基于压缩试验确定真实应力-应变曲线

合集下载

材料力学压缩实验报告

材料力学压缩实验报告

材料力学压缩实验报告实验目的,通过对不同材料的压缩实验,探究材料在受力情况下的变形规律,分析材料的力学性能。

实验仪器,压力机、标准试样、测力传感器、数据采集系统。

实验材料,铝合金、钢材、塑料。

实验步骤:1. 准备工作,检查实验仪器是否正常,选择合适的试样进行实验。

2. 实验操作,将试样放置在压力机上,施加不同的压力,通过测力传感器和数据采集系统记录试样在受力过程中的压缩变形情况。

3. 数据处理,根据实验数据绘制应力-应变曲线,分析不同材料在压缩过程中的力学性能,如弹性模量、屈服强度等。

实验结果与分析:铝合金,在压缩过程中,铝合金试样表现出较好的弹性,当受到较大压力时,开始出现塑性变形,屈服强度较高。

钢材,钢材试样在受力后表现出较高的屈服强度和延展性,具有良好的塑性变形能力。

塑料,塑料试样在受力后呈现出较大的压缩变形,表现出较低的弹性模量和屈服强度,具有较好的塑性变形特性。

结论,通过本次实验,我们深入了解了不同材料在受力情况下的力学性能,铝合金具有较好的弹性和屈服强度,钢材具有良好的塑性变形能力,而塑料具有较好的塑性变形特性。

这些分析结果对于材料的选择和设计具有一定的指导意义。

实验总结,本次实验通过压缩实验探究了材料的力学性能,为我们深入了解材料的力学特性提供了重要的实验数据和分析结果,也为今后的材料选择和设计提供了参考依据。

实验中遇到的问题及改进措施,在实验过程中,部分试样出现了不同程度的损坏,下一步可以优化试样的制备工艺,提高试样的稳定性和可靠性。

实验的局限性,本次实验仅针对了几种常见的材料进行了压缩实验,后续可以扩大实验范围,对更多材料进行力学性能的研究。

致谢,感谢实验组的成员们在实验过程中的辛勤劳动和合作,也感谢指导老师在实验设计和实施过程中的指导和帮助。

以上就是本次材料力学压缩实验的报告内容,希望对大家有所帮助。

真实应力应变与工程应力应变—区别、换算

真实应力应变与工程应力应变—区别、换算

真实应力应变与工程应力应变工程应力和真实应力有什么区别?首先请看这张图:这里面的Stress和Strain就是指的工程应力和工程应变,满足这个关系:但实际上,从前一张图上就可以看出,拉伸变形是有颈缩的,因此单纯的比例关系意义是不大的,因而由此绘出的图也可能给人带来一些容易产生误解的信息,比如让人误认为过了M点金属材料本身的性能会下降。

但其实我们可以看到,在断口处A(这个面积才代表真正的受应力面)是非常小的,因而材料的真实强度时上升了的(是指单位体积或者单位面积上的,不是结构上的)。

因而真实应力被定义了出来:这个是真实应力,其中Ai是代表性区域(cross-sectional area,是这么翻的吧?)前面的例子中是颈缩区截面积。

然后就可以根据某些数学方法推出真实应变:但具体怎么推的别问我,因为我也不知道……但这两个式子在使用上还是不那么直接,因而我们引入体积不变条件Aili=A 0l0然后可以得到:和但似乎只有在颈缩刚刚开始的阶段这两个式子才成立。

下面这张图是真实应力应变和工程应力引力应变的对照图:其中的Corrected是指的考虑了颈缩区域复杂应力状态后作的修正。

3.6 真实应力-应变曲线单向均匀拉伸或压缩实验是反映材料力学行为的基本实验。

流动应力(又称真实应力)——数值上等于试样瞬间横断面上的实际应力,它是金属塑性加工变形抗力的指标。

一.基于拉伸实验确定真实应力-应变曲线1.标称应力-应变曲线室温下的静力拉伸实验是在万能材料试验机上以小于的应变速率下进行的。

标称应力-应变曲线不能真实地发映材料在塑性变形阶段的力学特征。

2.真实应力-应变曲线A.真实应力-应变曲线分类分三类:Ⅰ.Y -ε;Ⅱ.Y -ψ;Ⅲ.Y -∈;B.第三类真实应力-应变曲线的确定方法步骤如下:Ⅰ.求出屈服点σs(一般略去弹性变形)式中P s——材料开始屈服时的载荷,由实验机载荷刻度盘上读出;A o——试样原始横截面面积。

Ⅱ.找出均匀塑性变形阶段各瞬间的真实应力Y和对数应变Ε式中P——各加载瞬间的载荷,由试验机载荷刻度盘上读出;A——各加载瞬间的横截面面积,由体积不变条件求出;式中Δl——试样标距长度的瞬间伸长量,可由试验机上的标尺上读。

真实应力-应变曲线

真实应力-应变曲线

§3.6 真实应力-应变曲线
应力-应变曲线反映变形体变形时应力随应变强化的规律。
初始屈服应力S
一般屈服应力( 流动应力S ,Y ) 真实应力:变形体内实际承受应力的大小。
影响流动应力的因素
材料属性, 温度, 应变, 应变速率
建立真实应力-应变曲线方法
拉伸试验,
压缩试验,
扭转试验
流动应力S 的公式表达形式
失稳点b,Fb = Fmax。
dF A0 edS Sed 0
dS Sd 0
dS
d
b
Sb
二、 压缩试验曲线
拉伸试验曲线:失稳,精确范围( < 0.3); 压缩试验曲线:摩擦(S ),精确范围( 2);
1、直接消除摩擦的圆柱体压缩法
S
P A
P A0e
ln H0
H
2、外推法 摩擦力影响和式样尺寸D0/H0 有关,根据不同的D0/H0 , 外推出D0/H0 = 0时的S,得到 真实应力-应变曲线。
1 1
Fd F(0)
1、拉伸图和条件应力-应变曲线
0
F A0
l
l0
b d
c
Fb= Fmax
Fp Fc
三个变形阶段:
ph
特征点:弹性极限点p,屈服点c,失稳点b,断裂点k。
?
k
Δl()
2、真实应力-应变曲线 用真实应力与应变表示的曲线。
S( ) ; S( ) ; S( )
2 2t
24
1 3 平面应变问题
2
3
1 2 2 2 3 2 3 1 2
2 3
6 1 1.1551
S 800 0.25
8001.151 0.25 443

应力应变曲线材料力学讲解

应力应变曲线材料力学讲解
称为屈服点(或屈服极限)。在屈服阶段卸载,将 出现不能消失的塑性变形。工程上一般不允许构 件发生塑性变形,并把塑性变形作为塑性材料破
坏的标志,所以屈服点 s是衡量材料强度的一
个重要指标。
(3)强化阶段 抗拉强度 b
经过屈服阶段后,曲线从c点又开始逐渐上
升,说明要使应变增加,必须增加应力,材料 又恢复了抵抗变形的能力,这种现象称作强化, ce段称为强化阶段。曲线最高点所对应的应力
明显的四个阶段 1、弹性阶段ob P — 比例极限 e — 弹性极限
E E tan

(1)弹性阶段 比例极限σ p
oa段是直线,应力与应变在此段成正比关系,材
料符合虎克定律,直线oa的斜率 tan E 就是材
料的弹性模量,直线部分最高点所对应的应力值 记作σ p,称为材料的比例极限。曲线超过a点,图 上ab段已不再是直线,说明材料已不符合虎克定 律。但在ab段内卸载,变形也随之消失,说明ab 段也发生弹性变形,所以ab段称为弹性阶段。b点 所对应的应力值记作σ e ,称为材料的弹性极限。
、 值越大,其塑性越好。一般把 ≥5%的材
料称为塑性材料,如钢材、铜、铝等;把 <5%的
材料称为脆性材料,如铸铁、混凝土、石料等。
工程应用:冷作硬化
e

d
b
b
e P
a c s
即材料在卸载过程中 应力和应变是线形关系,
f 这就是卸载定律。
材料的比例极限增高, 延伸率降低,称之为冷作硬 化或加工硬化。
塑性材料和脆性材料力学性能比较
塑性材料
脆性材料
延伸率 δ > 5%
延伸率 δ < 5%
断裂前有很大塑性变形

应力-应变曲线

应力-应变曲线

混凝土是一种复合建筑材料,内部组成结构非常复杂。

它是由二相体所组成,即粗细骨料被水泥浆所包裹,靠水泥浆的粘接力,使骨料相互粘接成为整体。

如果考虑到带气泡和毛细孔隙的存在,混凝土实际是一种三相体的混合物,不能认为是连续的整体。

[2]1. 普通高强度混凝土只能测出压应力-应变曲线的上升段,因为混凝土一旦出现出裂缝,承力系统在加压过程中积累的大量弹性能突然急剧释放,使得裂缝迅速扩展,试件即刻发生破坏,无法测得应力-应变曲线的下降段。

[1]2. 拟合本文的高强混凝土和纤维与混杂纤维增强高强混凝土的受压本构方程的参数结果图3和图4为掺杂了纤维与混杂纤维的纤维增强高强混凝土的压缩应力一应变全曲线,由曲线可以看出,纤维与混杂纤维增强高强混凝土则能够准确地测出完整的压应力.应变曲线.纤维增强高强混凝土和混杂纤维增强高强混凝土的这两种曲线具有相同的形状啪,都由三段组成:线性上升阶段、初裂点以后的非线性上升阶段、峰值点以后的缓慢下降阶段.[2]3.[3]再生混凝土设计强度等级为C20,C25,C30,C40,再生骨料取代率100%。

标准棱柱体试件150mm*150mm*300mm,28天强度测试结果。

“等应力循环加卸载试验方法”测定再生混凝土的应力-应变全曲线,即每次加载至预定应力后再卸载至零,再次进行加载,多次循环后达不到预定应力而自动转向包络线时,进行下一级预定应力的加载。

再生粗骨料来源的地域性和差异性使再生骨料及再生混凝土的力学性能有较大差别。

4.通过对普通混凝土和高强混凝土在单轴收压时的应力应变分析发现,混凝土的弹性模量随混凝土的强度的提高而提高,混凝土弹性段的范围随混凝土强度的提高而增大,混凝土应力应变曲线的下降段,随混凝土强度的提高而越来越陡,混凝土的峰值应变与混凝土的抗压强度无正比关系。

图2给出了各组混凝土试件的平均应力应变曲线,从图中可以看出A1-A5试件的曲线为完整的圆滑曲线。

A6,A7由于混凝土试件强度较高实验设备刚度不够,当σc>f c 后,试验机释放的能量迅速传到周围的4个钢柱上,从而引起混凝土突然破坏,所以曲线只有上升段没有下降段,A1-A7试件的应力应变曲线的上升段是相似的,但下降段的曲线形状差别较大。

铝合金压缩应力应变曲线 -回复

铝合金压缩应力应变曲线 -回复

铝合金压缩应力应变曲线
铝合金压缩应力应变曲线是指在压缩试验中,铝合金样品在受到外部压力作用下所产生的应力与应变之间的关系曲线。

一般来说,铝合金在压缩过程中的应力应变曲线可以分为三个阶段:
1. 弹性阶段:当铝合金样品受到压缩力后,会产生弹性变形,此时应力与应变成正比。

在这个阶段中,应变仅仅是一种恢复形变,断开压力后立刻恢复原状。

这个阶段是铝合金样品的弹性变形阶段,产生的弹性能可以完全恢复。

2. 屈服阶段:当铝合金样品的应变达到一定程度时,它会发生一些内部微观变化,导致它的应力不再与应变成正比关系。

这个临界点叫做屈服点。

在屈服点之后,铝合金样品进入了均匀塑性变形阶段,应力不断增加,但应变增长速度不再加快。

铝合金在这个阶段中,它的应力减少时,其变形能也不会完全恢复。

3. 流动阶段:当铝合金样品达到极限状态并继续应用压力时,铝合金会发生非均匀的塑性变形,且应力下降。

大部分应变发生在铝合金材料的表面。

此时,铝合金已经丧失了大部分它原来的力学性能,会发生显著的减弱。

当铝合金材料达到最后的毁损点时,处于最弱的形态。

基于平面应变压缩试验

基于平面应变压缩试验

基于平面应变压缩试验确定45钢真实应力应变曲线所用工具是一对狭长的窄锤头,所用45钢板料的宽度为W ,而锤头宽度为b ,使10~6=b W ,板料厚度取为(21~41)b 。

压缩式在2轴方向的展宽很小,可忽略不计。

即可认为板料受压部分处于平面应变状态。

板料式样不必精细加工。

实验步骤:①润滑板料表面和锤头表面;②将板料水平放在上、下锤头之间,并使板料的轴线方向1和锤头的轴线方向2保持垂直;③进行压缩,每压缩高度的2%或5%记录一次压力F 并测量出实际板厚,每压缩一次都要重新润滑,压缩到ε≈1为止。

根据每次压缩实验记录下的数据,就可算出每次的压应力p⎪⎭⎫ ⎝⎛=Wb F p 和对数应变ε,(⎪⎭⎫ ⎝⎛≈i h h ln 3ε,h i 为每次压缩后的的高度),于是就可做出此平面应变压缩时的压应力p 与对数应变ε3的关系曲线,如下图中的曲线a 所示。

但是这并不是所求的真实应力-应变曲线,可根据曲线a 并利用下面的方法做出单向应力状态下的真实应力-应变曲线(如下图中曲线b )。

因为锤头很窄,又有良好的润滑,可认为1轴方向的主应力σ1=0,并设锤头向下压的应力σ3=p 。

因为平面应变,所以ε2=0,2p =31=22+σσσ。

又根据体积不变条件,ε1=-ε3。

这样可求得等效应力σ和等效应变ε,即p p p p p 23)0()2()20(21)3-2122221232221=-+-+-=-+-+=σσσσσσσ()()( []3233232321323222123-00-2323εεεεεεεεεεεε=-+++-=-+-+-=)()()()()()( 在单向应力状态下,有σ=Sε=ε S = p p 866.023= ε=33155.123εε= 这样,可将平面应变压缩状态下的压应力p 和应变ε3分别换算成单向压缩状态下的真实应力S 和真应变ε,如图中曲线a 上的k 1点换算成单向压缩状态时的k 2点。

基于压缩试验确定真实应力-应变曲线

基于压缩试验确定真实应力-应变曲线

H 试件压缩前、 式中 H0、 −试件压缩前、后的高度
H0 ∈=ห้องสมุดไป่ตู้ln H
压缩时真实应力为
Y =P= P ∈ A A0e
A− 试件压缩前、后的横截面面积; 式中 A 0、 试件压缩前、后的横截面面积; 轴向载荷。 P−轴向载荷。
在试件的端面上车出沟槽或浅坑( 59b、 ),以便保存润滑 在试件的端面上车出沟槽或浅坑(图3-59b、c),以便保存润滑 剂。
3.实验时需要注意的问题 3.实验时需要注意的问题 (1)每压缩10%的高度,记录一次压力和实际高度,并将 每压缩10%的高度 记录一次压力和实际高度, 的高度, 试件和垫板擦净,重新加润滑剂,再重复上述过程。 试件和垫板擦净,重新加润滑剂,再重复上述过程。 (2)如果试件出现鼓形,需要将鼓形车去,并使试件尺寸 如果试件出现鼓形,需要将鼓形车去, 再重复以上压缩过程, 仍保持 D =1 ,再重复以上压缩过程,直至∈= 1.2 或 试件 H 出现微裂纹为止 根据记录下的各次压缩量和压力, 根据记录下的各次压缩量和压力,利用下面公式计算出压 缩时的真实应力和对数应变。 缩时的真实应力和对数应变。
实验时需要注意的问题实验时需要注意的问题22如果试件出现鼓形需要将鼓形车去并使试件尺寸如果试件出现鼓形需要将鼓形车去并使试件尺寸仍保持仍保持再重复以上压缩过程直至再重复以上压缩过程直至试件试件出现微裂纹为止出现微裂纹为止根据记录下的各次压缩量和压力利用下面公式计算出压根据记录下的各次压缩量和压力利用下面公式计算出压缩时的真实应力和对数应变
图3-59a是圆柱压缩实验简图。上下垫板经淬火、回火、磨削 59a是圆柱压缩实验简图 上下垫板经淬火、回火、 是圆柱压缩实验简图。 和抛光。 和抛光。
a)
b)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、 基于压缩试验确定真实应力-应变曲线
1.由于受到塑性失稳的限制, 1.由于受到塑性失稳的限制,拉伸实验曲线对数应变 ∈≈1.0左右, 由于受到塑性失稳的限制 其精确段为 ∈< 0.3 。而实际变形的应变往往大得多,因此拉 内 而实际变形的应变往往大得多, 伸实验曲线是不够用的。 伸实验曲线是不够用的。 要获得大变形下的真实应力-应变曲线,就需要用到压缩实验。 要获得大变形下的真实应力-应变曲线,就需要用到压缩实验。 2.压缩实验需要解决的问题 2.压缩实验需要解决的问题 由于试件与工具之间存在摩擦,就会改变其单向均匀压缩状态, 由于试件与工具之间存在摩擦,就会改变其单向均匀压缩状态, 并出现鼓形。因而,消除接触面间的摩擦是求得真实曲线的关键。 并出现鼓形。因而,消除接触面间的摩擦是求得真实曲线的关键。
图3-59a是圆柱压缩实验简图。上下垫板经淬火、回火、磨削 59a是圆柱压缩实验简图 上下垫板经淬火、回火、 是圆柱压缩实验简图。 和抛光。 和抛光。
a)
b)
c)
图3-59圆柱压缩实验及其试件 59圆柱压缩实验及其试件
D0 。 为了减小接触面间的摩擦, 试件尺寸取 D0 = 20 30mm, =1 为了减小接触面间的摩擦,可 H0
H 试件压缩前、 式中 H0、 −试件力为
Y =P= P ∈ A A0e
A− 试件压缩前、后的横截面面积; 式中 A 0、 试件压缩前、后的横截面面积; 轴向载荷。 P−轴向载荷。
在试件的端面上车出沟槽或浅坑( 59b、 ),以便保存润滑 在试件的端面上车出沟槽或浅坑(图3-59b、c),以便保存润滑 剂。
3.实验时需要注意的问题 3.实验时需要注意的问题 (1)每压缩10%的高度,记录一次压力和实际高度,并将 每压缩10%的高度 记录一次压力和实际高度, 的高度, 试件和垫板擦净,重新加润滑剂,再重复上述过程。 试件和垫板擦净,重新加润滑剂,再重复上述过程。 (2)如果试件出现鼓形,需要将鼓形车去,并使试件尺寸 如果试件出现鼓形,需要将鼓形车去, 再重复以上压缩过程, 仍保持 D =1 ,再重复以上压缩过程,直至∈= 1.2 或 试件 H 出现微裂纹为止 根据记录下的各次压缩量和压力, 根据记录下的各次压缩量和压力,利用下面公式计算出压 缩时的真实应力和对数应变。 缩时的真实应力和对数应变。
相关文档
最新文档