初二数学--勾股定理复习
八年级勾股定理的知识点

八年级勾股定理的知识点作为初中数学的重要知识点之一,勾股定理在八年级学生的学习中扮演着重要的角色。
勾股定理的概念和应用可以帮助学生理解和求解同类问题,并为进一步学习更高级别的数学知识奠定基础。
以下是勾股定理在初中八年级阶段的知识点。
一、勾股定理的定义勾股定理是指直角三角形中长边平方等于两短边平方和的关系。
即在一个直角三角形中,长边的平方等于其他两边平方和。
勾股定理的公式为:a² + b² = c²其中,a、b 代表短边,c 代表长边。
这个公式是勾股定理的基本表达形式。
二、三角形中的勾股定理应用勾股定理不仅仅是为了了解概念,同样也是一种有用的工具来解决各种三角形问题。
在三角形中,有两种使用勾股定理的方式:已知两个边长求第三个边长和已知三角形的三个角度和一个边长,求任意一边长。
2.1 已知两边长求第三边长当我们知道任意两边长的长度时,我们可以使用勾股定理来求解第三边长的长度。
我们可以先将已知的两边长的平方和计算得出,然后再对这个结果求平方根来得到第三边长的长度。
例如,当我们知道一个三角形的两边分别为 3 和 4,需求出第三边长,我们可以使用勾股定理进行计算:(3)² + (4)² = c²9 + 16 = c²25 = c²c = √25 = 52.2 已知三个角度和一个边长,求任意一边长在已知三个角度和一个边长的情况下,我们可以使用正弦、余弦、正切等三角函数结合勾股定理来求解三角形任意一边长。
例如,假设我们知道一个三角形的三个角分别为 60 度、30 度和 90 度,此三角形的一个边长为 5,需求出另外两边长的长度。
我们可以利用下列公式进行计算:sin(60°) = 对边 / 斜边 = c / 5c = 5 sin(60°) = 4.33(约)cos(60°) = 邻边 / 斜边 = b / 5b = 5 cos(60°) = 2.5(约)根据勾股定理,我们可以求出第三条边的长度:a² + b² = c²a² + (2.5)² = (4.33)²a² = (4.33)² - (2.5)²a² = 9 - 6.25a = √2.75 = 1.66(约)通过这种方式,我们可以使用勾股定理解决许多有关三角形的问题。
初二数学知识点梳理:勾股定理

初二数学知识点梳理:勾股定理知识点总结一、勾股定理:勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
二、勾股定理的逆定理逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:确定最大边;算出最大边的平方与另两边的平方和;比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。
三、勾股数能够构成直角三角形的三边长的三个正整数称为勾股数.四、一个重要结论:由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。
五、勾股定理及其逆定理的应用解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。
常见考法直接考查勾股定理及其逆定理;应用勾股定理建立方程;实际问题中应用勾股定理及其逆定理。
八年级数学下册《勾股定理》知识点总结

八年级数学下册《勾股定理》知识点总结八年级数学下册《勾股定理》知识点总结1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。
,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)4.直角三角形的性质(1)、直角三角形的两个锐角互余。
可表示如下:∠C=90°∠A+∠B=90°(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°可表示如下:BC=AB∠C=90°(3)、直角三角形斜边上的中线等于斜边的一半∠ACB=90°可表示如下:CD=AB=BD=ADD为AB的中点5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90°CD⊥AB6、常用关系式由三角形面积公式可得:ABCD=ACBC7、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。
8、命题、定理、证明1、命题的概念判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
2、命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
3、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
北师大版八年级数学上册第一章勾股定理复习与小结课件

P
M
教学过程——典例精析
第一章 勾股定理
听一听
典例3 如图,长方形 ABCD 中,AB=3,AD=9,将此长方形折叠,使点 D与点B
重合,折痕为 EF,求△ABE 的面积。
A
B
E
D
F
C
教学过程——典例精析
第一章 勾股定理
听一听
A
解析:折叠问题中,要找到折叠前
后相等的线段或角,注意这些线段
与其他线段的关系,再利用勾股定
D. 若、、是的△ABC的三边,且 − = ,则∠A=90°
第一章 勾股定理
基础训练
第一章 勾股定理
2. 如图是商场的台阶的示意图,已知每级台阶的宽度都是20cm,每级台
阶的高度都是15cm,则连接AB的线段长为( B )
A. 100cm
B. 150cm
C. 200cm
D. 250cm
解:(1)供水站P的位置如图所示.
(2)过B作BM⊥,过A’作A’M⊥BM于M.
B
A
由已知可得A’M=8,BM=2+4=6.
在Rt△AMB中,
A’B2=AM2+BM2=82+62=100
解得A’B=10
5000×10+50000=100000.
故供水站修建完成后共计要花100000元.
∙∙
A’
∙
是直角三角形.
知识梳理
第一章 勾股定理
内容:直角三角形两
直角边的平方和等于
斜边的平方.
探索勾
股定理
表达式:用
和分别表示直角三
角形的两直角边和斜
边,那么
验证方法:面积法
八年级数学《勾股定理》知识点

八年级数学《勾股定理》知识点一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为n的线段1。
八年级数学下册勾股定理知识点

八年级数学下册勾股定理知识点八年级数学下册《勾股定理》知识点11.勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾最短的边、股较长的直角边、弦斜边。
勾股定理又叫毕达哥拉斯定理2.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
3.勾股数:满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。
4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用例题精讲:练习:例1:若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为解析:可知三边长度为3,4,5,因此周长为12(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为解析:可知三边长度为6,8,10,则周长为24例2:已知直角三角形的两边长分别为3、4,求第三边长.解析:第一种情况:当直角边为3和4时,则斜边为5第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7《点评》此题是一道易错题目,同学们应该认真审题!例3:一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )a.斜边长为25b.三角形周长为25c.斜边长为5d.三角形面积为20解析:根据勾股定理,可知斜边长度为5,选择c八年级数学下册《勾股定理》知识点2勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么.勾股定理的由来:勾股定理也叫商高定理,在**称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的.直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方。
人教版八年级下册数学《勾股定理的应用》勾股定理说课教学课件复习

解(1)∵AC⊥AB(已知)
∴ AC2+AB2=BC2(勾股定A理B =3).00 cm
∵ AB=3cm,BC=5cm
CA = 4.11 cm BC = 5.08 cm
∴AC BC2 AB2 52 32 4AcDm= 2.03 cm DC = 3.52 cm
7 .观察下列表格:
列举
3、4、5
……
5、12、13
7、24、25
13、b、c
猜想
32=4+5 52=12+13 72=24+25
…… 132=b+c
请你结合该表格及相关知识,求出b、c的值. 即b= 84 ,c= 85
9、如图,是一个三级台阶,它的每一级的长、宽和高 分别等于55cm,10cm和6cm,A和B是这个台阶 的两个相对的端点,A点上有一只蚂蚁,想到B点去吃 可口的食物。请你想一想,这只蚂蚁从A点出发,沿着 台阶面爬到B点,最短线路是多少?
D C
13、如图:边长为4的正方形ABCD中,F是DC的中点,
1
且CE= BC,则AF⊥EF,试说明理由
4
解:连接AE
∵ABCD是正方形,边长是4,F是 A A
D
DC的中点,EC=1/4BC
∴AD=4,DF=2,FC=2,EC=1
F
∴根据勾股定理,在 Rt△ADF,AF2=AD2+DF2=20
B
EC
23
2
在解决上述问题时,每个直角三角形需已知
几个条件?
(2)求AB的长
A
23
3
B
13
1
D2 C
例1、已知:在Rt△ABC中,∠C=90°,CD⊥AB
八年级数学勾股定理期末复习

【典例精析】 如图,将边长为a与b、对角线长为c的长方形纸片ABCD,绕 点C顺时针旋转90°得到长方形FGCE,连接AF.通过用不同 方法计算梯形ABEF的面积可验证勾股定理,请你写出验证 的过程.
【思路点拨】梯形的面积可用(上底+下底)×高× 1 来表示,或用三个直角三
2
角形△ABC,△CEF,△ACF的面积和表示,整理可得.
【方法归纳】翻折变换(折叠问题)实质上就是轴对称变换.折叠前后图形的形 状和大小不变,位置变化,对应边和对应角相等.解题时,我们常常设要求的线段 长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择 适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应 认真审题,设出正确的未知数.
圆柱侧面展开图是
()
解:选B.因圆柱的展开面为长方形,AC展开应该是两线段,且有公共点C.
2.如图,将一根长为8 cm(AB=8 cm)的橡皮筋水平放置在桌面上,固定两端A和B,
然后把中点C竖直地向上拉升3 cm至D点,则拉长后橡皮筋的长度为
()
A.8 cm B.10 cm C.12 cm D.15 cm
解:选B.在Rt△ACD中,AC= 1AB=4 cm,CD=3 cm;
2
根据勾股定理得:AD2=AC2+CD2=25,AD=5 cm;
同理可得BD=5 cm,
∴AD+BD=10 cm,
故拉长后橡皮筋的长度为10 cm.
考点四 勾股定理与折叠问题 【典例精析】 如图,将一张长方形纸片ABCD沿EF折叠,使点D与点B重合,点C落在C′的位置上. (1)若∠BFE=65°,求∠AEB的度数. (2)若AD=9 cm,AB=3 cm,求DE的长.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学 勾股定理复习
一、知识点: 1、勾股定理:
直角三角形两直角边的平方和等于斜边的平方。
数学式子:
∠C=900
⇒222a b c +=
2、神秘的数组(勾股定理的逆定理):
如果三角形的三边长a 、b 、c 满足a 2
+b 2
=c 2
,那么这个三角形是直角三角形. 数学式子:
222a b c +=⇒∠C=900
满足a 2+b 2=c 2
三个数a 、b 、c 叫做勾股数。
要点回顾
【知识点 1】 勾股定理内容: 〖基础回顾〗
1、 在Rt △ABC 中, a ,b ,c 分别是三条边,∠C =90°,已知,a b 则c = ; 已知,a c 则b = 。
2、在Rt △ABC 中, a ,b ,c 分别是三条边,∠B =90°,已知a =6,b =10,则c= 。
3、在ABC Rt ∆中,,4,3cm b cm a == 则=c 。
4、在Rt △ABC 中,已知两边长分别是6和8,则其面积为 。
【知识点 2】 勾股数 回忆常见的勾股数 〖基础回顾〗
1、下列各组数中,不能作为直角三角形三边长度的是( ) A .72425a b c === B . 1.52 2.5a b c === C .111345
a b c =
== D .15817a b c === 2、、判断a 、b 、c 是否是勾股数。
(1)a=7,b=24,c=25 (2)a=5,b=13,c=12 (3)a=4,b=5,c=6 ⑷
A
a
【知识点 3】定理与逆定理的应用 〖基础回顾〗
1、三角形的三边长为ab c b a 2)(2
2
+=+,则这个三角形是 。
2、已知a 、b 、c 为三个正整数,如果a +b +c =12,那么以a 、b 、c 为边能组成的三角形是:①等腰三角形;②等边三角形;③直角三角形;④钝角三角形.以上符合条件的正确结论是______.
3、在△ABC 中, AB=15,AD=12,BD=9,AC=13,求△ABC 的周长和面积。
【知识点 4】 勾股定理与方程的综合运用 〖基础回顾〗
1、 AC =6c m ,BC =8c m ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合, 你能求出CD 的长吗?
2、 在长方形纸片ABCD 中,AD =4cm ,AB =10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF , 求DE.
【知识点 5】 利用割补法求面积 〖基础回顾〗
如图,大正方形网格是由16个边长为1的小正方形组成,求图中阴影部分的面积和边长。
C
B
A
D
E
【知识点 5】勾股定理数学图形内的应用
〖基础回顾〗
1、已知等腰三角形的一条腰长是5,底边长是6,求它底边上的高
3、如图,在△ABC中,AB=26,BC=20,BC边上的中线AD=24,
求AC.
【知识点 6】最近问题
〖基础回顾〗
1、如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,
求从顶点A到顶点C’的最短距离.
2、如图,有一圆柱体,它的高为20cm,底面半径为7cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的
最短路径是_______ cm (结果用带根号和π的式子表示).
例1若直角三角形有一条直角边的长为13,另外两条边的长都是自然数,则其周长为?
练习:
1用计算器计算下列式子的值:2
2
34+,2
2
3344+,2
2
333444+,仔细观察计算所得结果,试猜
想200920093344+2
2
个
个
…33?44=____________.
例2如图,沿AE 折叠长方形ABCD ,使点D 落在BC 边的点F 处,如果AB=8 cm ,BC=10 cm ,求EC 的长.
练习:
如图,在正方形ABCD 中,E 是AD 的中点,点F 在DC 上,且DF=1
4
DC ,试判断BE 与EF 的位置关 并说明理由.
2.如图所示,在∆ABC 中,AB=20,AC=12,BC=16,把∆ABC 折叠,使AB 落在直线AC 上,求重叠部分(阴影部
分)的面积.
A B
C c b a
例3台风是一种自然灾害,它以台风中心为圆心,在周围数十千米的范围内形成气旋风暴,有极强的破坏力,据气象台观测,距沿海某城市A 的正南方向240千米的B 处有一台风中心,其中心风力为12级,每远离台风中心25千米,风力就会减弱一级,该台风中心现正以20千米/时的速度沿北偏东30°的方向往C 移动,如图所示,且台风中心的风力不变.若城市所受风力达到或超过4级,则称受台风影响. (1)该城市是否会受台风的影响?请说明理由.
(2)若会受到台风影响,则台风影响城市的持续时间有多长? (3)该城市受到台风影响的最大风力为几级?
练习:
1如图,有一块塑料矩形模板ABCD ,长为10cm ,宽为4cm ,将你手中足够大的直角三角板 PHF 的直角顶点P 落在AD 边上(不与A 、D 重合),在AD 上适当移动三角板顶点P,能否使你的三角板两直角边分别通过点B 与点C ?若能,请你求出这时 AP 的长;若不能,请说
明理由.
2如图,ΔABC 中AB=AC,D 在AB 上,F 在AC 的延长线上,且BD=CF ,连接DE 交BC 于E 。
求证:DE=EF 。
例4如图所示,在边长为c 的正方形中,有四个斜边为c 、直角边为b a ,的全等直角三角形,你能利用这个图说明勾股定理吗?写出理由.
图8
练习
1如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别是a 和b ,斜边长为c .图8(2)是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能验证勾股定理的图形.
(1)画出拼成一个能验证勾股定理的图形. (2)用这个图形验证勾股定理.
(3)假设图8(1)中的直角三角形有若干个,你能运用图8(1)中所给的直角三角形拼出另一 个能验
勾股定理的图形吗?请画出拼成后的示意图(无需说明理由)
c
c b c
a
a
c b
(2)
(1)
.
2科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153 cm ,下肢长
为92 cm ,该女士穿的高跟鞋的鞋跟的最佳高度约为______cm .(精确到0.1 cm)
例5如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=,.将BOC △绕点C 按顺时针方向旋
转60得ADC △,连接OD . (1)试说明:COD △是等边三角形;
(2)当150α=时,试判断AOD △的形状,并说明理由;
A
C
D
O
110
α
(3)探究:当 为多少度时,AOD
△是等腰三角形?
练习
1细心观察图形2.1-3,解答问题.
(1)算出210
OA的长.
(2)请用含有n(n是正整数)的代数式表示上述2n
OA. (3)求出21
OA+22
OA+23
OA+ (2)
OA的值.
1
A2
图2.1-3。