函数的平均变化率解读

合集下载

变化率简介

变化率简介

变化率简介变化率是学习导数的前提,它在描述各种变化规律的过程中起着非常重要的作用,速度和加速度就是两个典型例子.新教材人教A 版中,对于变化率主要从以下两个方面介绍:1、平均变化率;2、瞬时变化率.一、平均变化率函数()y f x =在区间00[,]x x x +∆或(00[,]x x x +∆)上的平均变化率是商yx∆∆,其中x ∆是自变量x 在0x 处的改变量,可正可负,但不能为0,y ∆是函数值相应的改变量,即00()()y f x x f x ∆=+∆-(y ∆为正、负、零均可)所以00()()f x x f x y x x+∆-∆=∆∆,下面通过举例来进一步加深对概念的理解。

例1、求332-=x y 在0x 到x x ∆+0之间的平均变化率.解:当自变量从0x 到x x ∆+0之间变化时,函数的平均变化率为:x f∆∆=∆-∆+=x x f x x f )()(00xx x x ∆---∆+=]33[]3)(3[2020 x x xx x x ∆+=∆∆+∆⋅=36)(3602评注:此类题目只需要紧扣定义式,注意运算过程就可以了. 评注:⑴函数平均变化率的求法可分两步:①求y ∆;②求yx∆∆.⑵不论0x 、x ∆中的哪一个变化,都会引起函数平均变化率的变化。

拓展:函数()y f x =的平均变化率的几何意义为其图象上割线的斜率。

即:函数()y f x =的图象为曲线C ,曲线C 上有一点00(,)P x y 及邻近一点00(,)Q x x y y +∆+∆,则割线PQ 的斜率0000y y y yk x x x x+∆-∆==+∆-∆。

利用平均变化率的几何意义,可解决一些实际问题,举例如下:例2、某电视机厂有甲、乙两条生产流水线,产量S (单位:台)与时间t (单位:天)的关系如图所示,问:(1)0t 天内,甲、乙两条生产线的平均日产量哪个大?(2)在接近0t 天时,甲、乙两条生产线谁的日产量大?0,)x y y ∆+∆解析:(1) 0t 天内,甲、乙两条生产线的平均日产量,即函数1()S f t =与2()S f t =在0[0,]t 内的平均变化率,其都为直线OA 的斜率,所以0t 天内,甲、乙两条生产线的平均日产量相同。

平均变化率与瞬时变化率详解课件

平均变化率与瞬时变化率详解课件
瞬时变化率
定义与计算
瞬时变化率定义
瞬时变化率是指在某一时刻,函数值随自变量变化的快慢程度。通常用导数来 表示函数的瞬时变化率。
瞬时变化率的计算
对于函数$f(x)$,其瞬时变化率可以通过求导数$f'(x)$来计算。即,如果$f(x)$ 在$x=x_0$处的导数为$f'(x_0)$,则$f'(x_0)$即为在$x=x_0$处的瞬时变化率 。
,可以获得股票价格的预测结果,对于投资决策和风险管理具有重要意义。
机械故障预测
总结词
机械故障预测是基于机械设备运行过程中的数据,通 过分析变化率等信息,来预测设备可能出现的故障时 间和类型。
详细描述
机械故障预测是机械工程领域中的一个重要应用案例 。通过对机械设备运行过程中的数据进行分析,可以 提取出设备的运行特征和故障征兆,从而预测设备可 能出现的故障时间和类型。其中,变化率是一个重要 的指标,它可以反映设备的运行状态和磨损程度。通 过对变化率的计算和分析,可以获得机械故障预测结 果,对于提高设备运行效率和安全性具有重要意义。
感谢观看
THANKS
拐点和极值
函数的拐点可能是导函数的零 点,但并非所有导函数的零点
都是函数的拐点。
导数的计算方法
定义法
根据导数的定义计算导 数。
求导公式
利用常见函数的导数公 式进行计算。
复合函数求导
复合函数的导数可以利 用链式法则和乘法法则
进行计算。
高阶导数
高阶导数的计算需要利 用低阶导数的计算方法
,并逐阶求导。
04
瞬时变化率的性质
瞬时变化率非负性
对于单调递增函数,其瞬时变化率大于等于0;对于单调递减函数,其瞬时变化 率小于等于0。

函数的平均变化率课件

函数的平均变化率课件
T10-T0
16
(2)平均变化率为
=-
=-1.6.
10
10
它表示从 t=0 到 t=10,蜥蜴的体温平均每分钟下降 1.6 ℃.
课堂小结
1.函数的平均变化率可正可负可为零,反映函数 y=f(x)在[x1,x2]
上变化的快慢,变化快慢是由平均变化率的绝对值决定的,且绝对值
越大,函数值变化得越快.
C.2
D.0
Δy f1.1-f1 0.21
[Δx=
= 0.1 =2.1.]
1.1-1
3.如图所示,函数 y=f(x)在[x1,x2],[x2,x3],[x3,x4]这几个区
间内,平均变化率最大的一个区间是________.
[x3,x4]
[由平均变化率的定义可知,函数 y=f(x)在区间[x1,x2],[x2,
一般地,若函数y=f(x)的定义域为D,且x1,x2∈D,x1≠x2,y1=f(x1),y2=f(x2),则称Δx=x2-x1
为自变量的改变量;称Δy=y2-y1(或Δf=f(x2)-f(x1))为相应的因变量的改变量;称
y
x
=
y 2 -y 1
x 2 -x 1
(或
f
x
=
f(x 2 )-f(x 1 )
________.
5 [因为函数 f(x)=x2-x 在区间[-2,t]上的平均变化率是 2,
ft-f-2 t2-t-[-22--2]
所以

=2,
t--2
t+2
即 t2-t-6=2t+4,从而 t2-3t-10=0,解得 t=5 或 t=-2(舍去).]
5.已知函数f(x)=3x2+5,求f(x):
(2)运动物体在t0到t1这段时间内运动的平均速度就是物体运动的位

函数的平均变化率课件

函数的平均变化率课件
函数的平均变化率ppt课件
目录 Contents
• 函数平均变化率的概念 • 函数平均变化率的应用 • 函数平均变化率的性质 • 函数平均变化率的实例分析 • 总结与思考
01
函数平均变化率的概念
平均变化率的定义
01
平均变化率是指在一定区间内函 数值的改变量与自变量改变量的 比值,通常表示为函数在区间两 端点处的函数值的差的商。
函数平均变化率的重要性
理解函数单调性的基础
数学分析的基础
平均变化率是判断函数单调性的重要 依据,通过研究平均变化率,可以深 入理解函数的单调性。
平均变化率是微积分学中的基本概念 ,对于后续学习微积分、导数等数学 知识具有重要意义。
指导实际应用
在工程、经济、生物等领域中,平均 变化率的概念有着广泛的应用,如预 测模型、成本分析等。

幂函数的平均变化率
幂函数形式
$y = x^n$
平均变化率公式
$frac{Delta y}{Delta x} = nx^{n-1}$
实例分析
对于函数$y = x^3$,当$Delta x = 1$时,$Delta y = 3x^2$ ,所以平均变化率为$nx^{n-1} = 3x^2$。
05
总结与思考
02
它反映了函数在区间内整体变化 的趋势和速度,是函数在区间内 的一种平均性质。
平均变化率的意义
平均变化率可以用于分析函数的单调 性、凹凸性以及极值点等性质,是研 究函数的重要工具之一。
通过计算平均变化率,可以了解函数 在区间内的整体变化趋势,从而对函 数的性质进行初步判断。
平均变化率的计算方法
01
02
03
04
计算平均变化率需要找到函数 在区间两端点处的函数值,然 后相减得到函数值的改变量。

高中数学知识点精讲精析 变化的快慢与变化率

高中数学知识点精讲精析 变化的快慢与变化率

1 变化的快慢与变化率
1.平均变化率:上述问题中的变化率可用式子 表示,称为函数f (x )从x 1到x 2的平均变化率。

1.函数的平均变化率的概念:一般地,给出函数()f x 在区间12[]x x ,上的平均变化率2121
()()f x f x x x --; 2. 平均变化率的几何意义:直线的斜率;
3.平均变化率的实际作用:反映了函数某个区间上的平均变化率(变化快慢);或者说在某个区间上曲线的陡峭程度.平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.
提醒:平均变化率有局限.我们知道平均变化率只能反映函数在某个区间内的平均变化,而无法精确反映某一点的变化状态
1 已知函数x x x f +-=2)(的图象上的一点)2,1(--A 及
临近一点)2,1(y x B ∆+-∆+-则
=∆∆x
y . 【解析】
)1()1(22x x y ∆+-+∆+--=∆+- ∴x x
x x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 2 求2x y =在0x x =附近的平均变化率.
【解析】
2
020)(x x x y -∆+=∆
所以x x x x x y ∆-∆+=∆∆2020)(x x x x x x x x ∆+=∆-∆+∆+=020202022 1
212)()(x x x f x f --
所以2x y =在0x x =附近的平均变化率为x x ∆+02。

函数的平均变化率课件

函数的平均变化率课件

实际问题中如何应用函数的平均变化率?
运动学
速度和加速度的变化率都是平均 变化率,可以通过这些平均变化 率来了解运动学中的物理现象。
商业领域
可以通过函数的平均变化率来评 价某一产品或公司的增长速度。
时间管理
可以通过函数的平均变化率来了 解时间利用效率的变化。
平均变化率的图像解释
相邻两点之间的斜率
在图像上,平均变化率可以表示为相邻两条线段的 斜率。
函数的平均变化率的应用举例
1
应用一
在积分计算中,常用平均变化率来近似求解曲线下的面积。
2
应用二
在微分方程的求解中,平均变化率可以用于简单的数值方法计算。
3
应用三
在统计学中,业务活动的整体变化趋势可以通过平均变化率来进行分析。
函数的平均变化率在物理学中的应用
万有引力
质点在单位时间内运动的平均速 度可以用万有引力的平均变化率 来计算。
1 步骤一
首先,要知道函数在哪里发生了断裂,也就 是函数不连续的地方。
2 步骤二
判断函数在不连续点与相邻区间之间的平均 变化率是否存在。
3 步骤三
如果这一区间存在平均变化率,那么新的区 间一定就是函数的定义域。
4 步骤四
如果不存在平均变化率,则需要进一步的讨 论和推导。
如何根据函数的平均变化率推断函数 的值域?
1 步骤一
求出函数的导数。
2 步骤二
根据导数的正负来判断函数的值域。
3 步骤三
如果导数大于零,则函数单调递增;如果导数小于零,则函数单调递减;否则,需要进 一步研究函数。
函数的平均变化率的重要性
平均变化率是微积分的基础概念之一,不仅在学术研究中广泛应用,而且在 日常生活中也具有重要的意义。通过平均变化率可以揭示出事物在不同时间 段内的变化趋势,从而帮助我们做出更好的决策。

函数的平均变化率讲解

函数的平均变化率讲解

=3·Δx,
∴ΔΔxy=3·ΔΔx x=3,
即 f(x)在 1 到 1+Δx 之间的平均变化率为 3.
②∵Δy=g(1+Δx)-g(1)
=[2×(1+Δx)2+1]-(2×12+1)=4·Δx+2·(Δx)2,
∴ΔΔxy=4·Δx+Δ2·x(Δx)2=4+2·Δx,
即 g(x)在 1 到 1+Δx 之间的平均变化率为 4+2Δx.
已知函数f(x)=x2+x,分别计算f(x)在区间[1,3],[1, 2],[1,1.5],[1,1+Δx]的平均变化率.
【 解 】 函 数 f(x) 在 区 间 [1 , 3] 的 平 均 变 化 率 为
f(3)3- -f1(1)=32+3-(2 12+1)=5;
函数 f(x)在区间[1,2]的平均变化率为f(2)2--f1(1)=
(1)该质点在前3 s内的平均速度; (2)质点在2 s到3 s内的平均速度.
【思路探究】 因为Δs 是质点在Δt 这段时间内的位移, 所以ΔΔst就是质点在Δt 这段时间内的平均速度.服/务/教ຫໍສະໝຸດ 师 免/费/馈/赠返回菜单
RB . 数学 . 选修2-2
【自主解答】 (1)由题设知,Δt=3 s, Δs=s(3)-s(0)=24 m, ∴平均速度为 v=ΔΔst=8 m/s. (2)由题设知:Δt=3-2=1 s,Δs=s(3)-s(2)=12 m. ∴平均速度为 v=ΔΔst=12 m/s.
服/务/教/师 免/费/馈/赠
返回菜单
RB . 数学 . 选修2-2
由于 k1<k2<k3, ∴函数 f(x)=x2+a 在 x=3 附近的平均变化率最大. 当 f(x)=-x2 时,
f(x)在 x=1 附近的平均变化率为 k1=f(1+ΔxΔ)x-f(1)= [-(1+ΔxΔ)x2]-(-1)=-2-Δx;

1 函数的平均变化率、瞬时速度、导数的概念

1  函数的平均变化率、瞬时速度、导数的概念

求函数在某点处的导数
例2.求函数 f (x)=3x2+ax+b在x=1处的导数
一作差:
下结论
求物体运动的瞬时速度
例3.一个物体的运动方程为s=(2t+1)2,其中s的单位是米,t 的单位是秒,求该物体在1秒末的瞬时速度.
【归纳】求物体的瞬时速度的心得体会. 提示:Δt 趋近于0,是指时间间隔Δt
(3)从平均速度到瞬时速度 平均变化率的物理意义是把位移s看成时间t的函数s=s(t ),
在时间段[t1,t2]上的平均速度,即 v s(t2 ) s(t1) . t2 t1
lim y lim f x0 x f x0
x x0
x0
x
求函数的平均变化率
例1.已知函数f(x)=3x+1,计算f(x)在-3到-1之间和在1 到1+Δx之间的平均变化率.
越来越短,能越过任意小的时间间隔,但 始终不能为0.Δt,Δs在变化中都趋近于0,
s 但t 趋近于一个常数,这是极限思想,
即求函数 s(t)在某一点处的导数.
平均速度与瞬时速度的求解 【典例】一做直线运动的物体,其位移s与时间t的关系是s(t )= 3t-t2. (1)求此物体的初速度; (2)求此物体在t=2时的瞬时速度; (3)求t=0到t=2时的平均速度.
C (34, 33.4)
30
B (32, 18.6) 20
10 A (1, 3.5)
2
02
10
20
30
34 t(d)
情景 2:在爬山过程中,我们都有这样的感觉:当 山坡平缓时,步履轻盈;当山坡陡峭时,气喘吁吁, 那么,我们如何反映山坡的平缓与陡峭程度呢?
1.函数y=f(x)从x1到x2的平均变化率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均变化率是曲线陡峭程度的“数量化”, 曲线陡峭程度是平均变化率“视觉化”.
分别观察两组区间和其对应的平均变化率, 你能得出什么规律吗?
例4. 请分别计算出下面两个图象表示 的函数h(t)在区间[0,3]上的平均变化率。
h
10
h
10
h
10
O
1
A
10 3
3
t
O
1
3
B
t
O
10 3C 10 3 Nhomakorabea1
3
t
观察这三个数据你有什么发现?
课堂小结 形 曲线陡峭 数 平均变化率
变量变化的快慢
3.5
3 6 9 12 T(月)
你还有其它的方法得出 这样的结论吗?
知识运用
f ( x) 2 x 1, g ( x) 2 x分 , 别计算在区间[-3,-1],[0,5]上 f ( x)及 g ( x )
例2、已知函数 的平均变化率。
思考: y=kx+b在区间[m,n]上的平均变 化率有什么特点?
知识运用
例3. 已知函数
f ( x) x ,分别计算 f ( x) 在下
2
列区间上的平均变化率:
(1)[1,3];
4
(5)[0.9,1]; 1.9
(2)[1,2];
(3)[1,1.1];
3
2.1 2.001
(6)[0.99,1]; 1.99
(7)[0.999,1]. 1.999
(4)[1,1.001]。
函数的平均变化率
问题情境
如右图所示,向高为10cm的杯子等速注水,3 分钟注满。若水深h是关于注水时间t的函数,则下 面两个图象哪一个可以表示上述函数?
h/cm
10
M N 10
h/cm
N
M
O 1
A
3
t/m
O
1
3
B
t/m
开始时,h变化得快,后来h变化得慢。
平均变化率
一般地,函数 均变化率为
f ( x) 在区间上
W(kg) 11 8.6 6.5
比较它们的实际 你能说出这两个 平均变化率的实 意义,你能从中 际意义吗? 得出什么结论?
解:从出生到第3个月, 婴儿体重的平均变化率为 6.5 3.5 1(kg / 月) 30 从第6个月到第12个月, 婴儿体重的平均变化率为
11 8.6 0.4(kg / 月) 12 6
[ x1 , x2 ] 的平
f ( x2 ) f ( x1 ) x2 x1
形 曲线陡峭程度
数 平均变化率
变量变化的快慢
平均变化率是曲线陡峭程度的“数量化”, 曲线陡峭程度是平均变化率“视觉化”.
知识运用
例1 某婴儿从出生到第12个月的体重变化如图 所示,试分别计算从出生到第3个月与第6个月 到第12个月该婴儿体重的平均变化率。
相关文档
最新文档