运筹学1

合集下载

运筹学1

运筹学1
解:设 x1和x2分别表示产品甲和乙的产量, 这样可以建立如下的数学模型。 目标函数:Max 20x1 +30 x2 约束条件:s.t. 3 x1 + 7 x2 ≤ 240(劳动力限制) 2 x1 + 4 x2 ≤ 150(原材料限制) 4 x1 + 3 x2 ≤ 250(设备限制) x1,x2≥ 0(非负约束)
16/10
若将目标函数变为max Z = 2x1 + 4x2 ,则表示目标函数的等值线与约束 条件x1 + 2x2 ≤8的边界线x1 + 2x2 = 8平行。当Z值由小变大时,与线段Q 2Q3重合,如图1.3所示,线段Q2Q3上任意一点都使Z取得相同的最大值, 即这个线性规划问题有无穷多最优解。
17/10
运筹学第一次作业指导
储宜旭
이 문서는 나눔글꼴로 작성되었습니다. 설치하 기
运筹学
2/10
3/10
4/10
5/10
实际问题线性规划模型的基本步骤: (1) 确定决策变量。这是很关键的一步,决策变量选取 得当,不仅会使线性规划的数学模型建得容易,而且 求解比较方便。 (2) 找出所有限制条件,并用决策变量的线性等式或不 等式来表示,从而得到约束条件。一般可用表格形式 列出所有的限制数据,然后根据所列出的数据写出相 应的约束条件,以避免遗漏或重复所规定的限制要求。 (3) 把实际问题所要达到的目标用决策变量的线性函数 来表示,得到目标函数,并确定是求最大值还是最小 值。
10/10
11/10
12/10
线性规划问题的图解法
为了给后面的线性问题的基本理论提供较直观的几何说明, 先介绍线性规划问题的图解法。 我们把满足约束条件和非负条件的一组解叫做可行解,所有 可行解组成的集合称为可行域。 图解法的一般步骤如下。 (1) 建立平面直角坐标系。 (2) 根据线性规划问题的约束条件和非负条件画出可行域。 (3) 作出目标函数等值线Z = c(c 为常数),然后根据目标函 数平移等值线至可行域边界,这时目标函数与可行域的交点 即最优解。

《运筹学》课件 第一章 线性规划

《运筹学》课件 第一章 线性规划

10
解:令
xi=
1, Si被选中
min z= ci xi i 1 10
0, Si没被选中
xi 5
i 1
x1 x8 1 x7 x8 1
称为技术系数
b= (b1,b2, …, bm) 称为资源系数
2、非标准型
标准型
(1)Min Z = CX
Max Z' = -CX
(2)约束条件
• “≤”型约束,加松弛变量;
松弛变量
例如: 9 x1 +4x2≤360
9 x1 +4x2+ x3=360
• “≥”型约束,减松弛变量;
例、将如下问题化为标准型
数据模型与决策 (运筹学)
课程教材:
吴育华,杜纲. 《管理科学基础》,天津大学出版社。
绪论
一、运筹学的产生与发展
运筹学(Operational Research) 直译为“运作研究”。
• 产生于二战时期 • 60年代,在工业、农业、社会等各领域得到广泛应用 • 在我国,50年代中期由钱学森等引入
Min z x1 2x2 3x3
x1 x2 x3 7
s.t
.
x1 x2 x3 3x1 x2 2
x3
2
5
x1, x2 , x3 0
解:令 Min z Max z' (z' z) ,第一个约束加松弛变量x5,
第二个约束减松弛变量x6,得标准型:
Max z' x1 2x2 +3x3
x1 x2 x3 x4 7
s.t .
x1 x2 3x1
x3 x2
x5 2 2x3 5
x1 , , x5 0

运筹学第1章-线性规划

运筹学第1章-线性规划
凸集的数学定义:设K为n维欧氏空间的一个点集,若K中任意两个 点X1和X2连线上的所有点都属于K,即“X =αX1+(1-α) X2 ∈ K(0≤a ≤ 1)”,则称K为凸集。设X(x1,x2,…,xn),X1(u1, u2,...,un),X2(v1,v2,…,vn),如图1一5所示,“X =αX1+(1α) X2 ∈ K(0≤a ≤ 1)”的证明思路如下:
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。

运筹学-1、线性规划

运筹学-1、线性规划

则:
x1 x2 100
x1 ( x3 ) x4 x2 2
设x3为第二年新的投资; x4为第二年的保留资金;
则:
18
•设x5为第三年新的投资;x6为第三年的保留资金;
则:
x3 ( x5 ) x6 x4 2 x1 2
•设x7为第四年新的投资;第四年的保留资金为x8;
max Z 2 x7 x9 x1 x2 100 x 2x 2x 2x 0 2 3 4 1 4 x1 x3 2 x4 2 x5 2 x6 0 s.t 4 x3 x5 2 x6 2 x7 2 x8 0 4 x5 x7 2 x 8 2 x9 0 x 0, j 1, 2, , 9 j
13
例3:(运输问题)设有两个砖厂A1 、A2 ,产 量分别为23万块、27万块,现将其产品联合供应三 个施工现场B1 、 B2 、 B3 ,其需要量分别为17万 块、18万块、15万块。各产地到各施工现场的单位 运价如下表: 现场 砖厂 B1 B2 B3
A1 A2
5 6
14 18
7 9
问如何调运才能使总运费最省?
20
例5:(下料问题) 某一机床需要用甲、乙、 丙三种规格的钢轴各一根,这些轴的规格分别是 2.9,2.1, 1.5(m),这些钢轴需要用同一种圆钢来做,圆 钢长度为7.4m。现在要制造100台机床,最少要用多 少根圆钢来生产这些钢轴?
解:第一步:设一根圆钢切割成甲、乙、丙三 种钢轴的根数分别为y1,y2,y3,则切割方式可用不等 式2.9y1+2.1y2+1.5y3≤7.4 表示,求这个不等式的有实 际意义的非负整数解共有8组,也就是有8种不同的 下料方式,如下表所示:

运筹学第1章:线性规划问题及单纯型解法

运筹学第1章:线性规划问题及单纯型解法

原料甲 原料乙 最低含量 VA 0.5 0.5 2 VB1 1.0 0.3 3 VB2 0.2 0.6 1.2 VD 0.5 0.2 2 0.3 0.5 单价
分别代表每粒胶丸中甲, 设 x1, x2分别代表每粒胶丸中甲, 乙两种原料的用量
5
例3,合理下料问题 , 分别代表采用切割方案1~8的套数, 的套数, 设 xj 分别代表采用切割方案 的套数
19
( f(x
)= 3
6
1.2.2 单纯型法的基本思路
确定初试基础可行解
检查是否为 最优解? 最优解?

求最优解的目标函数值
否 确定改善方向
求新的基础可行解
20
1.2.3 单纯型表及其格式
IV CB III XB II x1 b c1 a11 a21 c1′′= cn+1 xn+1 b1 c2′′= cn+2 xn+2 b2 x2 … xn c2 … cn a12 … a1n a22 … a2n I xn+1 cn+1 1 0 0 zn+1 xn+2 cn+2 0 1 0 zn+2 … … … … … … xn+m cn+m 0 0 1 zn+m
OBJ : max f ( x) = 6x1 + 4x2 2x1 + x2 ≤ 10 铜资源约束 x1 + x2 ≤ 8 铅资源约束 s.t. x2 ≤ 7 产量约束 x1, x2 ≥ 0 产量不允许为负值 最优解: x1 = 2, x2 = 6, max f ( x) = 36.
4
例2,配料问题(min, ≥) ,配料问题(
2 max 1 O 1 2 3 4 D 5 6 7 H 8

运筹学第1章

运筹学第1章

(第三版)《运筹学》教材编写组编清华大学出版社运筹学第1章线性规划与单纯形法第1节线性规划问题及其数学模型二.线性规划与目标规划第1章线性规划与单纯形法第2章对偶理论与灵敏度分析第3章运输问题第4章目标规划第1章线性规划与单纯形法第1节线性规划问题及其数学模型第2节线性规划问题的几何意义第3节单纯形法第4节单纯形法的计算步骤第5节单纯形法的进一步讨论第6节应用举例第1节线性规划问题及其数学模型•1.1 问题的提出•1.2 图解法•1.3 线性规划问题的标准形式•1.4 线性规划问题的解的概念第1节线性规划问题及其数学模型线性规划是运筹学的一个重要分支。

线性规划在理论上比较成熟,在实用中的应用日益广泛与深入。

特别是在电子计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了。

从解决技术问题的最优化设计到工业、农业、商业、交通运输业、军事、经济计划和管理决策等领域都可以发挥作用。

它已是现代科学管理的重要手段之一。

解线性规划问题的方法有多种,以下仅介绍单纯形法。

1.1 问题的提出从一个简化的生产计划安排问题开始例1某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表1-1所示。

资源产品ⅠⅡ拥有量设备 1 2 8台时原材料A40 16kg原材料B0 4 12kg续例1该工厂•每生产一件产品Ⅰ可获利2元,•每生产一件产品Ⅱ可获利3元,•问应如何安排计划使该工厂获利最多?如何用数学关系式描述这问题,必须考虑称它们为决策变量。

产品的数量,分别表示计划生产设II I,,21x x ∙12416482212121≤≤≤+∙x ;x ;x x ,x ,x 这是约束条件。

即有量的限制的数量多少,受资源拥生产021≥∙x ,x ,即生产的产品不能是负值这是目标。

最大如何安排生产,使利润,∙数学模型⎪⎪⎩⎪⎪⎨⎧≥≤≤≤++=0124164823221212121x ,x x x x x :x x z max 约束条件目标函数例2. 简化的环境保护问题靠近某河流有两个化工厂(见图1-1),流经第一化工厂的河流流量为每天500万立方米,在两个工厂之间有一条流量为每天200万立方米的支流。

运筹学 第一讲

运筹学 第一讲

标函数实现最大化或最小化。
满足以上三个条件的数学模型称为线性规划的数学模型。
(二)线性规划问题一般形式
max(min) z=c1x1+c2x2+…+cnxn
(三) 线性规划模型的隐含假设: 1、比例性:决策变量在目标函数及约束条件中严格按比 例变化,不存在实际经济活动中的边际效用递减效应。
2、可加性:决策变量独立,相互之间不发生关联,且不
• 运筹学(Operations Research)是用数学方法研究各种系统的最优化问
题,运筹学强调发挥现有系统的效能,应用数学模型求得合理利用各种资
源的最佳方案,为决策者提供科学决策的依据。 • 运筹学的内容有数学规划、运输问题、图与网络分析、排队论、存储论、
决策论和对策论等,其中数学规划又包括线性规划,整数规划,非线性规
术求得系统运营的最优解。
4、运筹学的研究动机是为决策者提供科学决策的依据。 运筹学在工业,农业,商业,物流,经济计划,人力资源,军事等行业都有着非
常广泛的应用。有人曾对世界上500家著名的企业集团或跨国公司进行过调查,发现
其中95%曾使用过线性规划,75%使用过运输模型,90%使用过网络计划技术,90%使用 过存储模型,43%使用过动态规划。 由此可见运筹学一门应用性很强的学科。特别是随着计算机技术的不断发展,计 算机成为运筹学最强有力的运算工具,运筹学越来越显示出其广泛的使用价值。
0 4KG/件
8台时
16KG 12KG
该厂每生产一件产品Ⅰ可获利2元,每生产一件产品 Ⅱ可获利3元,问应如何安排生产获利最多?
决策变量 价值系数 技术系数
x1
2 1 4 0
x2
3 2 0 4
资源系数 8 16 12

运筹学第一章详解答案

运筹学第一章详解答案

运筹学详解答案:1.1分别用图解法和单纯形法求解下列线性规划问题,(1)指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解;(2)当具有有限最优解时,指出单纯形表中的各基可行解对应可行域的那一顶点。

A. 图解法图中蓝线代表目标函数线,箭头代表其运动的方向,根据可行域的形状可知此题无最优解。

B. 单纯形法1.行变换法写出此线性规划问题的标准形式max z =5x 1+6x 2s.t.{2x 1−x 2−x 3=2−2x 1+3x 2+x 4=2x i ≥0,(i =1,2,3,4)系数矩阵经过行变换后可的到等价的约束条件如下max z =5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-+=0,23222.65max )4(21212121x x x x x x st x x Zs.t.{x 1−12⁄x 2−12⁄x 3+0x 4=10x 1+2x 2−x 3+x 4=4x i ≥0,(i =1,2,3,4)显然x 1,x 4是基变量利用单纯形表可以求出此题具有无界解。

当然还可以采用其他变量为基变量,例如将约束条件转化为s.t.{x 1+0x 2−34⁄x 3+14⁄x 4=20x 1+x 2−12⁄x 3+12⁄x 4=2x i ≥0,(i =1,2,3,4)此时x 1,x 2成为了基变量。

然后在利用单纯形法可以解出此题具有无界解。

C. 大M 法易知转换成标准形式后,约束问题的系数矩阵中不包含单位矩阵,这时我们可以添加一个人工变量x 5,并在系数矩阵中添加一列单位向量,同时令目标函数中人工变量的系数为任意大的负值,用“-M ”表示。

具体形式如下max z =5x 1+6x 2−Mx 5s.t.{2x 1−x 2−x 3+x 5=2−2x 1+3x 2+x 4=2x i ≥0,(i =1,2,3,4,5)1.在进行第二次迭代时,因为人工变量已经移除基了,我们可以在后续的计算中不考虑它。

2.在进行第三次迭代时,进基的变量是x 3,而其对应的列向量都是小于0的,故此我们可以判断此问题有无界解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档