肌电图

合集下载

肌电图原理

肌电图原理

肌电图原理肌电图(EMG)是一种用来记录肌肉电活动的生理学检测方法。

肌电图可以帮助医生诊断肌肉和神经系统的疾病,也可以用于评估肌肉功能和监测肌肉活动。

肌电图的原理是基于肌肉收缩时产生的电活动,通过电极将肌肉电活动信号转换成图形记录,从而反映肌肉的活动情况。

肌肉的活动是通过神经冲动控制的,当神经冲动到达肌肉时,肌肉细胞内的离子通道会发生改变,导致细胞内外的电位差,从而产生电活动。

这种电活动可以通过肌电图来记录和分析。

肌电图通常包括静息状态下的肌电活动记录和肌肉收缩时的肌电活动记录。

在进行肌电图检测时,首先需要将电极贴在患者的皮肤上,通常是在需要检测的肌肉附近。

电极可以记录肌肉电活动的信号,并将其转换成图形记录。

在静息状态下,肌电图记录的是肌肉的基础电活动,这可以帮助医生评估肌肉的神经支配情况和肌肉的基础功能状态。

而在肌肉收缩时,肌电图记录的是肌肉收缩时产生的电活动,这可以帮助医生评估肌肉的活动情况、肌肉的协调性和肌肉的力量。

通过分析肌电图记录,医生可以判断肌肉的神经支配情况、肌肉的疾病情况以及肌肉的功能状态。

例如,肌电图可以帮助医生诊断神经根压迫症、肌无力症、肌肉萎缩症等疾病。

此外,肌电图还可以用于评估肌肉损伤的程度、监测肌肉康复训练的效果以及指导康复训练的方案。

总之,肌电图是一种重要的生理学检测方法,通过记录肌肉电活动的信号,可以帮助医生诊断和评估肌肉和神经系统的疾病,也可以用于监测肌肉的活动情况和评估肌肉的功能状态。

肌电图的原理是基于肌肉收缩时产生的电活动,通过电极将肌肉电活动信号转换成图形记录,从而反映肌肉的活动情况。

通过分析肌电图记录,医生可以判断肌肉的神经支配情况、肌肉的疾病情况以及肌肉的功能状态。

肌电图在临床诊断和康复治疗中具有重要的应用价值,对于提高肌肉和神经系统疾病的诊断和治疗水平具有重要意义。

肌电图报告结果

肌电图报告结果

肌电图报告结果肌电图是一种用于记录肌肉电活动的检测方法。

通过肌电图可以了解肌肉的电活动情况,进而评估肌肉功能和疾病情况。

本篇文章将详细介绍肌电图报告结果的分析和解读。

第一步:观察报告结果肌电图报告通常包括多个参数,如幅度、频率、时程和波形等。

首先,我们要观察报告中的肌电幅度。

肌电幅度反映了肌肉电活动的强度,通常以微伏(μV)为单位。

观察肌电幅度的变化可以了解肌肉的活动程度和力量。

高幅度可能表明肌肉的活动较强,而低幅度可能表明肌肉的活动较弱。

第二步:分析报告结果接下来,我们可以分析报告中的肌电频率。

肌电频率是指肌肉电活动的重复次数,通常以赫兹(Hz)为单位。

观察肌电频率的变化可以了解肌肉的收缩速度和疲劳情况。

高频率可能表明肌肉的收缩速度快,而低频率可能表明肌肉的疲劳较重。

第三步:解读报告结果最后,我们需要根据观察和分析的结果来解读肌电图报告。

首先,我们可以根据肌电幅度和频率的变化来评估肌肉的功能和疲劳情况。

例如,高幅度和高频率可能表明肌肉功能良好,而低幅度和低频率可能表明肌肉功能较差或处于疲劳状态。

其次,我们还可以根据肌电波形的形状来评估肌肉活动的稳定性和协调性。

正常情况下,肌电波形应该呈现规则的、对称的形状,如果波形出现异常或不规则的情况,可能表明肌肉活动存在问题。

总结:肌电图报告结果是评估肌肉功能和疾病情况的重要依据。

通过观察、分析和解读报告中的幅度、频率和波形等参数,我们可以了解肌肉的电活动情况,评估肌肉的活动程度、力量、收缩速度和疲劳情况。

在临床应用中,肌电图报告结果可以帮助医生判断患者的肌肉功能是否正常,进而指导治疗和康复计划的制定。

注意:以上内容仅供参考,具体的肌电图报告结果分析和解读应由专业人士进行。

肌电图的工作原理

肌电图的工作原理

肌电图的工作原理
肌电图(Electromyogram,EMG)是一种测量肌肉电活动的方法,可以记录到肌肉收缩时产生的电信号。

其工作原理包括以下几个步骤:
1. 电信号的产生:当肌肉收缩时,肌肉中的神经元会通过神经冲动传递电信号,刺激肌纤维收缩。

这些电信号可以在肌肉表面产生微弱的电流。

2. 电极的放置:将电极放置在测量区域的肌肉表面。

一般情况下,常用的电极包括表面电极和穿刺电极。

表面电极是通过粘贴在皮肤表面,可以捕捉到较浅层的肌电信号。

穿刺电极则需要将电极穿刺进入肌肉内部,可以记录到更深层次的肌电信号。

3. 信号放大和滤波:由于肌电信号非常微弱,需要经过放大器进行放大处理。

同时,由于肌电信号可能受到其他干扰信号的影响,如心电信号和肌肉活动产生的噪音等,需要进行滤波处理,以保留有效的肌电信号。

4. 信号采集和分析:经过放大和滤波处理后,肌电信号可以被采集到计算机或其他设备中。

通过对信号进行进一步的分析,如幅值、频率和时域等参数的计算,可以得到有关肌肉活动的详细信息。

总之,肌电图通过测量肌肉收缩时产生的微弱电信号,并经过放大、滤波和分析等处理步骤,实现了对肌肉活动的监测和分析。

这种技术在医学领域有广泛的应
用,用于诊断神经肌肉疾病、评估肌肉功能和运动控制等。

肌电图

肌电图

4、颈椎病、胸腰椎病(如腰椎间盘突出症、肿物 压迫等)导致的神经损害。 5、重复电刺激:用于神经肌肉接头疾病。主要见 于重症肌无力、肌无力综合症、婴儿肌无力等疾 病。 6、各种肌肉疾病的诊断:如肌营养不良、多发性 肌炎、周期性瘫痪等 7、对脊髓和大脑的病变亦有辅助诊断价值。
–谢谢!
肌电图的检查适应症:
1、各种原因引起周围神经疾病,出现手足无力、 麻木、疼痛及其它感觉异常,尤其是双侧对称 性出现者。如糖尿病周围神经病、格林-巴利 综合症及腕管、肘管综合症等。 2、各种外伤导致的神经损伤,判断神经损伤的 程度,以及是否需要手术治疗。 3、面神经瘫痪的诊断以及判断可能恢复的快慢, 是否会留下后遗症,及时指导治疗。协助诊断 其它脑神经疾病如三叉神经痛等。
肌电图检查仪的图片-EMG
肌电图的发展史 肌电图
肌电图(EMG)目前尚是一种新的诊断技术, 二十世纪八十年代起源于欧美,九十年代引进国 内,陆续在北京、上海等大医院开展。肌电图检 查的原理是它将神经肌肉兴奋时发生的生物电变 化引导出,加以放大和记录,根据电位变化的波 形、振幅、传导速度等数据,分析判断神经、肌 肉系统处于何种状态,从而有助于神经系统疾病 和肌肉疾病诊断的检查方法。
肌电图检查的内容
检查的内容包括运动神经传导速度(MCV) 和感觉神经传导速度(SCV),测定参数包括 MCV、末端潜伏期(DML)、运动神经动作电位波 幅、SCV、感觉神经动作电位波幅。 我院于2011年底引进ZET-100型数字心脑肌 电图诊断仪,填补了周边医院没有此项设备的空 白,该机型功能强大,性能可靠,目前已经开展 肌电图检查数月来,为临床提供了不少的诊断依 据。
肌电图检查的临床适应症
Байду номын сангаас
如皋市新姚医院 陈 娟 2012-2

肌电图

肌电图

肌电图(EMG)基础附属医院神经科电生理第一部分概况一、概述(一)EMG的概念EMG是研究肌肉静息电位和随意收缩及周围神经受刺激时各种电特性的一门科学。

狭义EMG:指同心圆针极肌电图,既常规肌电图。

广义EMG:1、神经传导速(NCV: MNCV、SNCV)2、重频电刺激(RNA)3、反射(瞬目反射\皮肤交感反SSR)4、单纤维肌电图(FEMG)5、巨肌电图、6、运动单位计数。

7、扫描肌电图(二)国外动态表面肌电图及临床应用优点:无创无痛没有感染的危险。

缺点:是不能记录单个MUAP1、运动肌电图学(1)步态研究(2)人体工程(3)康复研究(4)运动医学2、多导肌电图(1)评价肌肉的传导速度(2)终板区定位,为活检提供依据。

3、疲劳研究(三)EMG在临床上的应用EMG是神经系统检查的延伸。

是组织化学、生物化学及基因技术等检测不能取代的临床手段。

(四)EMG适应症:前角细胞以下包括前角细胞病变二、EMG的检测的临床意义1、常规EMG:反映部分运动单位的大小形态等变化。

鉴别神经源和肌源性损害。

排除神经肌肉接头病运动单位的概念:指由一个前角细胞及其轴突所支配的纤维,是肌肉收缩的最小单位。

MU的大小:N和M的比例是不同的Eg : 眼肌1:3 腓肠肌1:1934它与肌肉的活动精细程度有关2、神经传导速度和F波的测定感觉和运动神经传导的功能诊断和鉴别髓鞘或轴索的损害F波反映近端运动神经功能与EMG结合具有定位诊断价值3、RNS了解神经肌肉接头功能鉴别诊断突触前膜和突触后膜的病变是诊断肌无力(MG)、副肿瘤综合征(LES)的特异性手段4、FEMG主要了解神经肌肉接头(NMJ)的传导功能可鉴别神经源或肌源性损害了解运动单位(MUAP)内纤维的分布。

记录范围的直径为此300微米。

了解神经再生情况。

5、各种反射瞬目反射:三叉神经——面神经通道皮肤交感反射(SSR)第二部分常规EMGEMG检查原则、适应症和注意事项1、熟悉解剖知识及详细的神经系统检查2、掌握适应症:前角细胞以下病变3、了解禁忌症:出血倾向疾病,如血友病,血小板〈3000 、乙肝,HIV阳性用一次性针电极。

肌电图诊断课件

肌电图诊断课件

1
肌电图-EMG
肌电图诊断
2
肌电图-EMG
基本方法步骤:needle 针电极插入肌肉 insert
观察插针时电活动 insertional activity
肌肉放松时电活动 activity in relaxed muscle
随意收缩时电活动 activity in contracting muscle
minimal/no act.缩短:引出的电位少或无--失 神经较久甚至已纤维化的肌肉
肌电图诊断
11
异常肌电图ຫໍສະໝຸດ 肌肉放松时 电静息消失,出现自发电活动 spontaneous activity 常见异常电位有
纤颤电位 fibrillation potential 正尖波positive sharp wave (PSW) 束颤电位fasciculation potential
肌源性异常myopathy : 静息时少量纤颤 轻用力时,波幅低 最大用力时,过分干扰型
肌电图诊断
18
神经电图诊断
神经传导速度测定 运动神经 MCV 感觉神经 SCV 周围神经病变的早期
鉴别肌源性myopathy或神经源性 neuropathy 脱髓鞘/轴索损伤
肌电图诊断
19
神经电图诊断
反射检查
正尖波 positive sharp wave 一个正相电位,宽度大于10ms,幅度大 于100-200uV。 神经损伤初期纤颤电位增多,后期正尖波 增多。
肌电图诊断
14
异常肌电图
束颤电位fasciculation potential
自发的完整的运动单位电位,肌肉处于 受激状态。形态与正常相似为良性束颤, 形态参数异常即为恶性束颤,表示运动单

肌电图原理

肌电图原理

肌电图原理肌电图(EMG)是一种用于记录肌肉电活动的生理学技术。

肌电图原理是基于肌肉收缩时产生的生物电信号,通过电极捕捉和放大这些信号,最终转化为肌电图图形。

肌电图可以反映肌肉的神经控制情况,对于临床诊断和科学研究具有重要意义。

肌电图的原理基础是肌肉电活动。

当神经冲动到达肌肉纤维时,会引起肌肉纤维的收缩,同时也会产生微弱的生物电信号。

这些生物电信号可以通过肌电图仪器采集到,并转化为肌电图形。

肌电图形可以分为静息电位和动作电位两种。

静息电位是指肌肉在静息状态下产生的生物电信号,它主要反映了肌肉的基础电活动水平。

而动作电位则是指肌肉在收缩或放松过程中产生的生物电信号,它主要反映了肌肉的神经控制情况和肌肉活动的强度和频率。

肌电图的原理还涉及到肌电图仪器的工作原理。

肌电图仪器通常由电极、放大器和记录仪组成。

电极用于捕捉肌肉产生的生物电信号,放大器用于放大这些信号,记录仪用于将信号转化为肌电图形。

通过这些仪器的协同工作,可以准确地记录肌肉的电活动情况。

肌电图的应用非常广泛,主要包括临床诊断和科学研究两个方面。

在临床诊断中,肌电图可以用于评估肌无力、神经损伤、肌肉病变等疾病的情况,帮助医生进行诊断和治疗。

在科学研究中,肌电图可以用于研究肌肉的生理和病理情况,探索肌肉活动的机制和规律。

总的来说,肌电图原理是基于肌肉电活动的生物电信号,通过肌电图仪器的工作原理,将这些信号转化为肌电图形。

肌电图在临床诊断和科学研究中具有重要应用价值,对于了解肌肉的神经控制情况和活动规律具有重要意义。

希望本文的介绍能够帮助大家更好地理解肌电图原理,进一步认识肌肉电活动的重要性。

肌电图的原理及应用

肌电图的原理及应用

肌电图的原理及应用1. 什么是肌电图肌电图(Electromyogram,简称EMG)是记录肌肉电活动的一种检查方法。

它通过采集肌肉收缩产生的电信号,并将其转化成可视化的波形。

肌电图可以帮助医生判断肌肉功能异常以及相关的神经疾病。

2. 肌电图的原理肌电图的原理基于肌肉收缩时产生的电生理活动。

肌肉收缩时,肌纤维中的神经冲动会引发肌纤维的膜电位变化,即产生肌电信号。

这些肌电信号通过电极采集并放大,最后转换成肌电图。

2.1 肌电信号的采集肌电信号的采集需要使用肌电电极,通常分为表面电极和插入电极两种。

表面电极通过贴在皮肤上收集肌电信号,适用于浅表肌肉的检测;插入电极则需要插入到肌肉组织内部,适用于深层肌肉的检测。

2.2 肌电信号的放大采集到的肌电信号通常非常微弱,需要经过放大才能被准确地记录和分析。

放大器可以将微弱的电信号放大成适合于测量和分析的幅度。

2.3 肌电信号的转换放大后的肌电信号通过模数转换器(A/D转换器)转换成数字信号,并以数字形式存储在计算机或数据记录仪中。

这样,肌电图就可以通过软件进行进一步的处理和分析。

3. 肌电图的应用肌电图在医学和生理学研究中有着广泛的应用。

下面列举了几个常见的应用领域:3.1 临床医学肌电图在临床医学中用于评估肌肉功能和神经疾病的诊断。

例如,对于患有肌无力、多发性硬化症和帕金森病等疾病的患者,肌电图可以帮助医生判断病情和疾病的进展。

3.2 运动科学肌电图被广泛应用于运动科学领域。

通过对运动过程中肌肉活动的监测和分析,可以了解肌肉的疲劳程度、运动姿势的正确性以及改进运动技术的方法。

3.3 生物反馈治疗肌电图还可以应用于生物反馈治疗。

生物反馈治疗通过监测和反馈肌肉活动,帮助患者学会控制肌肉的紧张程度和放松技巧。

这种治疗方法常用于减缓焦虑、缓解头痛和治疗运动障碍等领域。

3.4 运动康复肌电图在运动康复中也扮演着重要的角色。

通过监测受伤运动员康复过程中的肌肉活动情况,可以评估康复进展并设计个体化的康复方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、群多相电位:时限较长,可达20~30ms。 多见于陈旧性神经损伤、脊髓前角细胞疾 病。
多相电位
单纯相、混合相、干扰相
重收缩时肌电图

重收缩时肌电图波形的异常改变是运动单位电 位数量和放电频率的改变。 1、完全无运动单位电位:大力收缩时,不出 现任何运动单位电位,表示运动功能完全丧失。 见于严重的神经肌肉疾患、神经失用及癔症性 瘫痪。 2、运动单位电位数量减少:表现为单纯相或 少量运动单位电位出现。 3、病理干扰相:见于肌病患者。严重受累肌 肉。可无病理干扰相。

异常插入电位
(1)插入电位延长是肌肉去神经支配后肌膜 兴奋行异常增高的结果。出现强直样电位 与肌强直电位为插入电位延长改变。见于 神经源性疾病,也可见于多发性肌炎、皮 肌炎。 (2) 插入电位减弱消失,见于肌纤维严重萎 缩,被结缔组织或脂肪组织所替代。
强直样电位与肌强直电位


1、强直样电位:针极插入后继发的一系列 高频电位。特点:突然出现,突然消失, 波幅和频率通常没有变化,扬声器上可听 到“咕咕” 样蛙鸣声。 2、肌强直电位:插入电位延长的一种特殊 形式,特点:波幅和频率递增递减,扬声 器上可听到俯冲轰炸机样特殊音响。
神经传导速度检测


3、时程(D):从电位开始到回到基线的 时间,以毫秒表示。反映神经纤维兴奋的 同步性。D延长,提示神经纤维脱髓鞘传导 扩散可能性。 4、传导速度:单位时间内冲动传导的距离 (m/s),综合反映神经传导状态。
神经传导速度检测

1、运动神经传导(MNCV) 运动神经传导速度(m/s)=近端、远端刺激 点间的距离(mm)/两点间潜伏期差(ms)
2、感觉神经传导(SNCV) 感觉神经传导速度(m/s)=刺激与记录点的 距离(mm)/潜伏期(ms)

F波
对神经施加超强刺激,在肌肉动作电位(M 波)后续一低波幅动作电位。多出现在手、 足部小肌肉,不随刺激强度增加而减小。 双侧比潜伏期>1.0ms,预测值和实测值 > 2.5ms为异常。 意义: 测定F波的潜伏期可了解近端神经的 传导状 况,对于神经根或神经丛病变有诊断价值。
SFEMG临床意义


③肌病的诊断:表现为FD升高和轻度的jitter 增宽,特别是慢性炎性肌病,常规EMG运动单 位改变不明显时,SFEMG的检测更有意义; ④可以客观评价神经再生的情况。
肛门括约肌EMG


肛门括约肌为张力性肌电活动,在睡眠和全 麻时也可存在。肛门括约肌的神经支配来 自于骶髓前角细胞的Onuf核。 肛门括约肌EMG的检测采用同心圆针电极。 观察指标同常规检测部位EMG,但因肛门括 约肌比普通骨骼肌电位的波幅低,且呈张力 性发放,较难发现自发电位,特别对于运动单 位正常者,自发电位判断更应慎重和依靠经 验。


①重症肌无力(MG)的诊断:表现为jitter增宽 和阻滞,FD正常或轻度增高。阳性率较重复 神经电刺激(RNS)明显提高。眼肌型MG的 RNS的阳性率<50%,而额肌或眶肌的SFEMG 的阳性率可达75%~90%; ②进行性神经源性损害(肌萎缩侧索硬化症) 和慢性神经源性损害的诊断和鉴别诊断:前 者表现为明显的jitter增宽、阻滞和FD明显 增高;而后者表现为轻度的jitter增宽伴有或 不伴有阻滞,FD轻度增高;
肌电图
北京儿童医院 神经内科与康复中心 丁昌红
定义


肌电图学是研究神经和肌肉细胞活动的科学。 肌电图(EMG)是临床神经电生理的重要检测 手段之一,目前被公认为是神经系统疾病定位 诊断的延伸。
定义

狭义:EMG是指以同心圆针插入肌肉中,收 集针电极附近一组肌纤维的动作电位,以及 在插入过程中、肌肉处于静息状态下、肌 肉作不同程度随意收缩时的电活动。
意义:见于肌强直疾病,少数神经源性疾 病和肌源性疾病。

肌强直电位和强直样电位
自发电位及意义
(1)纤颤电位:是单根肌纤维自发性收缩产 生的电位,起始为正向、短时限、低电压节 律较整齐。平均2.0ms,电压小于300微伏。 (2)正相电位(正尖波):是单根肌纤维自 发性收缩产生的电位,常双向,起始呈宽大 的正相。平均5.0ms,电压20~200微伏。
肛门括约肌EMG临床意义
主要用于 ①多系统萎缩(MSA):主要表现为运动单位时限增宽、 波幅增高和多相波百分比增多,特别是伴有卫星电 位的增多,后者是目前诊断异性为93%~100%; ②圆锥马尾病变:可见纤颤电位、正锐波、复合重复 放电和运动单位丢失等神经源性损害的改变;
常规肌电图适应症及临床意义
适应症:前角细胞及以下病变。 临床意义: (1)发现临床下病灶。 (2)诊断和鉴别诊断。 (3)补充临床的定位。 (4)判断病情、疗效及预后评价。

神经传导速度检测
神经传导速度检测


测试参数及临床意义: 1、潜伏期(L):由刺激伪迹到反应电位起 始点时间,以 ms表示。L延长提示神经传导 延缓。 2、波幅(A):电位波峰至波谷间的电势差, 反映相关神经纤维及肌纤维兴奋数量。以毫 伏或微伏表示。A减低,提示神经纤维数量 减少(轴索变性)或肌萎缩可能。
针电极插入及肌肉放松的肌电图

正常肌电图: (1)插入电位:是针电极对肌肉纤维或神经 的机械刺激及损伤作用而猝发的电位,少 于1秒即逝。 (2)电静息:肌肉完全放松时,不出现肌电 位,而呈一条直线。
针电极插入及肌肉放松的肌电图
异常肌电图: (1)插入电位改变: (2)出现纤颤电位: (3)出现正相电位: (4)出现束顫电位: (5)出现群放电位: 其中(2)~(5)为自发电位。
③括约肌发育不良的诊断和排除诊断及新生儿肛门 闭锁的术前评估等。
巨肌电图



巨肌电图(macroelectromyography,macro—EMG) 是在SFEMG的基础上改良的一项电诊断技术。与 同心圆针EMG不同的是可以记录整个(或运动单位 的大部分)运动单位的电活动。 主要用于运动单位的研究和检测,在各种神经肌肉 病的诊断和鉴别诊断中均有价值。虽然macro— EMG技术是其他电生理手段不能完全取代的研究 和评估整个运动单位的客观手段,与FD等指标的结 合有助于鉴别肌源性损害和神经源性以及废用性 肌肉萎缩等。 因电极粗大引起的疼痛和耗时而影响该技术的推 广应用。
异常结果判断标准

(3)肌源性损害:针极肌电图检查时,MUP时限 缩短,小于正常同龄儿正常值20%以上,伴或 不伴自发电位,神经传导速度正常;
(4)重复频率刺激阳性,刺激频率为3 Hz时,第4 次刺激波幅较第1次刺激波幅降低超过10%。

界线性肌电图
(1)针极肌电图检查时,仅出现自发电位,无 MUP时限明显改变 (2)神经传导速度检查时,复合肌肉动作电位 (compound muscle action potential, CMAP)或感 觉神经动作电位(sensory nerve action potential, SNAP)波幅仅轻度降低,仍在正常值的50%以上, 不伴传导速度减慢。以上均为肌电图检查结 果异常,即结果阳性。
重复电刺激

3、时程(D):从电位开始到回到基线的 时间,以毫秒表示。反映神经纤维兴奋的 同步性。D延长,提示神经纤维脱髓鞘传导 扩散可能性。
4、传导速度:单位时间内冲动传导的距离 (m/s),综合反映神经传导状态。

异常结果判断标准


(1)神经源性损害:针极肌电图检查时,运动单位 电位(motor unit potential, MUP)时限延长,超过 正常同龄儿正常值20%以上,伴或不伴自发电 位,神经传导速度正常; (2)神经性损害:神经传导速度(nerve con-duction velocity, NCV)减慢,伴或不伴波幅降低;

谢谢!
肌电图的临床应用进展
单纤维肌电图(SFEMG)



观测指标:颤抖(jitter)、阻滞 (blocking)、纤维 密度(FD) (1)颤抖:指同一运动单位内两根肌纤维从最后一 级神经末梢分支到记录部位的动作电位在时间上的 差异,正常:20~50微秒。 (2)阻滞 :神经肌肉传递障碍,不能诱发出动作电位。 (3)纤维密度:同一运动单位内肌纤维的局部分布反 映神经再生。
运动单位计数


运动单位数量估计(MUNE)指定量估计支配同一肌 肉的下运动神经元的数量,并非有功能的运动神经 元的实际或确切的数量。 MUNE测定的基本原理是首先在运动神经近端给 予超强刺激,兴奋有功能的运动纤维,在其所支配肌 肉记录复合肌肉动作电位(CMAP),此时获得CMAP 的波幅或面积最大,记录其波幅或面积。然后采集 单个运动单位电位,并进行平均,从而获得平均的有 代表性的单个运动单位的波幅或面积。以最大的 CMAP波幅或面积除以平均的有代表性的单个运 动单位的波幅或面积,即可获得运动单位的数目。

轻收缩时肌电图
正常运动单位电位: (1)位相:单相、双相、三相为主.多相电位 不超过10%,一般4%. 五相及五相以上称多相电位. (2)时限:3~15ms.

(3)电压:100~2000微伏,最高不超过5毫伏.
轻收缩时肌电图

多相电位数量增多(相位大于5相,>12%) 1、短棘波多相电位:时限短<3.0ms,呈毛 刷子波,波幅不等,在神经再生早期称新 生电位,肌源性疾病时称为肌病电位。
影响神经传导速度的病理因素


(1)髓鞘脱失。 (2)神经轴突直径改变。 (3)机械压迫:可致神经轴索中断和远端 轴索变性或局部脱髓鞘。 (4)缺血:可致轴突变性或节段性脱髓鞘。
NCV的临床意义


(1)定性诊断:鉴别髓鞘和轴索损害。 (2)定位诊断:周围神经、神经丛、神经 根及前角细胞病变。节段NCV的测定可发 现部分传导阻滞,用于多灶运动神经病的诊 断和鉴别诊断。 (3)病变的程度。 (4)协助周围神经疾病疗效观察及随访。
相关文档
最新文档