电源设计中最常用的计算公式

电源设计中最常用的计算公式
电源设计中最常用的计算公式

电源设计中最常用的计算公式

MOSFET开关管工作的最大占空比Dmax:

式中:V or为副边折射到原边的反射电压,当输入为AC220V时反射电压为135V;VminDC为整流后的最低直流电压;VDS为MOSFET功率管导通时D与S极间电压,一般取10V。

变压器原边绕组电流峰值IPK为:

式中:η为变压器的转换效率;Po为输出额定功率,单位为W。

变压器原边电感量LP:

式中:Ts为开关管的周期(s);LP单位为H。

变压器的气隙lg:

式中:Ae为磁芯的有效截面积(cm2);△B为磁芯工作磁感应强度变化值(T);Lp单位取H,IPK单位取A,lg单位为mm。

变压器磁芯:

反激式变换器功率通常较小,一般选用铁氧体磁芯作为变压器磁芯,其功率容量AP为

式中:AQ为磁芯窗口面积,单位为cm2;Ae为磁芯的有效截面积,单位为cm2;Po是变压器的标称输出功率,单位为W;fs为开关管的开关频率;Bm为磁芯最大磁感应强度,单位为T;δ为线圈导线的电流密度,通常取200~300A/cm2,η是变压器的转换效率;Km为窗口填充系数,一般为0.2~0.4;KC为磁芯的填充系数,对于铁氧体为1.0。

根据求得的AP值选择余量稍大的磁芯,一般尽量选择窗口长宽之比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减少漏感。

变压器原边匝数NP:

式中:△B为磁芯工作磁感应强度变化值(T),Ae单位为cm2,Ts单位为s。

变压器副边匝数Ns:

式中:VD为变压器二次侧整流二极管导通的正向压降。

功率开关管的选择:

开关管的最小电压应力UDS:

一般选择DS间击穿电压应比式(9)计算值稍大的MOSFET功率管。

绕组电阻值R:

式中:MUT为平均每匝导线长度(cm);N为导线匝数;为20℃时导线每cm的电阻值(μΩ)。

绕组铜耗PCU为:

原、副边绕组电阻值可通过求绕组电阻值R的公式求出,当求原边绕组铜耗时,电流用原边峰值电流IPK来计算;求副边绕组铜耗时,电流用输出电流Io来计算。

磁芯损耗:

磁芯损耗取决于工作频率、工作磁感应强度、电路工作状态和所选用的磁芯材料的性能。对于双极性开关变压器,磁芯损耗PC:

式中:Pb为在工作频率、工作磁感应强度下单位质量的磁芯损耗(W/kg);Gc为磁芯质量(Kg)。

对于单极性开关变压器,由于磁芯工作于磁滞回线的半区,所以磁芯损耗约为双极性开关变压器的一半。变压器总损耗为总铜耗与磁芯损耗之和。

机械设计基础公式计算例题

一、计算图所示振动式输送机的自由度。 解:原动构件1绕A 轴转动、通过相互铰接的运动构件2、3、4带动滑块5作往复直线移动。构件2、3和4在C 处构成复合铰链。此机构共有5个运动构件、6个转动副、1个移动副,即n =5,l p =7,h p =0。则该机构的自由度为 3-2) 3-3) 同理,当设a >d 时,亦可得出 得c d ≤b d ≤a d ≤ 分析以上诸式,即可得出铰链四杆机构有曲柄的条件为:

(1)连架杆和机架中必有一杆是最短杆。 (2)最短杆与最长杆长度之和不大于其他两杆长度之和。 上述两个条件必须同时满足,否则机构中便不可能存在曲柄,因而只能是双摇杆机构。 通常可用以下方法来判别铰链四杆机构的基本类型: 四、从动件位移s与凸轮转角?之间的关系可用图表示,它称为位移曲线(也称? S曲线) -位移曲线直观地表示了从动件的位移变化规律,它是凸轮轮廓设计的依据 凸轮与从动件的运动关系 五、凸轮等速运动规律

???? ? ?? ?? == ====00 0dt dv a h S h v v ? ?ω?常数从动件等速运动的运动参数表达式为 等速运动规律运动曲线 等速运动位移曲线的修正 ,两轮的中心距α=630mm ,主动带轮转速1n 1 450 r/min ,能传递的最大功率P=10kW 。试求:V 带中各应力,并画出各应力1σ、σ2、σb1、σb2及σc 的分布图。 附:V 带的弹性模量E=130~200MPa ;V 带的质量q=0.8kg/m ;带与带轮间的当量摩擦系数fv=0.51;B 型带的截面积A=138mm2;B 型带的高度h=10.5mm 。

第三章机械设计编程基础

第三章 机械设计编程基础 2.1 编程和图表处理的基本方法 一、编制机械设计计算程序的基本方法 (1) 设计数据 (2) 表格、线图及标准规范 (3) 算法设计 [] p p dlh T σσ≤= 4 式中,T 为转矩; h 为键高度; l 为键的工作长度; [σp ]为轮毂的许用挤压应力。 表1 平键(摘自GB1096-90) 轴径 mm d mm b mm h 自6~8 2 2 >8 ~10 3 3 >10~12 4 4 >12~17 5 5 >17~22 6 6 >22~30 8 7 >30~38 10 8 >38~44 12 8 >44~50 14 9

二、设计图表处理的基本方法 1.表格(手册中的)分为两类:? ?? ..:;:着某种联系表格中的数据之间存在列表函数任何联系表格中的数据之间没有数表 2.表格处理的基本方法: (1) 表格的程序化:将数表中的数据以数组形式存储和检索,直接编 在解题的程序中。 (2) 表格的公式化:对于列表函数,可用曲线拟合的方法形成数学表 达式并直接编于程序中。 2-2 设计数表的处理 一、表格的程序化 1. 数表 一维(元)数表:所查取的数据只与一个变量有关的数表; 二维(元)数表:所查取的数据与两个变量有关的数表; 它们均可用一维和二维数组的形式存入计算机,以备程序使用。 一维(元)数表程序化

示例1 : 示例2 : int I; float GAMA[ ] ={ 7.87,7.85,8.30,7.75}; printf( “1. 工业纯铁\ n”); printf( “1. 钢材\ n”); printf( “2. 高速钢\ n”); printf( “3. 不锈钢\ n”); printf( “选择材料类型:”); scanf( “ % d”,&I); printf( “3. 不锈钢\ n”); printf( “材料的密度:% f\ n”,GAMA[I -1]); 表2 材料的密度 材 料 密度 / (g.。cm -3) 工业纯铁 7。87 钢 材 7。85 高 速 钢 8。30 不 锈 钢 7。75

机械设计转动惯量计算公式-参考模板

1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2 MD J = 对于钢材:3 410 32-??=g L rD J π ) (1078.0264s cm kgf L D ???-M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22? ?? ??? =n v J π g w 2s 2 ? ?? ??=π (kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 122 221??? ??? ??????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 2 g w R J = (kgf·cm·s 2) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)

6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 ???? ??++=2221g w 1R J i J J t J 1,J 2-分别为Ⅰ轴, Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2); R-齿轮z 分度圆半径(cm); w-工件及工作台重量(kgf)。 马达力矩计算 (1) 快速空载时所需力矩: 0f amax M M M M ++= (2) 最大切削负载时所需力矩: t 0f t a M M M M M +++= (3) 快速进给时所需力矩: 0f M M M += 式中M amax —空载启动时折算到马达轴上的加速力矩(kgf·m); M f —折算到马达轴上的摩擦力矩(kgf·m); M 0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf·m); M at —切削时折算到马达轴上的加速力矩(kgf·m); M t —折算到马达轴上的切削负载力矩(kgf·m)。 在采用滚动丝杠螺母传动时,M a 、M f 、M 0、M t 的计算公式如下: (4) 加速力矩: 2a 106.9M -?= T n J r (kgf·m) s T 17 1= J r —折算到马达轴上的总惯量; T —系统时间常数(s); n —马达转速( r/min ); 当 n = n max 时,计算M amax n = n t 时,计算M at n t —切削时的转速( r / min )

12种开关电源拓扑及计算公式

输入输出电压关系 D T Ton Vin Vout == 开关管电流 Iout Iq =(max)1开关管电压 Vin Vds =二极管电流 ) 1(1D Iout Id ?×=二极管反向电压 Vin Vd =12、BOOST 电路 输入输出电压关系 D Ton T T Vin Vout ?= ?=11 开关管电流 11( (max)1D Iout Iq ?×=开关管电压 Vout Vds =二极管电流 Iout Id =1二极管反向电压 Vout Vd =13、BUCK BOOST 电路 输入输出电压关系 D D Ton T Ton Vin Vout ?= ?=1开关管电流 11( (max)1D Iout Iq ?×=开关管电压 Vout Vin Vds ?=二极管电流 Iout Id =1二极管反向电压 Vout Vin Vd ?=1

输入输出电压关系 D D Vin Vout ?= 1开关管电流 )1( (max)1D D Iout Iq ?×=开关管电压 Vout Vin Vds +=二极管电流 Iout Id =1二极管反向电压 Vin Vout Vd +=15、FLYBACK 电路 输入输出电压关系 Lp Iout Vout T D Vin Vout ×××=2开关管电流 (max)1Lp Ton Vin Iq ×= 开关管电压 Ns Np Vout Vin Vds × +=二极管电流 Iout Id =1二极管反向电压 Np Ns Vin Vout Vd × +=16、FORW ARD 电路 输入输出电压关系 D Np Ns T Ton Np Ns Vin Vout ×=×=开关管电流 Iout Np Ns Iq ×= (max)1开关管电压 Vin Vds ×=2二极管电流 D Iout Id ×=1

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该如何来计算高频变压器的匝数,从而解决这个问题?接下来,晨飞电子就为大家介绍下匝数的计算方法:

开关电源热阻计算方法及热管理

开关电源热阻计算方法及热管理 我们设计的DC-DC电源一般包含电容、电感、肖特基、电阻、芯片等元器件;电源产品的转换效率不可能做到百分百,必定会有损耗,这些损耗会以温升的形式呈现在我们面前,电源系统会因热设计不良而造成寿命加速衰减。所以热设计是系统可靠性设计环节中尤为重要的一面。但是热设计也是十分困难的事情,涉及到的因素太多,比如电路板的尺寸和是否有空气流动。 我们在查看IC产品规格书时,经常会看到R JA 、T J 、T STG 、T LEAD 等名词;首先R JA 是指芯 片热阻,即每损耗1W时对应的芯片结点温升,T J 是指芯片的结温,T STG 是指芯片的存储温 度范围,T LEAD 是指芯片的加工温度。 二、术语解释 首先了解一下与温度有关的术语:T J 、T A 、T C 、T T 。由“图1”可以看出,T J 是指芯片 内部的结点温度,T A 是指芯片所处的环境温度,T C 是指芯片背部焊盘或者是底部外壳温度, T T 是指芯片的表面温度。 数据表中常见的表征热性能的参数是热阻R JA ,R JA 定义为芯片的结点到周围环境的热阻。 其中T J = T A +(R JA *P D ) 图1.简化热阻模型 对于芯片所产生的热量,主要有两条散热路径。第一条路径是从芯片的结点到芯片 顶部塑封体(R JT ),通过对流/辐射(R TA )到周围空气;第二条路径是从芯片的结点到背部焊 盘(R JC ),通过对流/辐射(R CA )传导至PCB板表面和周围空气。 对于没有散热焊盘的芯片,R JC 是指结点到塑封体顶部的热阻;因为R JC 代表从芯片内 的结点到外界的最低热阻路径。 三、典型热阻值 表1典型热阻

《机械设计》第九版-公式大全

第五章 螺纹连接和螺旋传动 受拉螺栓连接 1、受轴向力F Σ 每个螺栓所受轴向工作载荷:z F F /∑= z :螺栓数目; F :每个螺栓所受工作载荷 2、受横向力F Σ 每个螺栓预紧力:fiz F K F s ∑> f :接合面摩擦系数;i :接合面对数;s K :防滑系数; z :螺栓数目 3、受旋转力矩T 每个螺栓所受预紧力:∑=≥ n i i s r f T K F 10 s K :防滑系数; f :摩擦系数; 4、受翻转力矩M 螺栓受最大工作载荷:∑=≥ z i i L ML F 1 2max max m ax L :最远螺栓距离 受剪螺栓连接 5、受横向力F Σ(铰制孔用螺栓) 每个螺栓所受工作剪力:z F F /∑= z :螺栓数目; 6、受旋转力矩T (铰制孔用螺栓) 受力最大螺栓所受工作剪力:∑=≥ z i i r Tr F 1 2 max max m ax r :最远螺栓距离 螺栓连接强度计算 松螺栓连接:[]σπσ ≤= 4 21d F 只受预紧力的紧螺栓连接:[]σπσ≤= 4 3.1210 d F 受预紧力和轴向工作载荷的紧螺栓连接: 受轴向静载荷:[]σπσ ≤= 4 3.12 12 d F 受轴向动载荷:[]p m b b a d F C C C σπσ≤?+= 21 2 受剪力的铰制孔用螺栓连接剪力: 螺栓的剪切强度条件:[]σπτ ≤= 4 /20 d F 螺栓与孔壁挤压强度:[]p p L d F σσ≤= min 螺纹连接的许用应力 许用拉应力: []S S σσ= 许用切应力: []τ στS S =

反激式开关电源的设计方法

1 设计步骤: 1.1 产品规格书制作 1.2 设计线路图、零件选用. 1.3 PCB Layout. 1.4 变压器、电感等计算. 1.5 设计验证. 2 设计流程介绍: 2.1 产品规格书制作 依据客户的要求,制作产品规格书。做为设计开发、品质检验、生产测试等的依据。 2.2 设计线路图、零件选用。 2.3 PCB Layout. 外形尺寸、接口定义,散热方式等。 2.4 变压器、电感等计算. 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的, 2.4.1 决定变压器的材质及尺寸: 依据变压器计算公式 Gauss x NpxAe LpxIp B 100(max ) B(max) = 铁心饱合的磁通密度(Gauss) Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm 2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考 虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的 power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心 因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以 做较大瓦数的Power 。 2.4.2 决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。 2.4.3 决定变压器线径及线数: 变压器的选择实际中一般根据经验,依据电源的体积、工作频率,

开关电源设计计算公式

CDQZ-5107 SEHOTTKY 计算方法1、由于前面计算变压器可知: Np=82T3N S=13T3 2、在输入电压为264Vac时,反射到次级电压为: Vmax=264Vac* 迈=373 V “ Vs产土* Vmax =—*373=59.5 V DC N p82 3、设次级感量引起的电压为:(VR:初级漏感引起的电压) V严尹V 件*90=14.5V” 4、计算肖特基的耐压值: V卩产V $? + V 脳 + V。=59.5+14.5+12=86 V DC 5、计算出输出峰值电流: 2人2*1 出=- =3?8A 1-Z) 1-0.474 6、由计算变压器可知: 1/1.59 A 故选择3A/100V的肖特基满足设计要求。(因3A的有效值为3.9A) 客户名称客户编号 公司编号样品单编号日期输入范围输入电压电流

CDQZ-5107 MOSFET 计算方法 1、 由于前面计算变压器可知: Np=82T 3 N S =13T 3 2、 输入电压最大值为264Vac,故经过桥式整流后,得到: Vmax=264Vac* 迈=373 V “ 3、 次级反射到初级的电压为: V 沪尹 V 。斗 *12=76J. 4、由前而计算变压器可知,取初级漏感引起的电压,V R =90V”,故MOFET 要求耐 压值为: V D5=V max+V w + V P/f =373+90+76=539 V DC 5、计算初级峰值电流: T =匕 _ 。 厶丄 _n 227A 曲 7广 V 肿 DF 0.88*100*0.6 '? 6、故选择2A/600V 的MOSFET 满足设计要求,即选用仙童2N60C 。 客户名称 客户编号 公司编号 样品单编号 日期 输入范围 输入电压电流 82*1 r/ns =0.571 A

机械设计常用计算公式 集(一)

运动学篇 一、直线运动: 基本公式:(距离、速度、加速度和时间之间的关系) 1)路程=初速度x时间+加速度x时间^2/2 2)平均速度=路程/时间; 3)末速度-初速度=2x加速度x路程; 4)加速度=(末速度-初速度)/时间 5)中间时刻速度=(初速度+末速度)/2 6)力与运动之间的联系:牛顿第二定律:F=ma,[合外力(N)=物体质量(kg)x加速度(m/s^2)] (注:重力加速度g=9.8m/s^2或g=9.8N/kg) 二、旋转运动:(旋转运动与直线运动类似,注:弧度是没有单位的) 单位对比: 圆的弧长计算公式: 弧长s=rθ=圆弧的半径x圆弧角度(角位移) 周长=C=2πr=πd,即:圆的周长=2x3.14x圆弧的半径=3.14x圆弧的直径 旋转运动中角位移、弧度(rad)和公转(r)之间的关系。

1)1r(公转)=2π(弧度)=360°(角位移) 2)1rad=360°/(2π)=57.3° 3)1°=2π/360°=0.01745rad 4)1rad=0.16r 5)1°=0.003r 6)1r/min=1x2x3.14=6.28rad/min 7)1r/min=1x360°=360°/min 三、旋转运动与直线运动的联系: 1)弧长计算公式(s=rθ):弧长=圆弧的半径x圆心角(圆弧角度或角位移) 2)角速度(角速度是角度(角位移)的时间变化率)(ω=θ/t):角速度=圆弧角度/时间 注:结合上式可推倒出角速度与圆周速度(即:s/t也称切线速度)之间的关系。S 3)圆周速度=角速度x半径,(即:v=ωr) 注:角度度ω的单位一般为rad/s,实际应用中,旋转速度的单位大多表示为r/min (每分钟多少转)。可通过下式换算: 1rad/s=1x60/(2x3.14)r/min 例如:电机的转速为100rad/s的速度运行,我们将角速度ω=100rad/s换算成r/min 单位,则为: ω=100rad/s=100x60/(2π)=955r/min 4)rad/s和r/min的联系公式: 转速n(r/min)= ω(rad/s)x60/(2π),即:转速(r/min)=角速度(rad/s) x60/(2π); 5)角速度ω与转速n之间的关系(使用时须注意单位统一):ω=2πn,(即:带单位时为角速度(rad/s)=2x3.14x转速(r/min)/60) 6)直线(切线)速度、转速和2πr(圆的周长)之间的关系(使用时需注意单位):

机械设计习题及答案

机械设计习题及答案 第一篇总论 第一章绪论 一.分析与思考题 1-1 机器的基本组成要素是什么? 1-2 什么是零件?什么是构件?什么是部件?试各举三个实例。 1-3 什么是通用零件?什么是专用零件?试各举三个实例。 第二章机械设计总论 一.选择题 2-1 机械设计课程研究的内容只限于_______。 (1) 专用零件的部件 (2) 在高速,高压,环境温度过高或过低等特殊条件下工作的以及尺寸特大或特小的通用零件和部件 (3) 在普通工作条件下工作的一般参数的通用零件和部件 (4) 标准化的零件和部件 2-2 下列8种机械零件:涡轮的叶片,飞机的螺旋桨,往复式内燃机的曲轴,拖拉机发动机的气门弹簧,起重机的起重吊钩,火车车轮,自行车的链条,纺织机的纱锭。其中有_____是专用零件。 (1) 3种 (2) 4种 (3) 5种 (4) 6种 2-3变应力特性可用σmax,σmin,σm, σa, r 等五个参数中的任意_____来描述。 (1) 一个 (2) 两个 (3) 三个 (4) 四个 2-4 零件的工作安全系数为____。 (1) 零件的极限应力比许用应力 (2) 零件的极限应力比零件的工作应力 (3) 零件的工作应力比许用应力 (4) 零件的工作应力比零件的极限应力 2-5 在进行疲劳强度计算时,其极限应力应为材料的____。 (1) 屈服点 (2) 疲劳极限 (3) 强度极限 (4) 弹性极限 二.分析与思考题 2-1 一台完整2-3 机械零件主要有哪些失效形式?常用的计算准则主要有哪些? 2-2 机械零件主要有哪些失效形式?常用的计算准则主要有哪些? 2-3 什么是零件的强度要求?强度条件是如何表示的?如何提高零件的强度? 2-4 什么是零件的刚度要求?刚度条件是如何表示的?提高零件刚度的措施有哪些? 2-5 机械零件设计中选择材料的原则是什么? 2-6 指出下列材料的种类,并说明代号中符号及数字的含义:HTl50,ZG230-450,2-7 机械的现代设计方法与传统设计方法有哪些主要区别? 第三章机械零件的强度 一.选择题 3-1 零件的截面形状一定,如绝对尺寸(横截面尺寸)增大,疲劳强度将随之_____。 (1) 增高 (2) 不变 (3) 降低 3-2 零件的形状,尺寸,结构相同时,磨削加工的零件与精车加工相比,其疲劳强度______。 (1) 较高 (2) 较低 (3) 相同

开关电源设计详解

开关电源设计详解 开关电源设计详解 开关电源设计详解,从公式到实际应用,附加设计图纸,绝对好资料。 目的 希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教. 设计步骤: 绘线路图、PCB Layout. 变压器计算. 零件选用. 设计验证. 设计流程介绍(以DA-14B33为例): 线路图、PCB Layout请参考资识库中说明. 变压器计算: 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就 DA-14B33变压器做介绍. 决定变压器的材质及尺寸: 依据变压器计算公式 B(max) = 铁心饱合的磁通密度(Gauss) Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np

= 一次侧(主线圈)圈数 Ae = 铁心截面积(cm2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss,设计时应考虑零件误差,所以一般取3000~3500 Gauss之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss左右,以避免铁心因高温而饱合,一般而言铁心的尺寸 越大,Ae越高,所以可以做较大瓦数的Power。 决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦 数的Power,但相对价格亦较高。 决定变压器线径及线数: 当变压器决定后,变压器的Bobbin即可决定,依据Bobbin的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm2为参考,电流密度对变压器的设计而言, 只能当做参考值,最终应以温升记录为准。 决定Duty cycle (工作周期): 由以下公式可决定Duty cycle ,Duty cycle的设计一般以50%为基准,Duty cycle若超过50%易 导致振荡的发生。 NS = 二次侧圈数 NP = 一次侧圈数 Vo = 输出电压 VD= 二极管顺向电压 Vin(min) = 滤波电容上的谷点电压 下载地址: 或是百度一下“开关电源设计详解(申请加精)”。 更精彩内容请点击下载: 附件 EEWORLD提示:为减少服务器的压力,请尽量不要使用迅雷等下载软件。 开关电源设计流程.pdf (367.69 KB) 2011-8-19 18:12, 下载次数: 355

机械设计课程设计-电动机的选择计算

第三章电动机的选择计算 合理的选择电动机是正确使用的先决条件。选择恰当,电动机就能安全、经济、可靠地运行;选择得不合适,轻者造成浪费,重者烧毁电动机。选择电动机的内容包括很多,例如电压、频率、功率、转速、启动转矩、防护形式、结构形式等,但是结合农村具体情况,需要选择的通常只是功率、转速、防护形式等几项比较重要的内容,因此在这里介绍一下电动机的选择方法及使用。 3.1电动机选择步骤 电动机的选择一般遵循以下三个步骤: 3.1.1 型号的选择 电动机的型号很多,通常选用异步电动机。从类型上可分为鼠笼式与绕线式异步电动机两种。常用鼠笼式的有J、J2、JO、JO2、JO3系列的小型异步电动机和JS、JSQ系列中型异步电动机。绕线式的有JR、JR O2系列小型绕线式异步电动机和JRQ系列中型绕线式异步电动机。 从电动机的防护形式上又可分为以下几种: 1.防护式。这种电动机的外壳有通风孔,能防止水滴、铁屑等物从上面或垂直方向成45o以内掉进电动机内部,但是灰尘潮气还是能侵入电动机内部,它的通风性能比较好,价格也比较便宜,在干燥、灰尘不多的地方可以采用。“J”系列电动机就属于这种防护形式。 2.封闭式。这种电动机的转子,定子绕组等都装在一个封闭的机壳内,能防止灰尘、铁屑或其它杂物侵入电动机内部,但它的密封不很严密,所以还不能在水中工作,“JO”系列电动机属于这种防护形式。在农村尘土飞扬、水花四溅的地方(如农副业加工机械和水泵)广泛地使用这种电动机。 3.密封式。这种电动机的整个机体都严密的密封起来,可以浸没在水里工作,农村的电动潜水泵就需要这种电动机。 实际上,农村用来带动水泵、机磨、脱粒机、扎花机和粉碎机等农业机械的小型电动机大多选用JO、JO2系列电动机。 在特殊场合可选用一些特殊用途的电动机。如JBS系列小型三相防爆异步电动机,JQS 系列井用潜水泵三相异步电动机以及DM2系列深井泵用三相异步电动机。 3.1.2 功率的选择 一般机械都注明应配套使用的电动机功率,更换或配套时十分方便,有的农业机械注明本机的机械功率,可把电动机功率选得比它大10%即可(指直接传动)。一些自制简易农机具,我们可以凭经验粗选一台电动机进行试验,用测得的电功率来选择电动机功率。

开关电源设计计算公式包括电容开关管的选取

开关电源设计计算公式包括电容开关管的选取

————————————————————————————————作者:————————————————————————————————日期:

CDQZ-5107 SEHOTTKY 计算方法 1、由于前面计算变压器可知: Np=82T 3 ; Ns=13 T 3 2、在输入电压为264Vac 时,反射到次级电压为: Vmax=264Vac*2=373 V DC V SR = P S N N * Vmax =82 13 *373=59.5 V DC 3、设次级感量引起的电压为:(VR :初级漏感引起的电压) V RR = P S N N * V R =82 13 *90=14.5 V DC 4、计算肖特基的耐压值: V PP = V SR + V RR + V o =59.5+14.5+12=86 V DC 5、计算出输出峰值电流: V SPK = D I O -12=474 .011 *2-=3.8A 6、由计算变压器可知: I rms =1.59A 。 故选择3A/100V 的肖特基满足设计要求。(因3A 的有效值为3.9A ) 客户名称 1 客户编号 1 1 公司编号 1 样品单编号 1 日期 1 输入范围 1 输入电压电流 1 1 1

CDQZ-5107 MOSFET 计算方法 1、由于前面计算变压器可知: Np=82T 3 Ns=13 T 3 2、输入电压最大值为264Vac ,故经过桥式整流后,得到: Vmax=264Vac*2=373 V DC 3、次级反射到初级的电压为: V PR = S P N N * V O =13 82 *12=76 V DC 4、由前面计算变压器可知,取初级漏感引起的电压,V R =90 V DC ,故MOFET 要求耐压值为: V DS = V m ax + V R + V PR =373+90+76=539 V DC 5、计算初级峰值电流: I rms = DF V I V in O P *** =6 .0*100*88.01 *82=0.227A ∴ I PK = 3D I rms =3 473.0227 .0=0.571A 6、故选择2A/600V 的MOSFET 满足设计要求,即选用仙童2N60C 。 客户名称 客户编号 公司编号 样品单编号 日期 输入范围 输入电压电流

机械设计基础公式汇总

机械设计基础公式汇总 机械设计基础公式大家了解吗?以下是XX为大家整理好的机械设计基础公式汇总,一起来学习吧. 零件:独立的制造单元 构件:独立的运动单元体 机构:用来传递运动和力的、有一个构件为机架的、用 构件间能够相对运动的连接方式组成的构件系统 机器:是执行机械运动的装置,用来变换或传递能量、 物料、信息 机械:机器和机构的总称 机构运动简图:用简单的线条和符号来代表构件和运动 副,并按一定比例确定各运动副的相对位置,这种表示机构 中各构件间相对运动关系的简单图形称为机构运动简图运动副:由两个构件直接接触而组成的可动的连接 运动副元素:把两构件上能够参加接触而构成的运动副 表面 运动副的自由度和约束数的关系f=6-s 运动链:构件通过运动副的连接而构成的可相对运动系 统 高副:两构件通过点线接触而构成的运动副 低副:两构件通过面接触而构成的运动副 平面运动副的最大约束数为2,最小约束数为1;引入

一个约束的运动副为高副,引入两个约束的运动副为平面低副 平面自由度计算公式:F=3n-2PL-PH 机构可动的条件:机构的自由度大于零 机构具有确定运动的条件:机构的原动件的数目应等于机构的自由度数目 虚约束:对机构不起限制作用的约束 局部自由度:与输出机构运动无关的自由度 复合铰链:两个以上构件同时在一处用转动副相连接 速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点。若绝对速度为零,则该瞬心称为绝对瞬心相对速度瞬心与绝对速度瞬心的相同点:互作平面相对运动的两构件上瞬时相对速度为零的点;不同点:后者绝对速度为零,前者不是 三心定理:三个彼此作平面运动的构件的三个瞬心必位于同一直线上 机构的瞬心数:N=K(K-1)/2 机械自锁:有些机械中,有些机械按其结构情况分析是可以运动的,但由于摩擦的存在却会出现无论如何增大驱动力也无法使其运动 曲柄:作整周定轴回转的构件; 连杆:作平面运动的构件;

机械设计常用设计公式

1-05 常用設計公式 1. 彈簧基本計算公式 a. 壓縮、拉伸螺旋彈簧之計算公式。( 圓形斷面 ) (彈簧指數與初張力之關係): b. 扭力彈簧之計算公式。( 圓形斷面 )

c. 符號代號: d:線材直徑G:橫彈性係數D:平均直徑 E:縱彈性係數 n:有效卷數 P:荷重 d. 彈簧的設計項目 1. 輸入所需長度L (mm) 2. 輸入線徑d (mm) 3. 輸入所需張力P (kg) 4. 輸入有效圈數Na=Nt (mm) 5. 輸入外徑D1 (mm) 6. 輸入內徑D2 (mm) 7. 容許張力正負誤差(kg) 8. 橫向彈性係數G (kg/mm) 9. 彈簧常數k (kg/mm) 10. 預估伸長彈簧初張力Pi (kg) 11. (預估初張力之扭轉應力kg/mm^2) 12. 容許最大伸長量max (mm) 13. 自由長度L0 (mm) 14. 預估伸長總長度(mm) 15. 彈簧距(mm) 16. 容許最小伸長量min (mm) 17. 彈簧指數之限制: c = D/d (c > 4) 18. 有效圈數Na (mm) (Na > 3) 19. check 內徑,外徑,線徑20. 總伸長量不超過Li (自由長+ 簧距) 21. check 設計長度是否符合(max); check 設計長度是否符合(min) 22. 材料

2. 皮帶傳動基本設計公式 a. 計算功率: P c=K A·P P→傳動的功率,KW K A→工作情況系數 b. 確定帶型號: (公司一般選用多槽皮帶; 例: 190J8) c. 小帶輪節圓直徑: d1為了提高帶的壽命, 在結構允許的情況下盡量選大些的尺寸. d. 大帶輪節圓直徑: d2=n1/n2·d1(mm) e. 帶速: v=(π·d1·n1) ╱60x1000 為充分發揮傳動能力, 帶速約在20m/s最佳 f. 初定中心距: a0在0.7 (d1+ d2) 與2 (d1+ d2) 之間; 或根據結構要求定(mm) g. 初算帶長度: L0約等於2a0+π/2(d1+ d2)+ (d2- d1)2╱4 a0 選用規格中基準帶長度L p (mm) h. 實際中心距: a約等於a0+ (L p- L0)╱2 (mm) 安裝時所需最小中心距: a min= a- 0.015L p 張緊或補償所需最大中心距: a max= a+ 0.03L p i. 小帶輪包角: α1=180?-(d2- d1)╱a·60?要小於等於120? 小帶輪包角較小時可增大或用張緊輪 j. 單根帶所能傳遞的功率: P0 根據截型、v和d1選取 P0是當α1 =180?, 在特定長度下三角帶所能傳遞的功率k. 單根帶傳遞功率的增量: ΔP=K b·n1(1- 1/K t) K b→小帶輪包角系數K t→長度系數 V帶傳動的主要失效形式 1. 帶在帶輪上打滑, 不能正常工作 2. 帶因疲勞而產生脫层, 撕裂和拉斷 3. 帶兩側面過度摩損 3. 其它常用公式 扭力: T= F x R T= (716.2 x HP)/N T=(974 x KW)/N 馬力: HP= (T x N)/716.2 HP=(F x V)/75 動力: KW= (T x N)/974 KW=(F x V)/102 速度: V= (πx D x N)/60 飛輪效: GD2=364(F x V2x N2)

机械设计常用计算总目

电机选型皮带轮选型 负载转矩计算皮带轮间歇运动 惯量计算皮带轮连续运动 电机常识三角皮带长度计算 常用Y系列电机型号参数表三角皮带参数表电机功率确定程序同步带节线长计算 伺服电机选型自动版 减速机公称功率 凸轮分割器盘类计算 分割器选型知识分度盘 惯性距计算圆盘 分割器计算分度盘选型计算公式 弹簧计算搖擺資料 棘轮计算輸送帶計算 螺杆螺纹其他公式 美制螺纹单位换算 粗螺纹压入力计算 细螺纹弹性模量、泊松系数迫牙丝攻钻孔径焊缝及键连接受力计算比较美制特细螺纹及英制电器螺纹 管螺纹 螺栓扭矩标准

螺纹中小径计算

机械设计常用计气缸选型丝杆运动计算 气缸内径选型丝杠水平运动 气缸推力计算丝杠垂直运动 气缸理论出力表 真空元件的选定 耗气量计算及电磁阀选择 气缸与系统选型指南 键槽&销计算联轴器配合 外花键跨棒距万向联轴器计算 内花键棒间距齿式联轴器计算 键的强度计算过盈计算 销的强度计算 立柱计算 立柱计算 稳定性系数

常用计算总目 齿轮计算带轮计算 外啮合变位圆柱齿轮传动几何尺寸计算链轮参数计算 齿轮齿条链轮计算齿轮常用材料及其力学性能同步带轮传动设计高度变位斜齿轮跨棒(球)距链条计算高变位齿轮尺寸计算 锥齿轮传动设计计算 齿轮齿条传动设计计算 标准件查询A标准件查询B 深沟球轴承查询孔用弹性挡圈 超越离合器设计轴用弹性挡圈 推力球轴承尺寸表轴用E形扣环 齒輪分割計算平键和键槽查询

蜗杆计算 圆柱蜗杆传动 蜗杆常用材料 圆柱蜗杆传动主要参数搭配推荐值 蜗轮传动 材料学 模具钢牌号和性能 材料摩擦系数 材料价格计算表 常用材料硬度表

机械设计基础公式计算例题

机械设计基础公式计算 例题 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、计算图所示振动式输送机的自由度。 解:原动构件1绕A 轴转动、通过相互铰接的运动构件2、3、4带动滑块5作往复直线移动。构件2、3和4在C 处构成复合铰链。此机构共有5个运动构件、6个转动副、1个移动副,即n =5,l p =7,h p =0。则该机构的 自由度为 F =h l p p n --23=07253-?-?=1 二、在图所示的铰链四杆机构中,设分别以a 、b 、c 、d 表示机构中各构件的长度,且设a <d 。如果构件 AB 为曲柄,则AB 能绕轴A 相对机架作整周转动。为此构件AB 能占据与构件AD 拉直共线和重叠共线的两个位置B A '及B A ''。由图可见,为了使构件AB 能够转至位置B A ',显然各构件的长度关系应满足 c b d a +≤+ (3-1) 为了使构件AB 能够转至位置B A '',各构件的长度关系应满足 c a d b +-≤)(或b a d c +-≤)( 即c d b a +≤+ (3-2) 或b d c a +≤+ (3-3) 将式(3-1)、(3-2)、(3-3)分别两两相加,则得 同理,当设a >d 时,亦可得出 得c d ≤b d ≤a d ≤ 分析以上诸式,即可得出铰链四杆机构有曲柄的条件为: (1)连架杆和机架中必有一杆是最短杆。 (2)最短杆与最长杆长度之和不大于其他两杆长度之和。 上述两个条件必须同时满足,否则机构中便不可能存在曲柄,因而只能是双摇杆机构。 通常可用以下方法来判别铰链四杆机构的基本类型: (1)若机构满足杆长之和条件,则: ① 以最短杆为机架时,可得双曲柄机构。 ② 以最短杆的邻边为机架时,可得曲柄摇杆机构。 ③ 以最短杆的对边为机架时,可得双摇杆机构。 (2)若机构不满足杆长之和条件则只能获得双摇杆机构。 三、 k = 12v v =121221t C C t C C =21t t =21??= θ θ-?+?180180 即k = θ θ-?+?180180 θ=11 180+-?k k 式中k 称为急回机构的行程速度变化系数。 四、从动件位移s 与凸轮转角?之间的关系可用图表示,它称为位移曲线(也称?-S 曲线)位移曲线直观地表示了 从动件的位移变化规律,它是凸轮轮廓设计的依据 凸轮与从动件的运动关系 五、凸轮等速运动规律

机械设计常用计算公式集

一、直线运动 基本公式:(距离、速度、加速度和时间之间的关系) 1)路程=初速度 x 时间+21*2 加速度时间 2)平均速度=路程/时间; 3)末速度-初速度=2x 加速度 x 路程; 4)加速度=(末速度-初速度)/时间 5)中间时刻速度= 1 2 (初速度+末速度) 6)力与运动之间的联系:牛顿第二定律:F=ma ,[合外力(N )=物体质量(kg )x 加 速度(2/m s )] (注:重力加速度 g=9.82/m s 或 g=9.8N/kg ) 二、旋转运动 单位对比: 圆的弧长计算公式: 弧长 s=r θ=圆弧的半径 x 圆弧角度(角位移) 周长=C=2πr=πd ,即:圆的周长=2x3.14x 圆弧的半径=3.14x 圆弧的直径 旋转运动中角位移、弧度(rad )和公转(r )之间的关系。 1)1r (公转)=2π(弧度)=360°(角位移)

2)1rad=360 2π =57.3° 3)1°= 2360 π =0.01745rad 4)1rad=0.16r 5)1°=0.003r 6)1r/min=1x2x3.14=6.28rad/min 7) 1r/min=1x360°=360°/min 三、旋转运动与直线运动的联系: 1)弧长计算公式(s=r θ):弧长=圆弧的半径 x 圆心角(圆弧角度或角位移) 2)角速度(角速度是角度(角位移)的时间变化率)(ω=θ/t ):角速度=圆弧角度/时间 注:结合上式可推倒出角速度与圆周速度(即:s/t 也称切线速度)之间的关系。 3)圆周速度=角速度 x 半径,(即:v=ωr ) 注:角度度ω的单位一般为 rad/s ,实际应用中,旋转速度的单位大多表示为 r/min (每分钟多少转)。可通过下式换算: 1rad/s=1x60/(2x3.14)r/min 例如:电机的转速为 100rad/s 的速度运行,我们将角速度ω=100rad/s 换算成 r/min 单位,则为: ω=100rad/s= 100*60 2π =955r/min 4)rad/s 和 r/min 的联系公式: 转速 n(r/min)= *2/60 rad s ω()π ,即:转速(r/min )= /*60 2rad s π 角速度(); 5)角速度ω与转速 n 之间的关系(使用时须注意单位统一):ω=2πn ,(即:带单

机械设计基础公式计算例题精编WORD版

机械设计基础公式计算 例题精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

一、计算图所示振动式输送机的自由度。 解:原动构件1绕A 轴转动、通过相互铰接的运动构件2、3、4带动滑块5作往复直线移动。构件2、3和4在C 处构成复合铰链。此机构共有5个运动构件、6个转动副、1个移动副,即n =5,l p =7,h p =0。则该机构的自由度为 F =h l p p n --23=07253-?-?=1 二、在图所示的铰链四杆机构中,设分别以a 、b 、c 、d 表示机构中各构件的长度,且设a <d 。如果构件AB 为曲柄,则AB 能绕轴A 相对机架作整周转动。为此构件AB 能占据与构件AD 拉直共线和重叠共线的两个位置B A '及B A ''。由图可见,为了使构件AB 能够转至位置B A ',显然各构件的长度关系应满足 c b d a +≤+ (3-1) 为了使构件AB 能够转至位置B A '',各构件的长度关系应满足 c a d b +-≤)(或b a d c +-≤)( 即c d b a +≤+ (3-2) 或b d c a +≤+ (3-3) 将式(3-1)、(3-2)、(3-3)分别两两相加,则得 同理,当设a >d 时,亦可得出 得c d ≤b d ≤a d ≤

分析以上诸式,即可得出铰链四杆机构有曲柄的条件为: (1)连架杆和机架中必有一杆是最短杆。 (2)最短杆与最长杆长度之和不大于其他两杆长度之和。 上述两个条件必须同时满足,否则机构中便不可能存在曲柄,因而只能是双摇杆机构。 通常可用以下方法来判别铰链四杆机构的基本类型: (1)若机构满足杆长之和条件,则: ① 以最短杆为机架时,可得双曲柄机构。 ② 以最短杆的邻边为机架时,可得曲柄摇杆机构。 ③ 以最短杆的对边为机架时,可得双摇杆机构。 (2)若机构不满足杆长之和条件则只能获得双摇杆机构。 三、 k = 12v v =1 21221t C C t C C =21t t =21??=θθ-?+?180180 即k = θ θ-?+?180180 θ=11 180+-?k k 式中k 称为急回机构的行程速度变化系数。 四、从动件位移s 与凸轮转角?之间的关系可用图表示,它称为位移曲线(也称?-S 曲线) 位移曲线直观地表示了从动件的位移变化规律,它是凸轮轮廓设计的依据 凸轮与从动件的运动关系

相关文档
最新文档