电磁感应中微元法的应用技巧及实例

电磁感应中微元法的应用技巧及实例
电磁感应中微元法的应用技巧及实例

电磁感应中微元法的应用技巧及实例

无锡市第六高级中学 曹钱建

摘要:微元法是电磁学中极其重要的一种研究方法,电磁学中无时无刻都在利用微元法处理问题,使复杂问题简化和纯化,从而确定变量为常量达到理想化的效果。间题中的信息进行提炼加工,突出主要因素,忽略次要因素,恰当处理,构建新的物理模型,从而更好地应用微元法,学好电磁感应这部分内容。。

关键词:微元法;电磁感应;高考

新课标物理教材中涉及到微分的思想,相应的派生出大量的相关问题。而微元法与电磁感应相结合的问题更是常考点也是难点,本文将就此类问题的解决提供一套简便实用的方法,及部分经典实例。

电磁感应问题中的动生电动势模型中,金属杆在达到稳定之前的过程是一个变加速过程(其中涉及到的v 、E 、I 、安F 、a 都是变量),常规的原理、公式都无法直接使用,使得很多学生遇到此类问题都觉得无从下手,但此类问题却在近两年各地模拟卷和江苏高考卷中,作为压轴题出现。其实这时可以采取“微元法”,即将所研究的变加速物理过程,分割成许多微小的单元,从而将非理想物理模型变成理想物理模型;将变加速运动过程变成匀加速运动过程,然后选择微小的单元,利用下面介绍的方法进行分析和讨论,可用一种比较简单且相对固定的模式解决此类问题。

例1、如图甲所示,光滑绝缘 水平面上一矩形金属线圈 abcd 的质量为m 、电阻为R 、ad 边长度为L ,其右侧是有左右边界的匀强磁场,磁场方向垂直纸面向外,磁感应强度大小为B ,ab 边长度与有界磁场区域宽度相等,在

t =0时刻线圈以初速度v 0进入磁场,在t=T 时刻线圈刚好全部进入磁场且速度为v l ,此时对线圈施加一沿运动方向的变力F ,使线圈在t =2T 时刻线圈全部离开该磁场区,若上述过程中线圈的v —t 图象如图乙所示,整个图象关于t=T 轴对称.

(1)求t=0时刻线圈的电功率;

(2)线圈进入磁场的过程中产生的焦耳热和穿过磁场过程中外力F 所做的功分别为多少?

(3)若线圈的面积为S ,请运用牛顿第二运动定律和电磁学规律证明:在线圈进入磁场过程中m R

LS B v v 210=- 解:t =0时,E=BLv 0 线圈电功率R

v L B R E P 20222==

(2)线圈进入磁场的过程中动能转化为焦耳热 21202

121mv mv Q -= 外力做功一是增加动能,二是克服安培力做功 2120mv mv W F -=

(3)根据微元法思想,将时间分为若干等分,每一等分可看成匀变速,利用牛顿第二定律分析可得:

B

v v 乙

m R

v L B m BLI a 22==: 等式两边同时乘以t ?可得:

t Lv mR

L B t v mR L B t a ?=?=?222 因为时间t ?极短,则a 可认为恒定不变,所以t a ?等于此极短时间内的速度改变量v ?,同理v 也可认为恒定不变,所以t v ?等于此极短时间内的位移x ?。则:

t v L mR L B t a ∑∑?=?2可得:Lx m R L B v v 210=-即mR LS B v v 210=-

【题后小结】因为题中涉及到金属杆扫过的面积S ,则将m R

v L B m BLI a 22==中构建出t Lv m R

L B ?2这样就能出现题中已知量S 。 例2、如图所示,两根足够长的固定的平行金属导轨位于竖直平面内,

两导轨间的距离为d ,导轨上面横放着两根导体棒L 1和L 2,与导轨构成

回路,两根导体棒的质量都为m ,电阻都为R ,回路中其余部分的电阻

可不计。在整个导轨平面内都有与导轨所在面垂直的匀强磁场,磁感应

强度为B 。两导体棒均可沿导轨无摩擦地滑行,保持L 1向上作速度为υ

的匀速运动,在t =0时刻将靠近L 1处的L 2由静止释放(刚释放时两棒的

距离可忽略), 经过一段时间后L 2也作匀速运动。已知d =0.5m , m =0.5kg ,R =0.1Ω,B =1T ,

g 取10m/s 2。

(1)为使导体棒L 2向下运动,L 1的速度υ最大不能超过多少?

(2)若L 1的速度υ为3m/s,在坐标中画出L 2的加速度a 2与速

率υ2 的关系图像;

(3)若L 1的速度υ为3m/s ,在L 2作匀速运动的某时刻,两棒

的间距4m ,求在此时刻前L 2运动的距离。

解: ⑴ L 2刚释放时电路中电动势1E Bd υ= 回路中电流

R

E I 211= 安培力d BI

F 1= 导体棒L 2能向下运动,则F mg > 得 4/m s υ<

⑵当L 2运动速度为υ2时,回路中电动势2()E Bd υυ=+

导体棒L 2的加速度m

F mg a -= 得22.5 2.5a υ=-

(3) 当导体棒L 2做匀速运动时,L 1和L 2两棒的速度分别是υ和υ2,由平衡条件得 222()2B d mg R

υυ+= 得24/m s υυ+= 根据微元法思想,将时间分为若干等分,每一等分可看成匀变速,设当导体棒L 2、L 1的相对速度为υ相时,利用牛顿第二定律分析可得:

Rm

v d B g a 222相-= 取极短时间Δt ,在时间Δt 内速度变化Δυ

t v Rm d B t g t a ?-?=?相222 ∑∑∑?-?=?t v Rm d B t g t a 相222 又υ相Δt =Δx 相 得22

22B d gt x Rm

υ=-相

代入数据得两棒间距为4m 所用时间t=1.1s

导体棒L 1运动的位移x 1=υt=3×1.1m =3.3m

导体棒L 2运动的位移m x x x 7.012=-=相

【题后小结】因为题中涉及到金属杆的位移x ,则将Rm

v d B g a 222相-=中构建出t v Rm d B ?相222这样就能出现题中已知量x 。

例3、如图所示,光滑金属导体ab 和cd 水平固定,相交于O

点并接触良好,∠aOc =60°.一根轻弹簧一端固定,另一端连

接一质量为m 的导体棒ef ,ef 与ab 和cd 接触良好.弹簧的

轴线与∠bOd 平分线重合.虚线MN 是磁感应强度大小为B 、方

向竖直向下的匀强磁场的边界线,距O 点距离为L .ab 、cd 、ef 单位长度的电阻均为r .现将弹簧压缩,t = 0时,使ef 从距磁场边界4

L 处由静止释放,进入磁 场后刚好做匀速运动,当ef 到达O 点时,弹簧刚好恢复原长,并与导体棒ef 分离.已知弹簧形

变量为x 时,弹性势能为212

kx ,k 为弹簧的劲度系数.不计感应电流之间的相互作用. ⑴证明:导体棒在磁场中做匀速运动时,电流的大小保持不变;

⑵求导体棒在磁场中做匀速运动的速度大小v 0和弹簧的劲度系数k ;

⑶求导体棒最终停止位置距O 点的距离.

解:⑴设匀速直线运动的速度为v 0, ef 有效切割长度为l ,则电流:

r

Bv rl Blv I 3300==,由于v 0不变,所以I 不变。或由平衡条件证明同样正确 ⑵由能量守恒,得:

202221214521mv kL L k =-)( L 4 M

设弹簧形变量为x ,由平衡条件,得: 2BIx tan30°= kx

解得 v 0 = 3B 2L 28mr k = B 4L 2

12mr

2 ⑶ ef 越过O 点后,与弹簧脱离,设导体棒最终停止位置距O 点的距离为x 0,某时刻

回路中ef 有效切割长度为L 1,ef 的速度为v ,加速度为a ,电流为I , 据牛顿第二定律,得: mr v L B r

mL v L B m BIL a 331212

121-=-=-= 取一小段时间△t ,速度微小变化为△v ,回路面积微小增加为△S ,则

等式两边同时乘以t ?可得: t v L mr B t a ?-=?123 即:t v L mr

B t a ∑∑?-=?12

3 S m r B v ∑∑?-=?32 得00202

030tan 3v x mr B -=- 将第(2)问结果代入可得 4

230L x = 【题后小结】虽然本题涉及的物理模型较前两题更为复杂,且切割的金属杆的长度也在不断变化,但在前两题的基础之上,还是容易发现题中涉及到金属杆的位移x 与金属杆的有效切

割长度及扫过的面积之间存在着定量的关系,则将mr v L B r

mL v L B m BIL a 331212121-=-=-=中构建出t v L m r

B ?12

3这样就能出现问题中的x 。 【规律总结及问题拓展】此类问题中对于金属杆的变加速运动过程的相关求解,其基本步骤为(1)对金属杆进行正确的受力分析,再应用牛顿第二定律其加速度a 肯定是包含安F 在内的一个表达式;(2)根据题中条件或问题,对加速度a 表达式中的BIL F =安部分进行合理的构建,具体的见上述例题中的“题后小结”。(3)对微分表达式进行求和,等式左边的t a ?的求和结果就是此过程的速度改变量,等式右边的求和就可得到问题的答案。除上述情况外,如题中出现通过金属杆的电量q ,则只要在表达式中构建出t I m

BL ?即可。 【成功应用】(2009年普通高等学校招生全国统一考试 江苏卷) 15如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l 、 足够长且电阻忽略不计,导轨平面的倾角为α,条形匀强磁场的宽度为d ,磁感应强度大小为B 、方向与导轨平面垂直。长度为2d 的绝缘杆将导体棒和正方形的单匝线框连接

在一起组成“”型装置,总质量为m ,置于导轨

上。导体棒中通以大小恒为

I 的电流(由外接恒流源

产生,图中未图出)。线框的边长为d (d < l ),电阻

为R ,下边与磁场区域上边界重合。将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直。重力加速度为g 。

求:(1)装置从释放到开始返回的过程中,线框中产生的焦耳热Q ;

(2)线框第一次穿越磁场区域所需的时间t 1 ;

(3)经过足够长时间后,线框上边与磁场区域下边界的最大距离χm 。

解:(1)设装置由静止释放到导体棒运动到磁场下边界的过程中,作用在线框上的安培力做

功为W

由动能定理 0sin 4=-+BIld W d mg α

且Q W =- 解得 BIld mgd Q -=αsin 4

(2)设线框刚离开磁场下边界时的速度为1v ,从释放到线框刚离开磁场下边界的过程中,

由动能定理 212

1sin 2mv Q d mg =-α 解之得 m mgd BIld v /sin 421)(α-=

装置在磁场中运动时进行受力分析并结合牛顿第二定律可得

m

R v d B mg a /sin 22-=α 取极短时间Δt ,在时间Δt 内速度变化Δυ t v mR d B t g t a ?-?=?22sin α 即 ∑∑∑?-?=?t v mR

d B t g t a 2

2sin α 可得d mR

d B t g v 2sin 2211-= 解得

23

12sin B d R t mg α= (3)经过足够长时间后,线框在磁场下边界与最大距离m x 之间往复运动

由动能定理 0sin =--)

(d x BIl mgx m m α 解得 sin m BIld x BIl mg α

=- 【题后小结】本题的第(2)问,作为江苏高考卷的压轴部分,自然有一定的难度,但利用前面的规律,还是比较能方便求出答案。

参考文献: 梁灿彬电磁学〔M 〕北京:高等教育出版社,2004

高考物理微元法解决物理试题及其解题技巧及练习题

高考物理微元法解决物理试题及其解题技巧及练习题 一、微元法解决物理试题 1.超强台风“利奇马”在2019年8月10日凌晨在浙江省温岭市沿海登陆,登陆时中心附近最大风力16级,对固定建筑物破坏程度非常大。假设某一建筑物垂直风速方向的受力面积为s,风速大小为v,空气吹到建筑物上后速度瞬间减为零,空气密度为ρ,则风力F 与风速大小v关系式为( ) A.F =ρsv B.F =ρsv2C.F =ρsv3D.F=1 2 ρsv2 【答案】B 【解析】 【分析】 【详解】 设t时间内吹到建筑物上的空气质量为m,则有: m=ρsvt 根据动量定理有: -Ft=0-mv=0-ρsv2t 得: F=ρsv2 A.F =ρsv,与结论不相符,选项A错误; B.F =ρsv2,与结论相符,选项B正确; C.F =ρsv3,与结论不相符,选项C错误; D.F=1 2 ρsv2,与结论不相符,选项D错误; 故选B。 2.估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水上升了45mm。查询得知,当时雨滴竖直下落速度约为12m/s。据此估算该压强约为()(设雨滴撞击唾莲后无反弹,不计雨滴重力,雨水的密度为1×103kg/m3) A.0.15Pa B.0.54Pa C.1.5Pa D.5.1Pa 【答案】A 【解析】 【分析】 【详解】 由于是估算压强,所以不计雨滴的重力。设雨滴受到支持面的平均作用力为F。设在△t时间内有质量为△m的雨水的速度由v=12m/s减为零。以向上为正方向,对这部分雨水应用动量定理有 () F t mv mv ?=--?=?

(完整)高中物理解题(微元法)

高中奥林匹克物理竞赛解题方法 微元法 方法简介 微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。 赛题精讲 例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。 解析:该题不能用速度分解求解,考虑采用“微元法”。 设某一时间人经过AB 处,再经过一微小过程 △t (△t →0),则人由AB 到达A ′B ′,人影顶端 C 点到达C ′点,由于△S AA ′=v △t 则人影顶端的 移动速度h H Hv t S h H H t S v A A t C C t C -=??-=??='→?' →?00lim lim 可见v c 与所取时间△t 的长短无关,所以人影的顶 端C 点做匀速直线运动. 例2:如图3—2所示,一个半径为R 的四分之一光滑球 面放在水平桌面上,球面上放置一光滑均匀铁链,其A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位 长度的质量为ρ.试求铁链A 端受的拉力T. 解析:以铁链为研究对象,由由于整条铁链的长度不能 忽略不计,所以整条铁链不能看成质点,要分析铁链的受 力情况,须考虑将铁链分割,使每一小段铁链可以看成质 点,分析每一小段铁边的受力,根据物体的平衡条件得出 整条铁链的受力情况. 在铁链上任取长为△L 的一小段(微元)为研究对象, 其受力分析如图3—2—甲所示.由于该元处于静止状态, 所以受力平衡,在切线方向上应满足: θθθθT G T T +?=?+cos θρθθcos cos Lg G T ?=?=?

微元法解电磁感应

微元法解电磁感应压轴 1【石家庄期末】如图所示,相距l=0.5m足够长的两根光滑导轨与水平面成37°角,导轨电阻不计,上、下端分别连接阻值都为2Ω的电阻R,导轨处在磁感应强度B=2T的匀强磁场中,磁场方向垂直导轨平面向上.一质量为0.5kg、电阻为1Ω的金属棒ab水平放置在导轨上且与导轨接触良好,现将ab棒从静止释放,ab棒沿轨道下滑4m时,速度达到最大值Vm(g=10m/s2,sin37°=0.6.cos37°=0.8)求: (1)ab棒的最大速度Vm; (2)该过程中电路产生的焦耳热; (3)该过程中通过导轨下端电阻R的电荷量q。 2【2016石家庄一模】(19分)如图所示,间距为L平行且足够长的光滑导轨由两部分组成:倾斜部分与水平部分平滑相连,倾角为θ,在倾斜导轨顶端连接一阻值为r的定值电阻.质量为m、电阻也为r的金属杆MN垂直导轨跨放在导轨上,在倾斜导轨区域加以垂直导轨平面向下、磁感应强度为B的匀强磁场;在水平导轨区域加另一垂直轨道平面向下、磁感应强度也为B的匀强磁场.闭合开关S,让金属杆MN从图示位置由静止释放,已知金属杆运动到水平轨道前,已达到最大速度,不计导轨电阻且金属杆始终与导轨接触良好,重力加速度为g.求: (1)金属杆MN在倾斜导轨上滑行的最大速率Vm; (2)金属杆MN在倾斜导轨上运动,速度未达到最大速度Vm前,当流经定值电阻的电流从零增大到I的过程中,通过定值电阻的电荷量为q,求这段时间内在定值电阻上产生的焦

耳热Q; (3)金属杆MN在水平导轨上滑行的最大距离Xm。 3【2017昆明二模】(20分)如图所示,平行光滑金属导轨AA1和CC1与水平地面之间的夹角均为θ,两导轨间距为L,A,C两点间连接有阻值为R的电阻,一根质量为m,电阻为r 的直导体棒EF跨在导轨上,两端与导轨接触良好.在边界ab,cd之间存在垂直导轨平面的匀强磁场,磁场的磁感应强度为B,ab和cd与导轨垂直,将导体棒EF从图示位置由静止释放,EF 进入磁场就开始匀速运动,穿过磁场过程中电阻R产生的热量为Q,整个运动过程中,导体棒EF与导轨始终垂直且接触良好,除R和r之外,其余电阻不计,取重力加速度为g. (1)求导体棒EF刚进入磁场时的速率; (2)求磁场区域的宽度s; (3)将磁感应强度变化为0.5B,仍让导体棒EF从图示位置由静止释放,若导体棒离开磁场前后瞬间的加速度大小之比为1:2,求导体棒通过磁场的时间.

电磁感应微元法

电磁感应中的“微元法”和“牛顿第四定律” 江苏省特级教师 江苏省丰县中学 戴儒京 所谓:“微元法” 所谓“微元法”,又叫“微小变量法”,是解物理题的一种方法。 1.什么情况下用微元法解题?在变力作用下做变变速运动(非匀变速运动)时,可考虑用微元法解题。 2. 关于微元法。在时间t ?很短或位移x ?很小时,非匀变速运动可以看作匀变速运动,运动图象中的梯形可以看作矩形,所以x t v ?=?,s x l t lv ?=?=?。微元法体现了微分思想。 3. 关于求和∑。许多小的梯形加起来为大的梯形,即∑?=?S s ,(注意:前面的s 为小写,后面的S 为大写),并且0v v v -=?∑,当末速度0=v 时,有∑=?0v v ,或初速度00=v 时,有∑=?v v ,这个求和的方法体现了积分思想。 4. 无论物理规律用牛顿定律,还是动量定理或动能定理,都可以用微元法. 如果既可以用动量定理也可以用动能定理解。对于使用老教科书的地区,这两种解法用哪一种都行,但对于使用课程标准教科书的地区就不同了,因为课程标准教科书把动量的内容移到了选修3-5,如果不选修3-5,则不能用动量定理解,只能用动能定理解。 微元法解题,体现了微分和积分的思想,考查学生学习的潜能和独创能力。 电磁感应中的微元法 一些以“电磁感应”为题材的题目。可以用微元法解,因为在电磁感应中,如导体切割 磁感线运动,产生感应电动势为B L v E =,感应电流为R BLv I =,受安培力为 v R L B B I L F 2 2 = =,因为是变力问题,所以可以用微元法. 1.只受安培力的情况 例1. 如图所示,宽度为L 的光滑金属导轨一端封闭,电阻不计,足够长,水平部分有竖直向上、磁感应强度为B 的匀强磁场中。质量为m 、电阻为r 的导体棒从高度为h 的斜轨上从静止开始滑下,由于在磁场中受安培力的作用,在水平导轨上滑行的距离为S 而停下。 (1) 求导体棒刚滑到水平面时的速度0v ; (2) 写出导体棒在水平导轨上滑行的速度v 与在水平导轨上滑行的距离x 的函数关 系,并画出x v -关系草图。 (3)求出导体棒在水平导轨上滑行的距离分别为S/4、S/2时的速度1v 、2v ;

高中物理解题方法---微元法

高中物理解题方法----微元法 一、什么是微元法: 在所研究是物理问题中,往往是针对研究对象经历某一过程或处于某一状态来进行研究,而此过程或状态中,描述此对象的物理量可能是不变的,而更多则可能是变化的。对于那些变化的物理量的研究,有一种方法是把全过程分割成很多短暂的小过程或把研究对象整体分解为很多的微小局部的研究而归纳出适用于全过程或整体的结论。这些微小的过程或微小的局部常被称为“微元”,此法也被称为:“微元法”。 二、对微元的理解:简单地说,微元就是时间、空间或其它物理量上的无穷小量,(注:在数学上我们把极限为“零”的物理量,叫着无穷小量)。当某一连续变化的事物被分割成无数“微元”(无穷小量)以后,在某一微元段内,该事物也就可以看出不变的恒量了。所以,微元法又叫小量分析法,它是微积分的理论基础。 三、微元法解题思想: 在中学物理解题中,利用微元法可将非理想模型转化为理想模型(如把物体分割成质点);将曲面转化为平面,将一般的曲线转化为圆弧甚至直线段;将变量转化成恒量。从而将复杂问题转化为简单问题,使中学阶段常规方法难以解决的问题迎刃而解。 微元法的灵魂是无限分割与逼近。用其解决物理问题的两要诀就是取微元----无限分割和对微元做细节描述----数学逼近。所谓取微元就是对整体对象作无限分割,分割的对象可以是各种几何体,得到“体元”、“面元”、“线元”、“角元”等;分割的对象可以是一段时间或过程,得到“时间元”、“元过程”;也可以对某一物理量分割,得到诸如“元功”、“元电荷”、“电流元”、“质元”等相应元物理量,它们是被分割成的要多么小就有多么小的无穷小量,而要解决整体的问题,就得从它们下手,对微元作细节描述即通过对微元的性质做合理的近似逼近,从而在微元取无穷小量的前提下,达到向精确描述的逼近。 例1、如图所示,岸高为h ,人用不可伸长的绳经滑轮拉船靠岸,若当绳与水平方向为θ时,人收绳速率为υ,则该位置船的速率为多大? 例2、如图所示,长为L 的船静止在平静的水面上,立于船头的人质量为m ,船的质量为M ,不计水的阻力,人从船头走到船尾的过程中,问:船的位移为多大? 例3、如图所示,半径为R ,质量为m 的匀质细圆环,置于光滑水平面上,若圆环以角 速度ω绕环心O 转动,试证明:(1)圆环的张力π ω22R m T = (2)圆环的动能2)(2 1 R m E k ω= 例4、一根质量为M ,长度为L 的匀质铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图所示,求链条下落了长度x 时,链条对地面的压力为多大? 例5、如图所示,半径为R 的半圆形绝缘细线上、下1/4圆弧上分别均匀带电+q 和-q ,求圆心处的场强. 例6、如图所示,在离水平地面h 高的平台上有一相距L 的光滑轨道,左端接有已充电的电容器,电容为C ,充电后两端电压为U 1.轨道平面处于垂直向上的磁感应强度为B 的匀强磁场中.在轨道右端放一质量为m 的金属棒,当闭合S ,棒离开轨道后电容器的两极电压变为U 2,求棒落在离平台多远的位置. 例7、(1)试证明:质量为M 的匀质球壳,对放置在空腔内任意一点的质量为m 的质点的万有引力为零。 (2)若将上述质点移至球壳外距球心O 距离为r 处,求此时系统具有的引力势能为多少?规定∞→r 时,系统引力势能为零

微元法在高中物理中的应用

微元法在高中物理中的应用 江苏省靖江市斜桥中学夏桂钱 微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。它是将研究对象(物体或物理过程)进行无限细分,从其中抽取某一微小单元即“元过程”,进行讨论,每个“元过程”所遵循的规律是相同的。对这些“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法可以把一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化,从而起到巩固知识、加深认识和提高能力的作用。 一、挖掘教材中微元素材,认知微元思想 微元法思想在新课标教材(人教版)上时有渗透。如在引入瞬时速度的概念时,教材从平均速度出发,提出从t到t+△t这段时间间隔内,△t越小运动快慢的差异也就越小,运动的描述就越精确。在此基础上,再提出若△t趋向于零时,就可以认为△t的平均速度就是t时刻的瞬时速度。正是这种无限分割的方法,可以使原来较为复杂的过程转化为较简单的过程。再如,我们要推导匀变速直线运动的位移公式,显然不能直接用s=vt,原因就在于速度本身是变化的,不能直接套用匀速直线运动的公式。但是我们可以想象,如果我们把整个过程的时间分成无数微小的时间间隔,我们分得愈密,每一份的时间间隔也就愈小,此间隔内,速度的变化亦就愈小,如果分得足够细,就可以认为速度几乎不变,此时就可将每一份按匀速直线运动来处理,完毕之后,再累加即可。 必修2第五章第四节《重力势能》中,计算物体沿任意路径向下运动时重力所做的功时,先将物体运动的整个路径分成许多很短的间隔,由于每一段都很小很小,就可以将每一段近似地看做一段倾斜的直线,从而就能利用功的定义式计算出每一小段内重力的功,再累加得到整个过程重力的总功。第五节《弹性势能》中关于在求弹簧弹力所做的功时,先将弹簧拉伸的整个过程分成很多小段,在足够小的情况下,每一小段位移中可以认为拉力是不变的,从而也能直接利用功的定义式来计算每一小段内拉力所做的功,再累加得到整个过程拉力的总功。这两个功的计算,前者的难点在于物体运动的路径是曲线,后者的难点在于力的大小在变化。教材中的处理方法是前者采用了“化曲为直”的思想,后者采用了“化变为恒”的思想。

高中物理电磁感应微元法专题

电磁感应中的“微元法” 1走近微元法 微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学思想或物理方法处理,进而使问题求解。使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。 “微元法”,又叫“微小变量法”,是解物理题的一种常用方法。 2如何用微元法 1.什么情况下用微元法解题?在变力求功,变力求冲量,变化电流求电量等等情况下,可考虑用微元法解题。 2. 关于微元法。一般是以时间和位移为自变量,在时间t ?很短或位移x ?很小时,此元过程内的变量可以认为是定值。 比如非匀变速运动求位移时在时间t ?很短时可以看作匀速运动,在求速度的变化量时在时间t ?很短时可以看作匀变速运动。 运动图象中的梯形可以看作很多的小矩形,所以,s x t v ?=?=?。

微元法体现了微分的思想。 3. 关于求和∑。许多小的梯形加起来为大的梯形,即∑?=?S s ,(注意:前面的s 为小写,后面的S 为大写), 比如0v v v -=?∑,当末速度0=v 时,有∑-=?0v v ,或初速度00=v 时,有∑=?v v ,这个求和的方法体现了积分思想。 4.物理量有三种可能的变化情况 ①不变(大小以及方向)。可以直接求解,比如恒力的功,恒力的冲量,恒定电流的电量和焦耳热。 ②线性变化(方向不变,大小线性变化)。比如力随位移线性变化可用平均力来求功,力随时间线性变化可用平均力来求冲量,电流随时间线性变化可用平均电流来求电量。 电流的平方随时间线性变化可用平方的平均值来求焦耳热。 ③非线性变化。可以考虑用微元法。 值得注意微元法不是万能的,有时反而会误入歧途,微元法解题,本质上是用现了微分和积分的思想,是一种直接的求解方法,很多时候物理量的非线性变化可以间接求解,比如动能定理求变力的功,动量定理求变力的冲量,能量方程求焦耳热等等。 当然微元法是一种很重要的物理方法,在教学过程中有意识的不断渗透微元法,可以培育和加强学生分析问题处理物理问题的能力。

高考物理专题汇编物理微元法解决物理试题(一)含解析

高考物理专题汇编物理微元法解决物理试题(一)含解析 一、微元法解决物理试题 1.如图甲所示,静止于光滑水平面上的小物块,在水平拉力F 的作用下从坐标原点O 开始沿x 轴正方向运动,F 随物块所在位置坐标x 的变化关系如图乙所示,图线右半部分为四分之一圆弧,则小物块运动到2x 0处时的动能可表示为( ) A .0 B . 1 2 F m x 0(1+π) C . 1 2F m x 0(1+2π) D .F m x 0 【答案】C 【解析】 【详解】 F -x 图线围成的面积表示拉力F 做功的大小,可知F 做功的大小W =1 2F m x 0+14 πx 02,根据动能定理得,E k =W =12F m x 0+14πx 02 =01122m F x π?? + ?? ?,故C 正确,ABD 错误。 故选C 。 2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.正方体密闭容器中有大量运动粒子,每个粒子质量为 m ,单位体积内粒子数量n 为恒量,为简化问题,我们假定粒子大小可以忽略;其速率均 为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂 直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力f 与m n 、和v 的关系正确的是( ) A . 21 6 nsmv B .2 13 nmv C . 21 6 nmv D .2 13 nmv t ? 【答案】B 【解析】 【详解】 一个粒子每与器壁碰撞一次给器壁的冲量2I mv ?=,如图所示,

以器壁上面积为S 的部分为底、v t ?为高构成柱体,由题设可知,其内有1 6 的粒子在t ?时间内与器壁上面积为S 的部分发生碰撞,碰撞粒子总数1 6 N n Sv t = ??,t ?时间内粒子给器壁的冲量21·3I N I nSmv t =?=?,由I F t =?可得21 3 I F nSmv t ==?,21 3 F f nmv S ==,故选B . 3.为估算雨水对伞面产生的平均撞击力,小明在大雨天将一圆柱形水杯置于露台,测得10分钟内杯中水位上升了45mm ,当时雨滴竖直下落速度约为12m/s 。设雨滴撞击伞面后无反弹,不计雨滴重力,雨水的密度为3 3 110kg/m ?,伞面的面积约为0.8m 2,据此估算当时雨水对伞面的平均撞击力约为( ) A .0.1N B .1.0N C .10N D .100N 【答案】B 【解析】 【分析】 【详解】 对雨水由动量定理得 Ft mv Shv ρ=?= 则 0.72N 1.0N Shv F t ρ= =≈ 所以B 正确,ACD 错误。 故选B 。

高考物理微元法解决物理试题解题技巧及练习题

高考物理微元法解决物理试题解题技巧及练习题 一、微元法解决物理试题 1.如图所示,半径为R 的1/8光滑圆弧轨道左端有一质量为m 的小球,在大小恒为F 、方向始终与轨道相切的拉力作用下,小球在竖直平面内由静止开始运动,轨道左端切线水平,当小球运动到轨道的末端时,此时小球的速率为v ,已知重力加速度为g ,则( ) A 2FR B .此过程拉力做功为 4 FR π C .小球运动到轨道的末端时,拉力的功率为1 2Fv D 2Fv 【答案】B 【解析】 【详解】 AB 、将该段曲线分成无数段小段,每一段可以看成恒力,可知此过程中拉力做功为 11 44 W F R FR ππ=?=,故选项B 正确,A 错误; CD 、因为F 的方向沿切线方向,与速度方向平行,则拉力的功率P Fv =,故选项C 、D 错误。 2.“水上飞人表演”是近几年来观赏性较高的水上表演项目之一,其原理是利用脚上喷水装置产生的反冲动力,使表演者在水面之上腾空而起。同时能在空中完成各种特技动作,如图甲所示。为简化问题。将表演者和装备与竖直软水管看成分离的两部分。如图乙所示。已知表演者及空中装备的总质量为M ,竖直软水管的横截面积为S ,水的密度为ρ,重力加速度为g 。若水流竖直向上喷出,与表演者按触后能以原速率反向弹回,要保持表演者在空中静止,软水管的出水速度至少为( )

A 2Mg S ρB Mg S ρC 2Mg S ρD 4Mg S ρ【答案】C 【解析】 【详解】 设出水速度为v ,则极短的时间t 内,出水的质量为 m Svt ρ= 速度由竖起向上的v 的变为竖起向下的v ,表演者能静止在空中,由平衡条件可知表演者及空中装备受到水的作用力为Mg ,由牛顿第三定律可知,装备对水的作用力大小也为 Mg ,取向下为正方向,对时间t 内的水,由动量定理可得 22()()Mgt mv m v v Sv t S t ρρ--=--= 解得 2Mg v S ρ= 故C 正确,A 、B 、D 错误; 故选C 。 3.2019年8月11日超强台风“利奇马”登陆青岛,导致部分高层建筑顶部的广告牌损毁。台风“利奇马”登陆时的最大风力为11级,最大风速为30m/s 。某高层建筑顶部广告牌的尺寸为:高5m 、宽20m ,空气密度3 1.2kg/m ρ=,空气吹到广告牌上后速度瞬间减为0,则该广告牌受到的最大风力约为( ) A .33.610N ? B .51.110N ? C .41.010N ? D .49.010N ? 【答案】B 【解析】 【分析】 【详解】 广告牌的面积 S =5×20m 2=100m 2 设t 时间内吹到广告牌上的空气质量为m ,则有

电磁感应中微元法的应用技巧及实例

电磁感应中微元法的应用技巧及实例 无锡市第六高级中学 曹钱建 摘要:微元法是电磁学中极其重要的一种研究方法,电磁学中无时无刻都在利用微元法处理问题,使复杂问题简化和纯化,从而确定变量为常量达到理想化的效果。间题中的信息进行提炼加工,突出主要因素,忽略次要因素,恰当处理,构建新的物理模型,从而更好地应用微元法,学好电磁感应这部分内容。。 关键词:微元法;电磁感应;高考 新课标物理教材中涉及到微分的思想,相应的派生出大量的相关问题。而微元法与电磁感应相结合的问题更是常考点也是难点,本文将就此类问题的解决提供一套简便实用的方法,及部分经典实例。 电磁感应问题中的动生电动势模型中,金属杆在达到稳定之前的过程是一个变加速过程(其中涉及到的v 、E 、I 、安F 、a 都是变量),常规的原理、公式都无法直接使用,使得很多学生遇到此类问题都觉得无从下手,但此类问题却在近两年各地模拟卷和江苏高考卷中,作为压轴题出现。其实这时可以采取“微元法”,即将所研究的变加速物理过程,分割成许多微小的单元,从而将非理想物理模型变成理想物理模型;将变加速运动过程变成匀加速运动过程,然后选择微小的单元,利用下面介绍的方法进行分析和讨论,可用一种比较简单且相对固定的模式解决此类问题。 例1、如图甲所示,光滑绝缘 水平面上一矩形金属线圈 abcd 的质量为m 、电阻为R 、ad 边长度为L ,其右侧是有左右边界的匀强磁场,磁场方向垂直纸面向外,磁感应强度大小为B ,ab 边长度与有界磁场区域宽度相等,在 t =0时刻线圈以初速度v 0进入磁场,在t=T 时刻线圈刚好全部进入磁场且速度为v l ,此时对线圈施加一沿运动方向的变力F ,使线圈在t =2T 时刻线圈全部离开该磁场区,若上述过程中线圈的v —t 图象如图乙所示,整个图象关于t=T 轴对称. (1)求t=0时刻线圈的电功率; (2)线圈进入磁场的过程中产生的焦耳热和穿过磁场过程中外力F 所做的功分别为多少? (3)若线圈的面积为S ,请运用牛顿第二运动定律和电磁学规律证明:在线圈进入磁场过程中m R LS B v v 210=- 解:t =0时,E=BLv 0 线圈电功率R v L B R E P 20222== (2)线圈进入磁场的过程中动能转化为焦耳热 21202 121mv mv Q -= 外力做功一是增加动能,二是克服安培力做功 2120mv mv W F -= (3)根据微元法思想,将时间分为若干等分,每一等分可看成匀变速,利用牛顿第二定律分析可得: B v v 乙

高考物理微元法解决物理试题技巧(很有用)及练习题

高考物理微元法解决物理试题技巧(很有用)及练习题 一、微元法解决物理试题 1.如图所示,某个力F=10 N作用在半径为R=1 m的转盘的边缘上,力F的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力F做的总功为() A.0 B.20π J C.10 J D.10π J 【答案】B 【解析】 本题中力F的大小不变,但方向时刻都在变化,属于变力做功问题,可以考虑把圆周分割为很多的小段来研究.当各小段的弧长足够小时,可以认为力的方向与弧长代表的位移方向一致,故所求的总功为W=F·Δs1+F·Δs2+F·Δs3+…=F(Δs1+Δs2+Δs3+…)=F·2πR=20πJ,选项B符合题意.故答案为B. 【点睛】本题应注意,力虽然是变力,但是由于力一直与速度方向相同,故可以直接由 W=FL求出. 2.如图所示,半径为R的1/8光滑圆弧轨道左端有一质量为m的小球,在大小恒为F、方向始终与轨道相切的拉力作用下,小球在竖直平面内由静止开始运动,轨道左端切线水平,当小球运动到轨道的末端时,此时小球的速率为v,已知重力加速度为g,则( ) A.此过程拉力做功为 2 2 FR B.此过程拉力做功为 4FR C.小球运动到轨道的末端时,拉力的功率为1 2 Fv D.小球运动到轨道的末端时,拉力的功率为 2 2 Fv 【答案】B 【解析】【详解】

AB 、将该段曲线分成无数段小段,每一段可以看成恒力,可知此过程中拉力做功为1144 W F R FR ππ=?=,故选项B 正确,A 错误; CD 、因为F 的方向沿切线方向,与速度方向平行,则拉力的功率P Fv =,故选项C 、D 错误。 3.为估算雨水对伞面产生的平均撞击力,小明在大雨天将一圆柱形水杯置于露台,测得10分钟内杯中水位上升了45mm ,当时雨滴竖直下落速度约为12m/s 。设雨滴撞击伞面后无反弹,不计雨滴重力,雨水的密度为33 110kg/m ?,伞面的面积约为0.8m 2,据此估算当时雨水对伞面的平均撞击力约为( ) A .0.1N B .1.0N C .10N D .100N 【答案】B 【解析】 【分析】 【详解】 对雨水由动量定理得 Ft mv Shv ρ=?= 则 0.72N 1.0N Shv F t ρ= =≈ 所以B 正确,ACD 错误。 故选B 。 4.水柱以速度v 垂直射到墙面上,之后水速减为零,若水柱截面为S ,水的密度为ρ,则水对墙壁的冲力为( ) A .12ρSv B .ρSv C .12ρS v 2 D .ρSv 2 【答案】D 【解析】 【分析】 【详解】 设t 时间内有V 体积的水打在钢板上,则这些水的质量为:

高中物理电磁感应微元法专题

电磁感应中的“微元法” 1走近微元法 微元法是分析、解决物理问题中的常用方法,也是从部分到整体 的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理 规律迅速地加以解决,使所求的问题简单化。在使用微元法处理问题 时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵 循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将 “元过程”进行必要的数学思想或物理方法处理,进而使问题求解。 使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加 深认识和提高能力的作用。 “微元法”,又叫“微小变量法”,是解物理题的一种常用方法。 2如何用微元法 1.什么情况下用微元法解题?在变力求功,变力求冲量,变化电流 求电量等等情况下,可考虑用微元法解题。 2. 关于微元法。一般是以时间和位移为自变量,在时间t ?很短或 位移x ?很小时,此元过程的变量可以认为是定值。 比如非匀变速运动求位移时在时间t ?很短时可以看作匀速运动, 在求速度的变化量时在时间t ?很短时可以看作匀变速运动。 运动图象中的梯形可以看作很多的小矩形,所以,s x t v ?=?=?。

微元法体现了微分的思想。 3. 关于求和∑。许多小的梯形加起来为大的梯形,即∑?=?S s , (注意:前面的s 为小写,后面的S 为大写), 比如0v v v -=?∑,当末速度0=v 时,有∑-=?0v v ,或初速度0 0=v 时,有∑=?v v ,这个求和的方法体现了积分思想。 4.物理量有三种可能的变化情况 ①不变(大小以及方向)。可以直接求解,比如恒力的功,恒力 的冲量,恒定电流的电量和焦耳热。 ②线性变化(方向不变,大小线性变化)。比如力随位移线性变 化可用平均力来求功,力随时间线性变化可用平均力来求冲量,电流 随时间线性变化可用平均电流来求电量。 电流的平方随时间线性变化 可用平方的平均值来求焦耳热。 ③非线性变化。可以考虑用微元法。 值得注意微元法不是万能的,有时反而会误入歧途,微元法解题,本质上是用现了微分和积分的思想,是一种直接的求解方法,很多时 候物理量的非线性变化可以间接求解,比如动能定理求变力的功,动 量定理求变力的冲量,能量方程求焦耳热等等。 当然微元法是一种很重要的物理方法,在教学过程中有意识的不断 渗透微元法,可以培育和加强学生分析问题处理物理问题的能力。

高中物理竞赛.微元法详细解读+例题分析(附完整答案)

微元法 方法简介 微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。 例1:如图3—1所示,一个身高为h 的人在灯以恒定速度v 沿水平直线行走。设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。 解析:该题不能用速度分解求解,考虑采用“微元法”。 设某一时间人经过AB 处,再经过一微小过程 △t (△t →0),则人由AB 到达A ′B ′,人影顶端 C 点到达C ′点,由于△S AA ′=v △t 则人影顶端的 移动速度h H Hv t S h H H t S v A A t C C t C -=??-=??='→?' →?00lim lim 可见v c 与所取时间△t 的长短无关,所以人影的顶 端C 点做匀速直线运动. 例2:如图3—2所示,一个半径为R 的四分之一光滑球 面放在水平桌面上,球面上放置一光滑均匀铁链,其A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位 长度的质量为ρ.试求铁链A 端受的拉力T. 解析:以铁链为研究对象,由由于整条铁链的长度不能 忽略不计,所以整条铁链不能看成质点,要分析铁链的受 力情况,须考虑将铁链分割,使每一小段铁链可以看成质 点,分析每一小段铁边的受力,根据物体的平衡条件得出 整条铁链的受力情况. 在铁链上任取长为△L 的一小段(微元)为研究对象, 其受力分析如图3—2—甲所示.由于该元处于静止状态, 所以受力平衡,在切线方向上应满足: θθθθT G T T +?=?+cos θρθθc o s c o s Lg G T ?=?=? 由于每段铁链沿切线向上的拉力比沿切线向下的拉力大 △T θ,所以整个铁链对A 端的拉力是各段上△T θ的和, 即 ∑∑∑?=?=?=θρθ ρθc o s c o s L g Lg T T 观察 θcos L ?的意义,见图3—2—乙,由于△θ很小, 所以CD ⊥OC ,∠OCE=θ△Lcos θ表示△L 在竖直方向上的投影△R , 所以 ∑=?R L θ c o s 可得铁链A 端受的拉力 ∑=?=gR L g T ρθρcos

高中物理易错题专题三物理微元法解决物理试题(含解析)

高中物理易错题专题三物理微元法解决物理试题(含解析) 一、微元法解决物理试题 1.雨打芭蕉是我国古代文学中重要的抒情意象.为估算雨天院中芭蕉叶面上单位面积所承受的力,小玲同学将一圆柱形水杯置于院中,测得10分钟内杯中雨水上升了15mm ,查询得知,当时雨滴落地速度约为10m /s ,设雨滴撞击芭蕉后无反弹,不计雨滴重力,雨水的密度为1×103kg /m 3,据此估算芭蕉叶面单位面积上的平均受力约为 A .0.25N B .0.5N C .1.5N D .2.5N 【答案】A 【解析】 【分析】 【详解】 由于是估算压强,所以不计雨滴的重力.设雨滴受到支持面的平均作用力为F .设在△t 时间内有质量为△m 的雨水的速度由v =10m/s 减为零.以向上为正方向,对这部分雨水应用动量定理:F △t =0-(-△mv )=△mv .得:F = mv t V V ;设水杯横截面积为S ,对水杯里的雨水,在△t 时间内水面上升△h ,则有:△m =ρS △h ;F =ρSv h t V V .压强为:33 22151011010/0.25/1060 F h P v N m N m S t ρ-?===???=?V V ,故A 正确,BCD 错误. 2.我国自主研制的绞吸挖泥船“天鲲号”达到世界先进水平.若某段工作时间内,“天鲲号”的泥泵输出功率恒为4110kW ?,排泥量为31.4m /s ,排泥管的横截面积为20.7 m ,则泥泵对排泥管内泥浆的推力为( ) A .6510N ? B .7210N ? C .9210N ? D .9510N ? 【答案】A 【解析】 【分析】 【详解】 设排泥的流量为Q ,t 时间内排泥的长度为: 1.4 20.7 V Qt x t t S S = === 输出的功: W Pt = 排泥的功: W Fx = 输出的功都用于排泥,则解得: 6510N F =? 故A 正确,BCD 错误.

电磁感应微元法.

电磁感应中的“微元法” 所谓:“微元法” 所谓“微元法”,又叫“微小变量法”,是解物理题的一种方法。 1.什么情况下用微元法解题?在变力作用下做变变速运动(非匀变速运动)时,可考虑用微元法解题。 2. 关于微元法。在时间?t很短或位移?x很小时,非匀变速运动可以看作匀变速运动,运动图象中的梯形可以看作矩形,所以v?t=?x,lv?t=l?x=?s。微元法体现了微分思想。 3. 关于求和∑。许多小的梯形加起来为大的梯形,即 小写,后面的S为大写),并且∑?v=v-v0(注意:前面的s为∑?s=?S,,当末速度v=0时,有∑?v=v,或初速度0v0=0时,有∑?v=v,这个求和的方法体现了积分思想。 4. 无论物理规律用牛顿定律,还是动量定理或动能定理,都可以用微元法. 如果既可以用动量定理也可以用动能定理解。对于使用老教科书的地区,这两种解法用哪一种都行,但对于使用课程标准教科书的地区就不同了,因为课程标准教科书把动量的内容移到了选修3-5,如果不选修3-5,则不能用动量定理解,只能用动能定理解。微元法解题,体现了微分和积分的思想,考查学生学习的潜能和独创能力。电磁感应中的微元法 一些以“电磁感应”为题材的题目。可以用微元法解,因为在电磁感应中,如导体切割磁感线运动,产生感应电动势为E=BLv,感应电流为I=BLv,受安培力为R B2L2 F=BIL=v,因为是变力问题,所以可以用微元法. R 1.只受安培力的情况 例1. 如图所示,宽度为L的光滑金属导轨一端封闭,电阻不计,足够长,水平部分有竖直向上、磁感应强度为B的匀强磁场中。质量为m、电阻为r的导体棒从高度为h的斜轨上从静止开始滑下,由于在磁场中受安培力的作用,在水平导轨上滑行的距离为S而停下。 (1)求导体棒刚滑到水平面时的速度v0; (2)写出导体棒在水平导轨上滑行的速度v与在水平导轨上滑行的距离x的函数关 系,并画出v-x关系草图。 (3)求出导体棒在水平导轨上滑行的距离分别为S/4、S/2时的速度v1、v2;

教科版高中物理总复习知识讲解 物理学中微元法的应用

物理学中微元法的应用 : : 【高考展望】 随着新课程的改革,微积分已经引入了高中数学课标,列入理科学生的高考考试范围,为高中物理的学习提供了更好的数学工具。教材中很多地方体现了微元思想,逐步建立微元思想,加深对物理概念、规律的理解,提高解决物理问题的能力,不仅需要从研究方法上提升学习能力,而且还要提高利用数学方法处理物理问题的能力。高考试题屡屡出现“微元法” 的问题,较多地出现在机械能问题、动量问题、电磁感应问题中,往往一出现就是分值高、难度较大的计算题。在高中物理竞赛、自主招生物理试题中更是受到命题者的青睐,成为必不可少的内容。 【知识升华】 “微元法”又叫“微小变量法”,是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的。微元可以是一小段线段、圆弧、一小块面积、一个小体积、小质量、一小段时间……,但应具有整体对象的基本特征。这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题得到求解。利用“微元法”可以将非理想模型转化为理想模型,将一般曲线转化为圆甚至是直线,将非线性变量转化为线性变量甚至是恒量,充分体现了“化曲为直”、“化变为恒”的思想。 【方法点拨】 应用“微元法”解决物理问题时,采取从对事物的极小部分(微元)入手,达到解决事物整体的方法,具体可以分以下三个步骤进行:(1)选取微元用以量化元事物或元过程; (2)把元事物或元过程视为恒定,运用相应的物理规律写出待求量对应的微元表达式;(3)在微元表达式的定义域内实施叠加演算,进而求得待求量。微元法是采用分割、近似、求和、取极限四个步骤建立所求量的积分式来解决问题的。 【典型例题】 类型一、微元法在运动学、动力学中的应用 例1、设某个物体的初速度为0v ,做加速度为a 的匀加速直线运动,经过时间t ,则物 体的位移与时间的关系式为2 012 x v t at =+ ,试推导。 【思路点拨】把物体的运动分割成若干个微元,t ?极短,写出v t -图像下微元的面积的表 达式,即位移微元的表达式,最后求和,就等于总的位移。 【解析】作物体的v t -图像,如图甲、乙,把物体的运动分割成若干个小元段(微元),由于每一个小元段时间t ?极短,速度可以看成是不变的,设第i 段的速度为i v ,则在t ?时间内第i 段的位移为i i x v t =?,物体在t 时间内的位移为i i x x v t =∑=∑?,在v t -图像上则为若干个微小矩形面积之和。

电磁感应微元法

电磁感应微元法

————————————————————————————————作者:————————————————————————————————日期:

电磁感应中的“微元法”和“牛顿第四定律” 所谓:“微元法” 所谓“微元法”,又叫“微小变量法”,是解物理题的一种方法。 1.什么情况下用微元法解题?在变力作用下做变变速运动(非匀变速运动)时,可考虑用微元法解题。 2. 关于微元法。在时间t ?很短或位移x ?很小时,非匀变速运动可以看作匀变速运动,运动图象中的梯形可以看作矩形,所以x t v ?=?,s x l t lv ?=?=?。微元法体现了微分思想。 3. 关于求和 ∑ 。许多小的梯形加起来为大的梯形,即 ∑?=?S s , (注意:前面的s 为小写,后面的S 为大写),并且0 v v v -=?∑,当末速度0=v 时,有 ∑=?0 v v ,或初 速度00=v 时,有 ∑=?v v ,这个求和的方法体现了积分思想。 4. 无论物理规律用牛顿定律,还是动量定理或动能定理,都可以用微元法. 如果既可以用动量定理也可以用动能定理解。对于使用老教科书的地区,这两种解法用哪一种都行,但对于使用课程标准教科书的地区就不同了,因为课程标准教科书把动量的内容移到了选修3-5,如果不选修3-5,则不能用动量定理解,只能用动能定理解。 微元法解题,体现了微分和积分的思想,考查学生学习的潜能和独创能力。 电磁感应中的微元法 一些以“电磁感应”为题材的题目。可以用微元法解,因为在电磁感应中,如导体切割磁感线运动,产生感应电动势为BLv E =,感应电流为R BLv I = ,受安培力为v R L B BIL F 2 2==,因为是变力问题,所以可以用微元法. 1.只受安培力的情况 例1. 如图所示,宽度为L 的光滑金属导轨一端封闭,电阻不计,足够长,水平部分有竖直向上、磁感应强度为B 的匀强磁场中。质量为m 、电阻为r 的导体棒从高度为h 的斜轨上从静止开始滑下,由于在磁场中受安培力的作用,在水平导轨上滑行的距离为S 而停下。 (1) 求导体棒刚滑到水平面时的速度0v ; (2) 写出导体棒在水平导轨上滑行的速度v 与在水平导轨上滑行的距离x 的函数关 系,并画出x v -关系草图。 (3)求出导体棒在水平导轨上滑行的距离分别为S/4、S/2时的速度1v 、2v ; B h x

高考物理微元法解决物理试题常见题型及答题技巧及练习题

高考物理微元法解决物理试题常见题型及答题技巧及练习题 一、微元法解决物理试题 1.如图所示,某个力F =10 N 作用在半径为R =1 m 的转盘的边缘上,力F 的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力F 做的总功为( ) A .0 B .20π J C .10 J D .10π J 【答案】B 【解析】 本题中力F 的大小不变,但方向时刻都在变化,属于变力做功问题,可以考虑把圆周分割为很多的小段来研究.当各小段的弧长足够小时,可以认为力的方向与弧长代表的位移方向一致,故所求的总功为W =F ·Δs 1+F ·Δs 2+F ·Δs 3+…=F (Δs 1+Δs 2+Δs 3+…)=F ·2πR =20πJ ,选项B 符合题意.故答案为B . 【点睛】本题应注意,力虽然是变力,但是由于力一直与速度方向相同,故可以直接由W =FL 求出. 2.解放前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用.如图,一个人推磨,其推磨杆的力的大小始终为F ,方向与磨杆始终垂直,作用点到轴心的距离为r ,磨盘绕轴缓慢转动,则在转动一周的过程中推力F 做的功为 A .0 B .2πrF C .2Fr D .-2πrF 【答案】B 【解析】 【分析】 cos W Fx α=适用于恒力做功,因为推磨的过程中力方向时刻在变化是变力,但由于圆周 运动知识可知,力方向时刻与速度方向相同,根据微分原理可知,拉力所做的功等于力与路程的乘积; 【详解】 由题可知:推磨杆的力的大小始终为F ,方向与磨杆始终垂直,即其方向与瞬时速度方向相同,即为圆周切线方向,故根据微分原理可知,拉力对磨盘所做的功等于拉力的大小与拉力作用点沿圆周运动弧长的乘积,由题意知,磨转动一周,弧长2L r π=,所以拉力所

相关文档
最新文档