证:GH ∥MN 。 图9 10. 已知:如图, ,,且. 图6 2 1 B C E D 图7 1 2 A B E F D C C 图8 1 2 3 A B D F

七年级几何证明题训练(含答案)讲解学习

1. 已知:如图11所示,?ABC 中,∠=C 90于E ,且有AC AD CE ==。求证:DE = 1 2 2. 已知:如图 求证:BC =

3. 已知:如图13所示,过?ABC 的顶点A ,在∠A 内任引一射线,过B 、C 作此射线的垂线BP 和CQ 。设M 为BC 的中点。 求证:MP =MQ 4. ?ABC 中,∠=?⊥BAC AD BC 90,于D ,求证:()AD AB AC BC <++1 4

【试题答案】 1. 证明:取 ΘAC AD AF CD AFC =∴⊥∴∠= 又∠+∠=?∠+∠=?14901390, ∴∠=∠=∴?∴=∴=431 2 ΘAC CE ACF CED ASA CF ED DE CD ??() 2. 分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手法。“截长”即将长的线段截

ΘΘCB CE BCD ECD CD CD CBD CED B E BAC B BAC E =∠=∠=??? ? ?∴?∴∠=∠∠=∠∴∠=∠??22 又∠=∠+∠BAC ADE E ∴∠=∠∴=∴==ADE E AD AE BC CE , 3. 证明:延长PM ΘCQ AP BP BP CQ PBM ⊥∴∴∠=∠,// 又BM CM =, ∴?∴=??BPM CRM PM RM ∴QM 是Rt QPR ?斜边上的中线

ΘAD BC AD AE BC AE AD ⊥∴<∴=>,22 () ΘAB AC BC BC AB AC BC AD AB AC BC AD AB AC BC +>∴<++∴<++∴<++241 4

初一几何练习题及答案汇编

相交线与平行线 练习题及答案(1) 一、填空题 1. 如图,直线AB 、CD 相交于点O ,若∠1=28°,则∠2=_______. 2. 已知直线AB CD ∥,60ABE =∠,20CDE =∠,则BED =∠ 度. 3. 如图,已知AB ∥CD ,EF 分别交AB 、CD 于点E 、F ,∠1=60°,则∠2=______度. 4. A =70°,∠P =_____. 5. 设a 、b 、c 为平面上三条不同直线, (1) 若//,//a b b c ,则a 与c 的位置关系是_________; (2) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________; (3) 若//a b ,b c ⊥,则a 与c 的位置关系是________. 6. 如图,填空: ⑴∵1A ∠=∠(已知) ∴_____________( ) ⑵∵2B ∠=∠(已知) ∴_____________( ) ⑶∵1D ∠=∠(已知) ∴______________( 二、解答题 7. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由. P B M A N 第3题

8.如图,已知直线AB与CD交于点O,OE⊥AB,垂足为O,若∠DOE=3∠COE,求∠BOC 的度数. 9.如图,直线// a b,求证:12 ∠=∠. 10.如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系. 解:∠B+∠E=∠BCE 过点C作CF∥AB, 则B ∠=∠____() 又∵AB∥DE,AB∥CF, ∴____________() ∴∠E=∠____() ∴∠B+∠E=∠1+∠2 即∠B+∠E=∠BCE. 11.如第10题图,当∠B、∠E、∠BCE有什么关系时,有AB∥DE. 12如图,AB∥DE,那么∠B、∠BCD、∠D有什么关系? 13、如图9,直线a∥b,∠1=28°,∠2=50°,则∠3=____。∠3+∠4+∠5=__ _。 14、若两条平行线被第三条直线所截得的八个角中,有一个角的度数已知,则() A只能求出其余3个角的度数B只能求出其余5个角的度数 C只能求出其余6个角的度数D只能求出其余7个角的度数 15、如图,已知AB∥CD,EG平分∠FEB,若∠EFG=40°,则∠EGF

初一几何证明典型例题

初一几何证明典型例题 1、已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC 在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=2ADBC 2、已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2ABCDEF21证明:连接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴△BCF≌△EDF (S、 A、S)∴ BF=EF,∠CBF=∠DEF连接BE在△BEF中,BF=EF∴ ∠EBF=∠BEF。∵ ∠ABC=∠AED。∴ ∠ABE=∠AEB。∴ AB=AE。在△ABF和△AEF中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴△ABF≌△AEF。∴ ∠BAF=∠EAF (∠1=∠2)。 3、已知:∠1=∠2,CD=DE,EF//AB,求证:EF=ACBACDF21E 过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE =DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD= ∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC=CG又 EF=CG∴EF=ACA 4、已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD =∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=

初一数学几何证明题答案

初一典型几何证明题 1、已知: AB=4,AC=2,D是 BC中点, AD是整数,求 AD 解:延长 AD到 E, 使 AD=DE ∵D是 BC中 点∴ BD=DC 在△ ACD和△ BDE中 A AD=DE ∠BDE=∠ ADC BD=DC ∴△ ACD≌△ BDE ∴AC=BE=2 ∵在△ ABE中 AB-BE<AE< AB+BE ∵AB=4 即4-2 <2AD< 4+2 1<AD<3 ∴AD=2B C D 2、已知: BC=DE,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2 A 1 2 B E C F D 证明:连接 BF 和 EF ∵BC=ED,CF=DF,∠ BCF=∠EDF ∴△ BCF≌△ EDF (S.A.S)

∴BF=EF,∠ CBF=∠ DEF 连接 BE 在△ BEF中 ,BF=EF ∴ ∠ EBF=∠ BEF。 ∵ ∠ ABC=∠ AED。 ∴ ∠ ABE=∠ AEB。 ∴AB=AE。 在△ ABF和△ AEF中 AB=AE,BF=EF, ∠ABF=∠ ABE+∠ EBF=∠AEB+∠BEF=∠AEF ∴△ ABF≌△ AEF。 ∴ ∠ BAF=∠ EAF ( ∠1=∠ 2) 。 3、已知:∠ 1=∠2,CD=DE, EF//AB,求证: EF=AC A 12 F C D E B 过C 作 CG∥EF 交 AD的延长线于点 G CG∥EF,可得,∠ EFD= CGD DE=DC ∠FDE=∠ GDC(对顶角) ∴△ EFD≌△ CGD EF=CG ∠CGD=∠ EFD 又, EF∥AB ∴,∠ EFD=∠1 ∠1=∠2 ∴∠ CGD=∠2 ∴△ AGC为等腰三角形, AC=CG 又EF=CG ∴EF=AC 4、已知: AD平分∠ BAC,AC=AB+BD,求证:∠ B=2∠C

初一几何难题_练习题(含答案)

1、证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1 求证:DE = 分析:由?ABC 连结CD ,易得CD = 证明:连结CD AC BC A B ACB AD DB CD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,, ∴?∴=??A D E CDF DE DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。本题亦可延长ED 到G ,使DG =DE ,连结BG ,证?EFG 是等腰直角三角形。有兴趣的同学不妨一试。 例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。 求证:∠E =∠F

AB CD BC AD AC CA ABC CDA SSS B D AB CD AE CF BE DF ===∴?∴∠=∠==∴=,,,??() 在?BCE 和?DAF 中, BE DF B D BC DA BCE DAF SAS E F =∠=∠=??? ? ?∴?∴∠=∠??() 说明:利用三角形全等证明线段求角相等。常须添辅助线,制造全等三角形,这时应注意: (1)制造的全等三角形应分别包括求证中一量; (2)添辅助线能够直接得到的两个全等三角形。 2、证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 例3. 如图3所示,设BP 、CQ 是?ABC 的内角平分线,AH 、AK 分别为A 到BP 、CQ 的垂线。 求证:KH ∥BC

初一几何典型例题难题

初一几何典型例题 1、如图,/ AOB=90 , 0M 平分/ AOB ,将直角三角尺的顶点P 在射线0M 上移动,两直角分别与 0A , 0B 相较于C , D 两点, 则PC 与PD 相等吗?试说明理由。 PC=PD 证明:作PE 丄0A 于点 V 0M 是角平分线 ??? PE=PF / EPF=90 V/ CPD=90 ???/ CPE= / DPF V/ PEC= / PFD=90 ???△ PCEPDF ??? PC=PD AF 丄 BE 证明: V CD=CE , CA=CB , / ACD= / BCE=90 ???△ ACD 尢 BCE ???/ CBE= / CAD V/ CBE+ / BEC=90 ???/ EAF+ / AEF=90 ???/ AFE=90 ??? AF 丄 BE E , PF 丄0B 于点F D 在BC 上,连接AD 、BE , AD 的延长线交BE 于点F 。试判断AF 与 0 D 2、如图,把两个含有45°角的三角尺按图所示的方式放置, BE 的位置关系。并说明理由。

3、如图,已知直线11 II 12,且13和11、12分别交于A、B两点,点P在直线AB上。 (1)如果点P在A、B两点之间运动,试求出/ 1、/ 2、/ 3之间的关系,并说明理由; (2)如果点P在A、B两点外侧运动时(点P与A、B不重合),试探究/ 1、/ 2、/ 3之间的关系,请画出图形,并说明理由。解:(1)/ 1 + / 2= / 3; 理由:过点P作11的平行线PQ, V 11 // 12, ???11 // 12 / PQ, ? / 1 = / 4,/ 2= / 5. V/ 4+/ 5= / 3,(2)同理:理由:当点? / 1 + / 2= / 3; / 1-/2= / 3 或/2- / 1 = / 3. P在下侧时,过点P作11的平行线PQ, V 11 // 12 ? 11 // 12 / PQ, ?/ 2=/ 4,/ 1= / 3+/ 4, ?/ 1-/2= / 3; 当点P在上侧时,同理可得/ 2- / 1 = / 3 ? 4、D、E是三角形^ ABC内的两点,连接BD、DE、EC,求证AB+AC > BD+DE+EC 解答:延长DE分别交AB、AC于F、G。 由于FB+FD>BD AF+AG>FG EG+GOEC 所以FB+FD+FA+AG+EG+GOBD+FG+EC

初一几何证明题练习

初一下学期几何证明题练习1、如图,∠B=∠C,AB∥EF,试说明:∠BGF=∠C。(6 解:∵∠B=∠C ∴ AB∥CD( ) 又∵ AB∥EF() ∴ ∥() ∴∠BGF=∠C() 2、如图,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED//BC,试说明 ∠1=∠2,以下是证明过程,请填空:(8分) 解:∵CD⊥AB,FG⊥AB ∴∠CDB=∠=90°( 垂直定义) ∴_____//_____ ( ∴∠2=∠3 ( 又∵DE//BC ∴∠=∠3 ( ∴∠1=∠2 ( ) 3、已知:如图,∠1+∠2=180°, 试判断AB、CD有何位置关系?并说明理由。(8分) 4、如图,AD是∠EAC的平分线,AD∥BC,∠B = 30°,你能算出∠EAD、∠ DAC、∠C的度数吗?(7分) D C B A E D

5、如图,已知EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。 解:∵EF∥AD(已知) ∴∠2= () 又∵∠1=∠2(已知) ∴∠1=∠3(等量替换) ∴AB∥() ∴∠BAC+ =180 o () ∵∠BAC=70 o(已知)∴∠AGD= ° 6、如图,已知∠BED=∠B+∠D,试说明AB与CD的位置关系。 解:AB∥CD,理由如下: 过点E作∠BEF=∠B ∴AB∥EF() ∵∠BED=∠B+∠D(已知) 且∠BED=∠BEF+∠FED ∴∠FED=∠D ∴CD∥EF() ∴AB∥CD()7、如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o, 求∠EAD、∠DAC、∠C的度数。(6分) 8、如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。(6分)

初一几何典型例题

初一几何典型例题 1、如图,∠AOB=90°,OM平分∠AOB,将直角三角尺的顶点P在射线OM上移动,两直角分别与OA,OB相较于C,D两点,则PC与PD相等吗?试说明理由。 PC=PD 证明:作PE⊥OA于点E,PF⊥OB于点F ∵OM是角平分线 ∴PE=PF ∠EPF=90° ∵∠CPD=90° ∴∠CPE=∠DPF ∵∠PEC=∠PFD=90° ∴△PCE≌△PDF ∴PC=PD 2、如图,把两个含有45°角的三角尺按图所示的方式放置,D在BC上,连接AD、BE,AD的延长线交BE于点F。试判断AF与BE的位置关系。并说明理由。 AF⊥BE 证明: ∵CD=CE,CA=CB,∠ACD=∠BCE=90° ∴△ACD≌△BCE

∵∠CBE+∠BEC=90° ∴∠EAF+∠AEF=90° ∴∠AFE=90° ∴AF⊥BE 3、如图,已知直线l1‖l2,且l3和l1、l2分别交于A、B两点,点P在直线AB上。 (1)如果点P在A、B两点之间运动,试求出∠1、∠2、∠3之间的关系,并说明理由; (2)如果点P在A、B两点外侧运动时(点P与A、B不重合),试探究∠1、∠2、∠3之间的关系,请画出图形,并说明理由。解:(1)∠1+∠2=∠3; 理由:过点P作l1的平行线PQ, ∵l1∥l2,∴l1∥l2∥PQ, ∴∠1=∠4,∠2=∠5. ∵∠4+∠5=∠3,∴∠1+∠2=∠3; (2)同理:∠1-∠2=∠3或∠2-∠1=∠3. 理由:当点P在下侧时,过点P作l1的平行线PQ, ∵l1∥l2 ∴l1∥l2∥PQ, ∴∠2=∠4,∠1=∠3+∠4,

当点P在上侧时,同理可得∠2-∠1=∠3. 4、D、E是三角形△ABC内的两点,连接BD、DE、EC,求证AB+AC>BD+DE+EC 解答:延长DE分别交AB、AC于F、G。 由于FB+FD>BD AF+AG>FG EG+GC>EC 所以 FB+FD+FA+AG+EG+GC>BD+FG+EC 即AB+AC+FD+EG>BD+FD+EG+DE+EC 所以AB+AC>BD+DE+EC 5、D为等边△ABC的边BC上任意一点,延长BC至G。作∠ADE=60°(E.C在AD同侧)与∠ACG的角平分线相交于E,连AE。求证:ADE为等边三角形。 解:如图,作DF‖AC交AB于F. ∵DF‖AC.等边△ABC. ∴等边△BFD.

七年级下几何证明题

1.填空完成推理过程: 如图,∵AB ∥EF ( 已知 ) ∴∠A + =1800 ( ) ∵DE ∥BC ( 已知 ) ∴∠DEF= ( ) ∠ADE= ( ) 2.已知:如图,∠ADE =∠B ,∠DEC =115°. 求∠C 的度数. 3. 已知:如图,AD ∥BC ,∠D =100°,AC 平分∠BCD , 求∠DAC 的度数. 4.已知AB ∥CD ,∠1=70°则∠2=_______,∠3=______,∠4=______ 43 2 1A C D B 5. 已知:如图4, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P .求∠P 的度数 A C D E F B D E B C A

H G 2 1 F E D C B A 6.直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数. 7.如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数. 8.如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37o,求∠D 的度数. 9.如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。 10.已知:如图,AB∥CD,∠B=400 ,∠E=300 ,求∠D的度数 A B C D E E B A

E D B A C 2 1 F E D B A C 11.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数. b a 341 2 12.已知等腰三角形的周长是16cm . (1)若其中一边长为4cm ,求另外两边的长; (2)若其中一边长为6cm ,求另外两边长; (3)若三边长都是整数,求三角形各边的长. 13.如图,AB//CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=370, 求∠D 的度数. 14.AB//CD,EF ⊥AB 于点E ,EF 交CD 于点F , 已知∠1=600 .求∠2的度数.

人教版七年级上册数学 几何图形初步单元测试卷附答案

一、初一数学几何模型部分解答题压轴题精选(难) 1.如图,点C在∠AOB的边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C. (1)若∠O=40°,求∠ECF的度数; (2)试说明CG平分∠OCD; (3)当∠O为多少度时,CD平分∠OCF?并说明理由. 【答案】(1)解:∵DE//OB ,∴∠O=∠ACE,(两直线平行,同位角相等) ∵∠O =40°, ∴∠ACE =40°,∵∠ACD+∠ACE= (平角定义)∴∠ACD= 又∵CF平分∠ACD , ∴ (角平分线定义) ∴∠ECF= (2)证明:∵CG⊥CF, ∴ . ∴ 又∵) ∴ ∵ ∴ (等角的余角相等) 即CG平分∠OCD (3)解:结论:当∠O=60°时,CD平分∠OCF . 当∠O=60°时 ∵DE//OB, ∴∠DCO=∠O=60°. ∴∠ACD=120°. 又∵CF平分∠ACD ∴∠DCF=60°,

∴ 即CD平分∠OCF 【解析】【分析】(1)根据平行线“两直线平行,同位角相等”,求得∠ACE=40°,根据平角的定义以及CF平分∠ACD ,可得到∠ACF=70°,然后求出∠ECF的度数; (2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,可得到∠GCO =∠GCD,即可证明CG平分∠OCD; (3)根据两直线平行,内错角相等得出∠DCO=∠O=60°,根据角平分线可得到∠DCF=60°,以此可得∠DCO=∠DCF,即CD平分∠OCF. 2.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F,如图所示,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论; 晓东通过观察,实验,提出猜想:BE+CD=BC,他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可. (1)下面是小东证明该猜想的部分思路,请补充完整; ①在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与________全等,判定它们全等的依据是________; ②由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=________°; (2)请直接利用①,②已得到的结论,完成证明猜想BE+CD=BC的过程. 【答案】(1)△BMF;SAS;60 (2)证明:由①知,∠BFE=60°, ∴∠CFD=∠BFE=60° ∵△BEF≌△BMF, ∴∠BFE=∠BFM=60°, ∴∠CFM=∠BFC-∠BFM=120°-60°=60°, ∴∠CFM=∠CFD=60°, ∵CE是∠ACB的平分线, ∴∠FCM=∠FCD, 在△FCM和△FCD中,, ∴△FCM≌△FCD(ASA), ∴CM=CD, ∴BC=CM+BM=CD+BE, ∴BE+CD=BC.

初一几何证明典型例题

初一几何证明典型例题 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

戴氏教育达州西外校区名校冲刺 戴氏教育温馨提醒: 暑假两个月是学习的最好时机,可以在两个月里,复习旧知识,学习新知识,承上,还能启下。在这个炎热的假期,祝你学习轻松愉快。 初一典型几何证明题 1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 3、 4、证明:连接BF 和EF A B C D E F 2 1 A D B C

∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF≌△

∴ BF=EF,∠CBF=∠DEF 连接BE 在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在△ABF 和△AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。 ∴ ∠BAF=∠EAF (∠1=∠2)。 已知:∠1=∠2,CD=DE , EF P 是∠BAC 平 分线AD 上一点,AC>AB ,求证:PC-PB

初一下册几何证明题(多篇)

初一下册几何证明题(精选多篇) 初一下册几何证明题 1.已知在三角形abc中,be,cf分别是角平分线,d是ef中点, 若d到三角形三边bc,ab,ac的距离分别为x,y,z,求证:x=y+z 证明;过e点分别作ab,bc上的高交ab,bc于m,n点. 过f点分别作ac,bc上的高交于p,q点. 根据角平分线上的点到角的2边距离相等可以知道fq=fp,em=en. 过d点做bc上的高交bc于o点. 过d点作ab上的高交ab于h点,过d点作ab上的高交ac于j点. 则( )x=do,y=hy,z=dj. 因为d是中点,角ane=角ahd=90度.所以hd平行me,me=2hd 同理可证fp=2dj。 又因为fq=fp,em=en. fq=2dj,en=2hd。 又因为角fqc,doc,enc都是90度,所以四边形fqne是直角梯形,而d是中点,所以2do=fq+en 又因为 fq=2dj,en=2hd。所以do=hd+jd。 因为x=do,y=hy,z=dj.所以x=y+z。 2.在正五边形abcde中,m、n分别是de、ea上的点,bm与相交于点o,若∠bon=108°,请问结论bm=是否成立?若成立,请给予证明;若不成立,请说明理由。

当∠bon=108°时。bm=还成立 证明;如图5连结bd、ce. 在△bci)和△cde中 ∵bc=cd,∠bcd=∠cde=108°,cd=de ∴δbcd≌δcde ∴bd=ce,∠bdc=∠ced,∠dbc=∠cen ∵∠cde=∠dec=108°,∴∠bdm=∠cen ∵∠obc+∠ecd=108°,∠ocb+∠ocd=108° ∴∠mbc=∠ncd 又∵∠dbc=∠ecd=36°,∴∠dbm=∠e ∴δbdm≌δe∴bm= 3.三角形abc中,ab=ac,角a=58°,ab的垂直平分线交ac与n,则角nbc=() 3° 因为ab=ac,∠a=58°,所以∠b=61°,∠c=61°。 因为ab的垂直平分线交ac于n,设交ab于点d,一个角相等,两个边相等。所以,rt△adn全等于rt△bdn 所以∠nbd=58°,所以∠nbc=61°-58°=3° 4.在正方形abcd中,p,q分别为bc,cd边上的点。且角paq=45°,求证:pq=pb+dq 延长cb到m,使bm=dq,连接ma ∵mb=dqab=ad∠abm=∠d=rt∠

七年级下册数学几何部分练习题

1 / 5 第八章、第九章、第十三章练习题 一、选择题 1.在下面四个图形中,能用O AOB ∠∠∠,,1三种方法表示同一个角的图形是( ) A B C D 2.以下两条直线互相垂直的是( )①两条直线相交所成的四个角中有一个是直角; ②两条直线相交所成的四个角相等;③两条直线相交,有一组邻补角相等; ④两条直线相交,对顶角互补. A.①③ B.①②③ C.②③④ D.①②③④ 3自己画出图形,∠1=15°,∠AOC=90°,点B 、O 、D 在同一直线上,则∠2的度数为( ) A.75° B.15° C.105° D.165° 4.两个锐角的和( )A.一定是锐角 B.一定是直角 C.一定是钝角 D.可能是钝角、直角或钝角 5.点到直线的距离是指这点到这条直线的( )A.垂线段 B.垂线的长 C. 长度 D.垂线段的长度 6.如右图,已知∠AOC=∠BOD=90o,∠AOD=150o,则∠BOC 的度数为( ) A.30o B.45o C.50o D.60o 7.下列说法正确的有( ) (1)互补的两个角中,至少有一个角大于或等于直角;(2)一个角的补角 必是钝角;(3)两个锐角一定互为余角;(4)直角没有补角;(5)一个角的补角一定比这个角大。 A.1个 B.2个 C.3个 D.4个 8.下列语句正确的是( )A.平角就是一条直线 B.周角就是一条射线 C.小于平角的角是钝角 D.一周角等于四个直角 9.从钝角的顶点,在其内部引一条射线,那么图形中出现( ) A.2个锐角 B.1个锐角 C.至少2个锐角 D.至少1个锐角 10.如图,DE ∥BC ,EF ∥AB ,图中与∠BFE 互补的角共( )个A.2个 B.3个 C.4个 D.5个 11.如图a ∥b ,∠1与∠2互余,∠3=115°,则∠4等于( )A.115 B.155° C.135° D.125° 12.如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ) A.10° B.15° C.20° D.30° 13.将一张长方形纸片如图所示折叠后,再展开,如果∠1=56°,那么∠2等于( ) A.56° B.68° C.62° D.66° 第12题图 第11题图 第10题图 第15题图 第14题图 第13题图 C D B O

(完整版)初一上册几何练习题50道

.选择题 1. 如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是( ) (A)锐角三角形(B)直角三角形(C)钝角三角形(D)等腰三角形 2. 下列给出的各组线段中,能构成三角形的是( ) (A)5 , 12 , 13 (B)5 , 12 , 7 (C)8 , 18 , 7 (D)3 , 4, 8 3 .一个三角形的三边长分别是15 , 20和25 ,则它的最大边上的高为( ) (A) 12 (B) 10 (C) 8 (D) 5 4. 两条边长分别为2和8 ,第三边长是整数的三角形一共有( ) (A)3个(B)4个(C)5个(D)无数个 5. 下列图形中,不是轴对称图形的是( ) (A)线段MN (B)等边三角形(C)直角三角形(D) 钝角ZAOB 6. 直角三角形两锐角的平分线相交所夹的钝角为( ) (A)125 0(B)135 0(C)145 °(D)150 0 7. 已知Z a , Z 3是某两条平行线被第三条直线所截得的同旁内角,若Za= 50°,则Z。葡) A . 40 ° B. 50 ° C. 130 ° D . 140 ° 8. 如图,下列推理中正确的是(

A. 若Z 1 = Z2,贝U AD //BC B. 若Z 1 = Z2 ,贝U AB //DC C. 若Z A = Z3,贝U AD //BC D. 若Z3 = Z4,贝U AB // DC 9. 下列图形中,可以折成长方体的是( D. 10. 一个几何体的三视图如图所示,那么这个几何体是( ) A. B. C_ D 11. 如图1,在AABC中,AB = AC,点D在AC边上,且BD = BC = AD,则Z A的度数为( ) A . 30 ° B . 36 ° C . 45 ° D . 70 ° 12. 、如图2 , AB II CD , AC ± BC于C,贝U图中与/ CAB互余的角有()

初中数学几何证明试题含答案

十二周培优精选1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB, 求证:CD=GF. 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形. 4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、 MN于E、F. 求证:∠DEN=∠F. 1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD 求证:CE=CF.(初二) 2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC 求证:AE=AF.(初二) 3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠ 求证:PA=PF.(初二) 经典题4 1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4, 求:∠APB的度数.(初二) 2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA. 求证:∠PAB=∠PCB. 4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与 AE=CF.求证:∠DPA=∠DPC.( 经典题(一) 1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。

2. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得 △DGC ≌△APD ≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG =150 所以∠DCP=300 ,从而得出△PBC 是正三角形 4.如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN 和∠QMN=∠QNM ,从而得出∠DEN =∠F 。 经典题(二) 1.(1)延长AD 到F 连BF ,做OG ⊥AF, 又∠F=∠ACB=∠BHD , 可得BH=BF,从而可得HD=DF , 又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM (2)连接OB ,OC,既得∠BOC=1200, 从而可得∠BOM=600, 所以可得OB=2OM=AH=AO, 得证。 3.作OF ⊥CD ,OG ⊥BE ,连接OP ,OA ,OF ,AF ,OG ,AG ,OQ 。 由于22AD AC CD FD FD AB AE BE BG BG , 由此可得△ADF ≌△ABG ,从而可得∠AFC=∠AGE 。 又因为PFOA 与QGOA 四点共圆,可得∠AFC=∠AOP 和∠AGE=∠AOQ , ∠AOP=∠AOQ ,从而可得AP=AQ 。 4.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。可得PQ= 2 EG FH 。 由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△CBI ,可得FH=BI 。 从而可得PQ= 2 AI BI = 2 AB ,从而得证。 经典题(三) 1.顺时针旋转△ADE ,到△ABG ,连接CG. 由于∠ABG=∠ADE=900+450=1350 从而可得B ,G ,D 在一条直线上,可得△AGB ≌△CGB 。 推出AE=AG=AC=GC ,可得△AGC 为等边三角形。 ∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。 又∠EFC=∠DFA=450+300=750. 可证:CE=CF 。 2.连接BD 作CH ⊥DE ,可得四边形CGDH 是正方形。 由AC=CE=2GC=2CH , 可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150, 又∠FAE=900+450+150=1500, 从而可知道∠F=150,从而得出AE=AF 。 3.作FG ⊥CD ,FE ⊥BE ,可以得出GFEC 为正方形。 令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X 。

初中经典几何证明练习题(含标准答案)

初中几何证明题 经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF . 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形 3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN

相关文档
最新文档