发电机的异常运行及处理

发电机的异常运行及处理
发电机的异常运行及处理

发电机的异常运行及处理

发电机的异常运行及处

李伟清

教授级高级工程师

2013-5

、发电机的正常运行方式

1-1 发电机的铭牌出力和运行范围图

1-2 发电机运行监视和维护

二、发电机的异常运行分析和事故处理

2-1 发电机进相运行

1. 进相运行对吸收电网无功功率和调压的作用

2. 进相运行机理、能力(深度)及限制条件

2-2 发电机失磁异步运行

1. 发电机运行中失磁的原因及特点

2. 失磁机组运行对电网的影响及处理的有关规定

2-3 发电机失步振荡和处理

发电机发生振荡失步的原因及现象发生振荡时的处理规则及措施

起发电机振荡失步处理实例

2-4 防止汽轮发电机组超速运行事故

1 .关于机组超速运行事故的事例及界定

2 防止机组超速运行事故的措施

、发电机的的正常运行方式

1-1 发电机的铭牌出力和运行范围图

发电机的正常运行方式是指按照制造厂规定的技术条件和铭牌数据运行的方式,发电机可在这种方式下,在出力图范围内长期连续运行。

发电机铭牌上标明了以下额定数据:额定功率、额定电压、额定电流、额定功率因数、额定频率、额定励磁电压及电流、额定转速等。

还标明了冷却介质的温度及压力等。

额定功率是指额定功率因数时发电机端输出的视在功率(以MVA 或KVA表示),也可以是发电机端的有功功率(以MW或KW表之)。

发电机按以上条件,在各相电压及电流都对称的稳态状态下运行时,具有损耗少、效率高、转矩均匀等较好效能,故运行部门应力图保持发电机在正常状态下(按铭牌规定的技术数据)稳定运行。

发电机正常运行时各主要参量(电压、电流、频率、功率因数)的允许变化范围:发电机运行电压的变化范围在额定电压的正负5% 以内而功率因数为额定值时,其额定容量保持不变;发电机连续运行的最高允许电压不得大于额定值的110%;最低运行电压不得低于额定值的90%,此时定子电流不得超过额定值的105%,以保持定子绕

组温升不超过规定值;发电机应能在额定功率因数,频率变化不超过正负0.5Hz 时,按额定容量运行;发电机应在迟相功率因数不大于0.95,进相功率因数不小于0.95 范围内,按额定容量运行。图1-1、系发电机的出力图,即运行范围图。

图1-1 发电机运行范围图

1-2 运行发电机的监视和维护

发电机运行时,必须认真地进行维护和检查,以便及时发现

异常情况,尽快消除缺陷,保证发电机安全持续运行。

对发电机的运行维护检查工作主要有以下几个方面:

1, 检查发电机各部分(定子、转子绕组及定子铁心)及

冷却介质(进出口风温及水温)温度是否正常;

s s 4

C 3 & ■ o

o 4s W 3fUp 屋」芒 s s - f h 1 J M ! J i ”

1 f r II i 1 1 i j i j 1 1 f j J ; ! 1 >.J 1 ! ! J !

i ! 1 一 n H i ! J ■ 何 G FF |i 1 M M 1 1 (1 1 f s 1

1 n ? < 1

r 1 II i 1 M )1 1 1 1 i i j M !

..r ■ '10 ziy J

t B * r.r LJ 'III 1 (J 1 』1 /' I 1

1 i '^1 LL 0.55 PF L-LJ (1 !

! . ! i /T 1 f 1加 pr !_ :M '1

■j —砲 Field He 妙i% i i j

f ! z I i ! i I M r I f

1 J I H I I I

处 S PF ~

Off Armatiire

i

fffai ing I PS 1 1 rT~ F t if 1 r' i

1 J ! 1 * ■ L I. ■ < f :' 1 i

I { i ! i 4 i t - f i s i

1 i ■ '/i 1 -? 1? 亠 f 1 1 !

Q

先若律心端理舷? J —5 — Ee 也 吕 EUiiHE ~r~^- — C?TT 凸li 7jfah*lg

轴瓦及轴的振动幅值是否在有关《标准》规定范围内;

符合规定。以确定是否应分别进行排氢、补氢和氢气

干燥器是否失效;

流量正常。当定子绕组温度升高报警或发现温度不正 常升高

时,应判明水系统有无阻塞,并立即提高水压 增加水流量,必

要时应降低发电机负荷,使最高温度

不超过监视值;

滑环及电刷是较易发生故障的环节,必须定时仔细检

查及维护。

在事故情况时,允许发电机定子及转子绕组短时间内 过负荷运

行,制造厂及运行部门对于1200MVA 及以下 容量的发电机均按

下式及下表计算过电流倍数及时

t, 持续时间, s, 适用范围 10~60s

间: (I 2-

1 )t=37.5s

式中,

I, 定子过电流的标幺值;

2, 考察发电机组振动及声音是否正常。定时测量机组各

3, 对于氢冷发电机,应检查氢气纯度、氢压和湿度是否

4, 定子内冷水系统应经常保持水质合格,水温、水压及

5, 采用三机励磁系统(也包括机端静止励磁)的发电机,

6, 发电机可承受的短时过负荷

运行人员处理过电流的原则是,在允许的持续时间内,用减少励磁电流的方法,降低定子电流至正常值,但不得使电压过低;如不能使定子电流降至正常值,则必须降低发电机有功负荷或切掉一部分负荷。

:发电机异常运行分析及事故处理

当电网或发电机发生故障或事故导致的发电机的异常运行可分为两种类型,其一,发电机的电磁转矩基本未发生突变,但主要电气参数及运行行为偏离正常运行方式,如发电机三相电压及电流不平衡、电压及频率超出正常规定范围、进相运行、稳态异步运行、低频振荡等;另一类是外部扰动,使发电机电磁转矩发生突变,导致发电机输出功率与原动机(汽轮机或水轮机)输入功

率失去平衡,使机组轴系发生扭转振荡并产生动态响应,如突然

短路、突然甩负荷、误并列合闸、故障重合闸等。这类因外部扰动发生的发电机异常运行故障,往往是由单一故障的延续发展导致事故并发,在故障发展过程中出现连续冲击和叠加振荡,造成

发电机和轴系的损伤或损毁。

2-1 发电机的进相运行

1,进相运行对吸收电网无功功率和调压的作用

过去电网容量较小,发电机组大多靠近负荷中心并直接接到较低压电网上,发电机组的无功功率直接送到用户,因而需要发电机有较大的无功功率送出容量。

发展为大电网大机组后,大机组直接接入高压主电网后,往

往远距负荷中心,大机组送出无功功率主要是满足各级电网分层平衡的要求。大机组经高压长距离输电线路输送有功电力由于系统稳定条件限制,不会超过线路的自然功率,例如,

500KV 输电线路的自然功率为1000Mw ,线路产生的充电(无功)功率约

100Mvar/100km ,当线路输送的有功功率低于自然功率时,线路呈现充电功率过剩,将出现末端电压升高现象,需要电厂将过剩充电功率加以吸收。对此采取的措施有两种:一种是在电厂侧装设可投切的电抗器,另一是将发电机进相运行。此外,在变

电站装

设调相机来调节电网无功功率也是一种可行措施。相比之下,采用发电机进相运行具有经济、简便、可调节等系列优点。当前以大型发电机进相运行来解决电网运行中无功和调压问题已被世界各国广泛采用。我国的大型发电机从结构和技术特性皆具备额定有功出力时进相功率因数0.95 运行的能力。但实施条件则受厂用电源电压及电网结构所制约。

2, 进相运行机理、能力和限制条件

。发电机并网运行后稳态电磁功率:

Pm=EqU/X d Sin S

Qm=EqU/X d Cos S-U 2/X d

上式中,Eq,发电机同步电势

U, 受端电网电压

X d, 包括发电机同步电抗、升压变、线路至受端

电网间的等值电抗

S,发电机功率角

发电机进相运行是一种同步低励磁(欠励)持续运行方式。从图

2-1的发电机电势向量图分析看出,相对于正常的定子电流落后于电

压的迟相运行而言,进相运行时功率因数角是超前的。

fid

图2-1发电机电势向量图

将图2-1(a)电势三角形中,各边乘以u/X d,得出的图2-2功率三角形:AB=UI=S,为发电机视在功率;AD二EB二Ulcos ?,为发电机

有功功率,AE=UI isin ?为发电机无功功率,以额定容量为基准

时,OA二u/x=1/X d二k di , AB=S=1

BF —额定视在功率或额定定子电流,k di—短路比_

电机不饱和时,电势与励磁电流呈线形关系,以OB为半径的

圆弧BC即为额定转子电流圆。也相当于最大电磁功率。以AP 为基点的垂线,右方为迟相运行区,发电机出力受转子电流及原动机出力限制;左方为进相运行区,发电机功率极限受静稳定及与发电机相连的系统阻抗的影响,要考虑静稳定储备。装有自动

励磁调节器的发电机进相运行深度将有明显提高。

图2-1中,留10%额定有功功率作静稳定储备,如曲线MN所

示。以=70a~75a的直线作静稳极限。如曲线OL所示;装有自

动励磁调节器但短路比及外连阻抗不同的进相运行极限,如编号

1?4的一组曲线所示。

10%

D

*

h

.却

0A E

图2-2 发电机进相运行功率图

多年来,我国东北电网对多台大型发电机实施进相运行经验表明,发电机进相运行能力(进相运行深度)主要受以下因素限制

1)稳定和暂态稳定限制;

2)发电机定子铁心端部过热;

3)发电机端电压和厂用电压的限制;

4)发电机定子过电流的限制

发电机进相运行时自动励磁调节器AER必须投入,以提高机组的

运行稳定性,并根据电厂条件整定低励限制单元的进相无功数值。同时注意厂用电的电压,必要时应对有关厂用变压器分接头进行调整。

图2-3系对YB电厂一台QFSN-600-2型600MW汽轮发电机组由进相运行试验确定的运行范围图。从本次试验得出的结论是:

1)影响发电机进相运行深度的主要因素是厂用电源电压;

2)自动励磁调节器投入后,对提高发电机进相运行能力(深度)有显著影响, 在相同条件下约提高了25%。

CD:低励限制单元

Q=P/5-170

图2-3 由试验确定的600MW 汽轮发电机进相运行范围

2-2 发电机失磁异步运行

发电机失磁异步运行是发电机因励磁系统故障,部分或全部失去励磁后的一种异常运行方式。其特点是在短时间内仍以低滑差与电网并列,并带一定有功负荷继续运行,但要从电网吸收较大无功功率。

1,发电机故障失磁的原因及采用异步运行的意义因励磁系统故障使发电机失磁的原因主要有:励磁回路两点接

地,灭磁开关跳闸;灭磁开关本身缺陷、误操作或维护检修不良、失磁保护误动、励磁调节器故障等。以上列举的失磁故障中多数是能在短时间排除的,因而提出了发电机失磁后是否可有条件的继续短时运行的问题。

多年来,国外及国内大量研究及试验表明,各种大中型汽轮发

电机均有一定的异步运行能力,即发电机能产生较大的异步转矩,在

互联电网运行条件许可时,带40%~60%额定有功负荷继续运行10~30 分钟,而不会给发电机及电网带来危害。国外及国内有关技术标准都肯定了这种运行方式的可用性,几乎所有大的电机制造厂均将汽轮发电机的异步运行能力列入产品技术条件。

根据电网条件和电源配置特点,使汽轮发电机失磁后采用异步

运行方式的意义是:

1)消除发电机因失磁故障造成的满负荷解列、停机,提高发电

机运行可靠性,并减少因此造成的经济损失和能源消耗;

2)减少发电机突然切除负荷、停机对轴系疲劳寿命的消耗。

2,汽轮发电机失磁异步运行的特点和限制因素

1)发电机无功功率反向及定子过电流

发电机失磁后,由于同步电势E q(t) 的衰减和功率角加大,将从原来的迟相转入进相运行状态,即无功功率反向

Q二E q(t)U/X d.cos S -J2/X d

AER不投入时,功率角达70即达进相状态,投入后,功率角将随其

特性而有所增大。当功率角达90,反向的无功功率将由电网供给,

由发电机吸收以磁化转子。自电网吸收的无功功率约为0.7~0.8Pe, 此时,如发电机仍带额定有功功率,其吸收的无功功率将接近有功功

率,发电机定子电流将超过额定额定值呈过流状态。试验及计算表明, 只有将

有功功率减至(0.5~0.6)P e以下时,定子电流方可低于额定值。

发电机失磁过程功角及功率的变化示意如图2-4所示,当发

电机发生的异步功率(转矩)与调整后的原动机功率相平衡时,发电机即转入低

滑差的稳定异步运行状态。

根据以上分析,发电机失磁后的异步运行状态与失磁前的同步运行相比有许多

不同之处,由主控室的表计可以看出:

(1 )转子电流表指示为零或接近于零,转子电压表有周期性摆动;

(2)定子电流表摆动且指示增大,定子电压表明显下降,且随定子电流摆动;

(3)有功功率表指示减小,无功功率表指示为负值,功率因数表

指示进相。

运行人员根据以上特点判定发电机失磁后,应将其自动励磁调节器应立即

停用,其他相关机组的励磁调节器,必须继续工作。对于允许失磁异步运行的发电机,应按制造厂要求,降低发电机有功负荷,并在允许时间内查找失磁原因,尽快恢复励磁运行。如不能在允许时间内恢复励磁,则应将发电机与电网解列。

2)发电机转子发热问题

发电机异步运行时,在转子表面感应出的频率为sf 的交变电流沿转子本体形成闭合回路,引起转子发热。以往曾认为,这是限制异步运行的主要因素。后经国内外大量试验研究证明,即使汽轮发电机在接近额定负荷状态下稳态异步运行,平均滑差s 亦不会超过1%,sf 滑差频率电流透过转子表面深度较深,体积电流密度较小,不会像不对称运行时产生的频率2f 负序电流那样,体积电流密度很大的负序电流产生产生局部高温。

3)定子铁心端部发热问题

发电机失磁异步运行时,定子铁心端部发热的机理类似于进相运行的极限状态,温度最高部位在两端阶梯形铁心及第1~2 段边段铁心。因时间较短,温度尚未升至最高温度。

4)电网中发电机采用异步运行的条件

1)电网

发电机失磁后,由向电网送出无功变为吸收无功功率,因而要

求电网要有足够的无功储备,要通过计算验证,以维持电网无功平衡,避免电压崩溃,保证电网稳定。一般的原则是,

①,位于电网送端区域性电厂,单机容量为该厂运行机组容量的20% 及以下时,可容许该机失磁后异步运行,但对单机容量600MW 及以上机组仍需慎重对待。

②,处于电网送端的电厂群或处于电网中枢点,单机失磁异步运行时, 不影响送端电网和中枢点的无功平衡,则允许失磁异步运行。但对单机容量600MW 以上机组仍需慎重对待。

③,处于长距离送电线路末端的电厂,电源平衡比较紧张,稳定问题比较突

出,一般不允许失磁异步运行。

④,电网电压应满足的条件是,电网电压水平不应低于临界值。失磁后,快速减负荷至允许值进入稳定异步运行状态时,临界值的平均值约为(85~90% )倍额定电压。

2 )发电机

①,定子电流平均值不超过按国家电力公司标准《汽论发电机运行规程》中短时过电流规定的容许值。如异步运行时间不超过30~15分钟,则电流值不超过(1.05~1.1)倍额定电流。

②,定子铁心端部结构件和边端铁心的温度不超过制造厂规定值。

③,转子损耗:对气体表面冷却和内冷式氢冷发电机不应超过其额定

励磁损耗;空冷发电机不应超过0.5倍额定励磁损耗。

(3)厂用电

失磁机组的厂用电压不得低于临界值(一般为额定电压的80%),低于此值时应由保护自动切换至备用电源。

4), 水轮发电机,不管其转子有无阻尼绕组,失磁后产生的

异步功率(转矩)远小于汽轮汽轮发电机,在很大转差下

方能转入稳定异步状态,故不适于采用异步运行方式。图2-5为其平均异步转矩示意图

T mO

°^1 Scr

2

图2-5 发电机平均异步转矩示意图

2-3发电机的失步振荡和处理

1,发电机发生振荡的原因及现象

发电机在运行中发生振荡可能有以下四种原因:

1),发电机与电网动稳定破坏;

2),发电机与电网静稳定破坏;

3),发电机与电网非同步合闸未能拖入同步,

4),发电机失去励磁。

以上四种振荡如图2-6所示。

QH3D4+<3C

H

P

0A

电网与发电机发生振荡时的现象

电网发生振荡时,各发电机和电源联络线上的功率、电流,以及某些接点的电压,将有程度不同的周期性变化,连接失去同步的发电厂或电网的联络线上的电流表和功率表摆动最大。电压摆动最大处即为电网的振荡中心,每一周期降低至零值一次。随着离振荡中心距离的增加,电压的波动逐渐减小。如果联络线的阻抗较大,两侧的电厂的容量也很大,则联络线两端的电压振荡也很小。

发生振荡的发电机则可看到定子电流表的摆动最为剧烈,有功和无

功功率表指示也摆动的很厉害;定子电压也有摆动但不会到零值;转子电压和电流都在正常值左右摆动;发电机将发出有节奏的呜鸣声;

强行励磁一般会动作。发电机各参量变化如图2-7所示。

图2-7 发电机与电网振荡时各参量变化

2,发电机发生振荡时的处理措施

发电机发生失步振荡时,会对发电机及电网造成剧烈冲击,并威胁电厂厂用设备的安全运行,严重时,将导致电网运行的崩溃—电网大停电。应尽快创造恢复同步的条件。处理方法有两种,即人工再同步和系统解列。

各种发电机的工作原理

?各种发电机的工作原理 <一> 发电机概述 发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。 发电机已实施出口产品质量许可制度,未取得出口质量许可证的产品不准出口。 <二>发电机的分类可归纳如下: 发电机分:直流发电机和交流发电机 交流发电机分:同步发电机和异步发电机(很少采用) 交流发电机还可分为单相发电机与三相发电机。 <三>发电机结构及工作原理 发电机通常由定子、转子、端盖及轴承等部件构成。 定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。 转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。 由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引出,接在回路中,便产生了电流。 柴油发电机工作原理 柴油机驱动发电机运转,将柴油的能量转化为电能。 在柴油机汽缸内,经过空气滤清器过滤后的洁净空气与喷油嘴喷射出的高压雾化柴油充分混合,在活塞上行的挤压下,体积缩小,温度迅速升高,达到柴油的燃点。柴油被点燃,混合气体剧烈燃烧,体积迅速膨胀,推动活塞下行,称为‘作功’。各汽缸按一定顺序依次作功,作用在活塞上的推力经过连杆变成了推动曲轴转动的力量,从而带动曲轴旋转。 将无刷同步交流发电机与柴油机曲轴同轴安装,就可以利用柴油机的旋转带动发电机的转子,利用‘电磁感应’原理,发电机就会输出感应电动势,经闭合的负载回路就能产生电流。 这里只描述发电机组最基本的工作原理。要想得到可使用的、稳定的电力输出,还需要一系列的柴油机和发电机控制、保护器件和回路。 汽油机驱动发电机运转,将汽油的能量转化为电能。 在汽油机汽缸内,混合气体剧烈燃烧,体积迅速膨胀,推动活塞下行作功。各汽缸按一定顺序依次作功,作用在活塞上的推力经过连杆变成了推动曲轴转动的力量,从而带动曲轴旋转。将无刷同步交流发电机与汽油机曲轴同轴安装,就可以利用汽油机的旋转带动发电机的转子,利用‘电磁感应’原理,发电机就会输出感应电动势,经闭合的负载回路就能产生电流。 ·主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。

发电机原理介绍

水力发电的基本流程及发电系统设备简介 水力发电的基本流程 1、什么是水电站?水电站枢纽的组成。 水电站是将水能转变为电能的水力装置,它由各种水工建筑物,以及发电、变电、配电等机械、电气设备,组成为一个有机的综合体,互相配合,协同工作,这种水力装置,就是水电站枢纽或者水力枢纽,简称水电站。它由挡水建筑物、泄水建筑物、进水建筑物、引水建筑物、平水建筑物及水电站厂房等水工建筑物共7个部分组成,机电设备则安装在各种建筑物上,主要是在厂房内及其附近。 (1)挡水建筑物。是拦截水流、雍高水位、形成水库,以集中落差、调节流量的建筑物,例如坝和闸。 (2)泄水建筑物。其作用主要是泄放水库容纳不了的来水,防止洪水漫过坝顶,确保水库安全运用,因而是水库中必不可少的建筑物,例如溢流坝、河岸溢洪道、坝下泄水管及隧洞、引水明渠溢水道等。 (3)进水建筑物。使水轮机从河流或水库取得所需的流量,如进水口。 (4)引水建筑物。引水建筑物是引水式或混合式水电站中,用来集中落差(对混合式水电站而言,则只是集中总会落差)和输送流量的工程设施,如明渠、隧洞等。有时水轮机管道也被称为引水建筑物,但严格说来,由于它主要是输送流量的,所以与同时具有集中落差和输送流量双重作用的引水建筑物并不完全相同。有些水电站具有较长的尾水隧洞及尾水渠道,这也属于引水建筑物。 (5)平水建筑物。其作用是当负荷突然变化引起引水系统中流量和压力剧烈波动时,借以调整供水流量及压力,保证引水建筑物、水轮机管道的安全和水轮发电机组的稳定运行。如引水式或混合式水电站的引水系统中设置的平水建筑物如压力池或高压池。 (6)厂区建筑物。包括厂房、变电站和开关站。厂房是水电站枢纽中最重要的建筑物之一,它不同于一般的工业厂房,而是是水力机械、电气设备等有机地结合在一起的特殊的水工建筑物;变电站是安装升压变压器的场所;而开关站则是安装各种高压配电装置的地方,故也称高压配电场。 (7)枢纽中的其它建筑物。此类建筑物指对于将水能转变为电能这个生产过程没有直接作用的船闸或升船机、筏道、鱼道或鱼闸以及为灌溉或城市供水而设的取水设施等。为了综合利用水资源,它们在整个水电站枢纽中也是不可分割的一部分,对枢纽的布置和运用也有重要的影响。 将水能转变成电能的生产全过程是在整个水电站枢纽中进行的,而不仅仅是在厂房中进行的。 2、水电站的基本类型。 水电站是借助于建筑物和机电设备将水能转变为电能的企业。水电站包括哪些建筑物以及它们之间的相互关系,主要取决于集中水头的方式。所以按集中水头的方式来对水电站进行分类,最能反映出水电站建筑物的组成和布置特点。 (1)按集中水头的方式对水电站进行分类,水电站可分为:坝式、引水式和混合式。 坝式水电站。它的水头是由坝抬高上游水位而形成。分为坝后式和河床式。

发电机的运行特性

1.为什么发电机在并网后,电压一般会有些降低? (2) 2.为什么调节无功功率时有功功率不会变,而调节有功功率时无功功率会自动变化? (2) 3.发电机运行时为什么会发热? (2) 4.定子绕组单相接地时对发电机有危险吗? (2) 5.大修后的发电机为什么要做空载和短路试验? (2) 6.什么是保护接地与保护接零? (3) 7.发电机启动前,对碳刷和滑环应进行那些检查? (3) 8.发电机升压操作时应注意什么? (3) 9.发电机并解列前为什么必须投入主变中性点地刀? (3) 10.何谓发动机的调相运行?如何实现? (4) 11.何谓发动机的进相运行,应注意什么,为什么? (4) 12.何谓发动机自励磁,一般在什么情况下发生,如何避免? (4) 13.失磁现象? (4) 14.转子两点接地的危害表现为: (5) 15.发动机非全相运行的危害? (5) 16.与发电厂相连的线路在什么情况下可采用零起升压? (5) 17.定子单相接地时对发电机是否有危险? (5) 18.转子一点接地时发电机是否可以继续运行? (6) 19.发电机为什么要做直流耐压试验并测泄漏电流? (6) 20.发电机的空载特性试验有什么意义?做发电机空载特性试验应注意哪些事项? (6) 21.发电机产生轴电压的原因是什么?它对发电机的运行有何危害? (6)

1.为什么发电机在并网后,电压一般会有些降低? 对于发电机来说,一般都是迟相运行,他的负载也一般是阻性和感性负载。当发电机升压并网后,定子绕组流过电流,此电流是感性的,感性电流在发电机内部的电枢反应作用比较大,他对转子磁场起削弱作用,从而引起端电压下降。当流过的只是有功电流时,也有相同的作用,只是影响比较小。这是因为定子绕组流过电流时产生磁场,这个磁场的一半对转子磁场起助磁作用,而另一半起去磁作用,由于转子磁场的饱和性,助磁一方总是弱于去磁的一方。因此,磁场会有所减弱,导致端电压有所下降。 2.为什么调节无功功率时有功功率不会变,而调节有功功率时无功功率会自动变化? 调无功功率时,因为励磁电流的变化引起功角的变化,从式看出,当发电机电动势增加,SIN¥值减小时,有功基本不变。 调有功功率时,对无功功率输出的影响就较大。发电机能不能送无功功率与电压差有关这个电压差指的是发电机电动势和端电压(系统电压)的同相部分的电压差,只有这个电压差才产生无功电流。当发电机送出有功功率,电动势就与系统电压错开一个角度,这样无功电压变小了。当有功变化越大,差角就越大,无功电压更小,因此无功自动减小,反之,当差角减小,无功会自动增加。 3.发电机运行时为什么会发热? 任何机器运转都会产生损耗,发电机也不例外,运行时他的内部损耗也很多。大致分四类: 铜损是指定子绕组的导线流过电流后在电阻上产生的损耗,即I2R而且定子槽内的导线产生的集肤效应额外引起损耗。 铁损是指铁芯齿部和轭部所产生的损耗,他有两种形式,一种是涡流损耗,另一种是磁滞损耗。涡流损耗是由于交变磁场产生感应电动势,在铁芯中引起涡流导致发热;磁滞损耗是由于交变磁场而使铁磁性材料克服交变阻力导致发热。 励磁损耗是转子绕组的电阻损耗。 另外,机械损耗就容易理解了。 这四种损耗都将使绕组、铁芯或其他部件发热,因此发电机在运行中会发热,这是不可避免的。 4.定子绕组单相接地时对发电机有危险吗? 发电机的中性点是绝缘的,如果一相接地,乍看构不成回路,但是由于带电体与处于地电位的铁芯间有电容存在,发生一相接地,接地点有会有电容电流流过。单相接地电流的大小,与接地线匝的份额a成正比。当机端发生金属性接地,接地电流最大,而接地点越靠近中性点,接地电流愈小,故障点有电流流过,就可能产生电弧,当接地电流大于5A时,就会有烧坏铁芯的危险。 5.大修后的发电机为什么要做空载和短路试验? 这两个试验都属于发电机的特性和参数试验,他与预防性试验的目的不同。这类试验是为了了解发电机的运行性能、基本量之间的关系的特性曲线以及被电机结构确定了的参数。做这些试验可以反映电机的某些问题。 空载试验是指电机以额定转速空载运行时,其定子电压与励磁电流之间的关系。他的用途很多,利用特性曲线,可以断定转子线圈有无匝间短路,也可判断定子铁芯有无局部短路如有短路,该处的涡流去磁作用也将使励磁电流因升至额定电

发电机异常及处理

发电机异常运行及事故处理 (一)、发电机的异常运行 1.发电机过负荷 现象: a.定子电流起过额定值,过负荷信号可能发出 b.转子电压,转子电流,可能超过正常值 c.发电机电压降低,周波可能下降 d.机组可能发生振动 处理: a.在事故情况下,允许发电机定子线圈按下表规定值过负荷,同时也允许转子线圈有相应的过负荷。 b.发电机在事故情况下过负荷,值班人员应首先检查功率因数和电压,注意过流时间,可以适当降低定子电压,但不允许过低。因功率因子不应超过0.95迟相,必要时可以按规定限制部分负荷。 2.发电机定子线圈和铁芯温度高于规定值处理。 a.检查发电机是否过负荷。 b.配合电工人员检查表记是否正常。 c.联系汽机检查空冷的冷却是否正常。

d.检查处理温度计升高时必须降低发电机出力,请示车间进行处理。 e.若发电机线圈,铁芯温度急剧上升,处理无效且漏风也不正常。 3.励磁系统接地 a.微机报警“发电机转子一点接地”,检查发电机后备接地保护确认接地为稳定性,并联系检修人员检查处理。 b.有刷励磁发电机转子接地范围包括转子,励磁电缆,灭磁开关,自动励磁屏内部分组件。 4.励磁回路两点接地 (1)现象: a.保护投入时,励磁电压降低,保护动作。 b.励磁电流剧增或降低。 c.定子电流表指示升高,发电机剧烈振动。 d.无功负荷降低。 处理: a.励磁保护投入时,机端开关及励磁开关应掉闸,未投入 或掉闸时应手动拉开。 b.向汽机发“注意”,“已掉闸”信号。 c.检查发电机励磁系统。 d.清除后发电机重新并列。 (2)、发电机正常运行时,必须检查发电机转子上接地电刷接触

汽轮发电机结构及原理

第四节汽轮发电机 汽轮发电机是同步发电机的一种,它是由汽轮机作原动机拖动转子旋转,利用电磁感应原理把机械能转换成电能的设备。 汽轮发电机包括发电机本体、励磁系统及其冷却系统等。 一、汽轮发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。汽轮发电机转子与汽轮机转子高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电流后,便建立一个磁场,这个磁场称主磁极,它随着汽轮发电机转子旋转。其磁通自转子的一个极出来,经过空气隙、定子铁芯、空气隙、进入转子另一个极构成回路。 根据电磁感应定律,发电机磁极旋转一周,主磁极的磁力线北装在定子铁芯内的U、V、W三相绕组(导线)依次切割,在定子绕组内感应的电动势正好变化一次,亦即感应电动势每秒钟变化的次数,恰好等于磁极每秒钟的旋转次数。 汽轮发电机转子具有一对磁极(即1个N极、一个S极),转子旋转一周,定子绕组中的感应电动势正好交变一次(假如发电机转子为P对磁极时,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次,这样发电机转子以每秒钟50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。 这时若将发电机定子三相绕组引出线的末端(即中性点)连在一起。绕组的首端引出线与用电设备连接,就会有电流流过,这个过程即为汽轮机转子输入的机械能转换为电能的过程。 二、汽轮发电机的结构 火力发电厂的汽轮机发电机皆采用二极、转速为3000r/min的卧式结构。发电机与汽轮机、励磁机等配套组成同轴运转的汽轮发电机组。

电机学第14章同步发电机的异常运行和突然短路

第14章同步发电机的异常运行和突然短路 14.1同步发电机不对称运行对电机有哪些影响?主要是什么原因造成的? 答:(1)引起转子表面发热。这是由于负序电流所产生的反向旋转磁场以二倍同步转速截切转子, 在励磁绕组、阻尼绕组、转子铁心表面及转子的其它金属结构部件中均会感应出倍频电流,因此在励磁 绕组、阻尼绕组中将产生额外铜损耗,转子铁心中感应涡流引起附加损耗。 (2)引起发电机振动。由于负序旋转磁场以二倍同步转速与转子磁场相互作用,产生倍频的交变电 磁转矩,这种转矩作用在定子、转子铁心和机座上,使其产生100 Hz的振动。 可以看出,这些不良影响主要是负序磁场产生的,为了减小负序磁场的影响,常用的方法是在发电 机转子上装设阻尼绕组以削弱负序磁场的作用,从而提高发电机承受不对称负载的能力。 14.2为什么变压器中X(=X_?而同步电机中X.?X_? 答:由于变压器是静止电器,正序电流建立的正序磁场与负序电流建立的负序磁场所对应的磁路是 完全相同的,所以X:F X _。而在同步电机中,正序电流建立的正序磁场是正转旋转磁场,它与转子无 相对运动,因此正序电抗就是发电机的同步电抗,它相当于异步电机的励磁电抗;而负序磁场是反转旋 转磁场,它以二倍同步速切割转子上的所有绕组(励磁绕组、阻尼绕组等),在转子绕组中感应出二倍基 频的电动势和电流,这相当于一台异步电机运行于转差率s=2的制动状态。根据异步电动机的磁动势平 衡关系,转子主磁通对定子负序磁场起削弱作用,因此负序电抗就小于励磁电抗,所以在同步电机中 X X _。 14.3试分析发电机失磁运行时,转子励磁绕组中感应电流产生的磁场是什么性质的?它与定子旋转 磁场相互作用产生的转矩是交变的还是恒定的? 答:发电机失磁运行时,转子转速n略大于定子磁场转速n1,同步发电机转入异步发电运行状态, 其转差率S :::0 ,此时定子旋转磁场在励磁绕组中感应出频率为f2= sf1的交变电动势和交变电流,由于转子励磁绕组为单相绕组,因此励磁绕组将产生一个以f2频率交变的脉动磁场。该脉动磁场可以分解为 大小相等、转速相同、转向相反的两个旋转磁场,其中和转子转向相反的旋转磁场与定子磁场之间无相 对运动,二者作用对转子产生恒定的制动电磁转矩,而和转子转向相同的旋转磁场与定子磁场之间有相 对运动,二者作用对转子产生交变电磁转矩,总的合成电磁转矩是制动性质,方向不变,大小脉动。 14.4简述同步发电机的阻尼绕组对抑制振荡的作用。 答:同步发电机振荡时,转子转速不再是同步转速,转子与定子磁场之间存在相对运动,阻尼绕组

发电机工作原理

发电机工作原理 导线切割磁力线能够产生感应电势,将导线连成闭合回路,就有电流流通,这就是同步发电机的工作原理。 发电机通常由定子、转子、端盖及轴承等部件构成。 定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。定子绕组分为ABC三相,各相绕组均匀的分布在定子槽中。 转子由转子铁芯和励磁绕组构成。 由轴承及端盖将发电机的定子,转子连接组装起来,转子励磁绕组通直流电,建立发电机磁场,汽轮机带动转子旋转,产生旋转磁场,定子绕组切割转子磁场的磁力线,从而产生感应电势,通过接线端子引出,接在回路中,便产生了电流。 本机采用交流励磁机旋转整流器方式励磁。励磁系统由主励磁机、永磁副励磁机、AVR 等组成。 副励磁机为旋转磁极式,发出的电流送到主励磁机的定子作为主励磁机的励磁电流,由于主励磁机为旋转电枢式,电枢发出的电流通过转轴中孔送到旋转整流盘,经整流后送至转子线圈从而达到对发电机励磁。 发电机励磁电流的调节过程 △由副励磁机——可控硅——AVR调节器——作为主励磁机定子励磁电流——来调节主励旋转电枢的输出电流——送至旋转整流盘——转子绕组 △静止的永励副励磁机的电枢送出400Hz的电源,通过励磁电压调节器中的三相全控桥式可控硅整流器形成可调的直流电源到交流励磁机的磁场绕组。 通过控制全控桥整流器的导通角来调节交流励磁机的磁场电流,从而达到调节发电机励磁电流的目的 励磁系统工作原理 发电机的励磁电流由交流励磁机经旋转整流盘整流后提供,交流励磁机的励磁电流则由永磁机经调节装置中的可控硅全控桥整流后提供,励磁电流的大小由自励磁调节装置进行自动或手动调节,以满足发电机运行工况的要求。 如图所示是无刷励磁系统的原理图,它的副励磁机是永磁发电机,其磁极是旋转的,电枢是静止的,而交流励磁机正好相反。交流励磁机电枢、硅整流元件、发电机的励磁绕组都在同一根轴上旋转,所以它们之间不需要任何滑环与电刷等接触元件,这就实现了无刷励磁。 旋转部分

水轮发电机组的异常运行

水轮发电机组的异常运行

————————————————————————————————作者:————————————————————————————————日期:

第十章水轮发电机组的异常运行 第一节水轮机的常见故障与事故处理 水轮机运行中难免会发生各种各样的异常情况,同一异常现 象可能有不同 的产生原因,因此,在分析故障现象时,要根据仪表指 示,机组运转声响,振动,温度 等现象,结合事故预兆,常规处理经验进行分析判断, 必要时采用拆卸部件解体检 查等方法和手段,从根本上消除设备故障. 一水轮机出率下降 水轮机导叶开度不变的情况下,机组出率下降 明显,造成水轮机出率下降 的常见原因有; (1)上游水位下降,渠道来水量急剧减少. (2)前池进水口栏污栅杂草严重阻塞. (3)电站尾水位抬高. (4)水轮机导叶剪断销断裂,个别导叶处于自由开度状态. (5)水轮机导水机构有杂物被卡住,冲击式机组的喷嘴堵塞. (6)冲击式机组折向器阻挡水流. 针对上述原因进行相应的检查处理 (1)若水库水位下降,有效水头减小,则水轮机效率降低,机组出力下降. 水库水位过低,应停止发电运行,积蓄水量,抬高水位 后再发电.渠道来水量急剧 减少,或上游电站已经停机,渠道发生事故断流,应停 机后检查处理. (2)要及时清理栏污栅杂草,防止杂草阻塞以致影响水轮机出力. (3)检查尾水渠道有否被堵塞,是否强降雨造成河道水位抬高. (4)详细检查水轮机导叶拐臂的转动角度是否一致,发现个别导叶角度 不一致时停机处理. (5)检查水轮机内部噪声情况,做全开,全关动作,排除杂物.必要时拆卸 水轮机尾水管或打开进人孔进入蜗壳,取出杂物. (6)检查冲击式机组折向器位置,如其阻挡水流,须调整折向器角度. 水轮机出力下降,往往会出现异常声响和振动,蜗壳压力表指 示下降或大 幅度波动等现象,要根据情况进行分析和判断处理. 二水轮机振动 水轮机运行过程中振动过大会影响机组正常 运行,轻则机组运行不稳定, 出力波动大,轴承温度高,机组运转噪声大,而其机组 并网困难;重则引起机组固定 部件(地角螺栓)损坏,尾水管金属焊接部件发生裂纹, 轴承温度过高而无法连续运 行.应针对不同情况,查清机组振动原因,采取对应措 施,恢复机组正常运转.水轮机

同步发电机的基本结构和工作原理

同步发电机的基本结构和工作原理 一、同步发电机的类型 同步发电机按其原动机的不同,可分为汽轮发电机和水轮发电机两种。在火电厂中,用汽轮机作为发电机的原动机,转速高(常为1500~3000r/min);在水力发电站中,用水轮机作为发电机的原动机,转速低(通常在1000r/min以下)。按发电机转子结构的不同,同步发电机可分为隐极式和凸极式两种,如图1-1所示。隐极式转子呈圆形,转速高,转子直径小,但长度长,汽轮发电机通常为隐极式。凸极式转子具有突出的磁极,发电机的励磁绕组绕在磁极上,转速低,常用于水轮发电机。按发电机与原动机的连接方式不同,同步发电机又有立式和卧式之分,汽轮发电机均为卧式的,水轮发电机两种型式都有;按冷却介质及冷却方式可分为:空气冷却、氢气冷却、水冷却和混合冷却方式等;按照发电机励磁方式来分,同步发电机可分为他励方式和自励方式;按发电机旋转部分划分,有旋转磁场式和旋转电枢式,以旋转磁场式发电机居多,其电枢绕组是定子的一部分,又叫定子绕组。 图1-1 (a)隐极式;(b)凸极式 二、同步发电机的基本结构 同步发电机由定子(固定部分)和转子(转动部分)两部分组成。 1.定子 定子是同步发电机的电枢部分,用以产生三相交流电能。定子由定子铁芯、定子绕组、机座等组成。定子铁芯由内圆冲有嵌线槽的硅钢片叠装而成,定子绕组用绝缘扁铜线或漆包线绕制而成,并三相对称地嵌放在定子铁芯槽内,如图1-1、图1-2所示。定子三相绕组通常接成星形,机座是用来固定铁芯和承受荷重的 2.转子 由上述,同步发电机的转子有两种结构型式,即凸极式和隐极式。 水轮发电机的转子是凸极式,凸极式转子由磁极铁芯、磁轭、励磁绕组、转子支架、转轴等主要部分组成。磁极是用1~1.5mm厚的钢板冲成磁极冲片后铆装成一个整体。在磁极铁芯上套有励磁绕组。励磁绕组是由扁铜线绕成,匝间垫有绝缘,励磁绕组与磁极本身之间隔有绝缘。各励磁绕组串联后接到滑环上。磁轭通常由整块钢板或用铸钢做成,它用来固定磁极,是磁路的一部分。

发电机的异常运行及处理

发电机的异常运行及处理 发电机的异常运行及处 理 李伟清 教授级高级工程师

2013-5 、发电机的正常运行方式 1-1 发电机的铭牌出力和运行范围图 1-2 发电机运行监视和维护 二、发电机的异常运行分析和事故处理 2-1 发电机进相运行 1. 进相运行对吸收电网无功功率和调压的作用 2. 进相运行机理、能力(深度)及限制条件 2-2 发电机失磁异步运行 1. 发电机运行中失磁的原因及特点 2. 失磁机组运行对电网的影响及处理的有关规定 2-3 发电机失步振荡和处理 发电机发生振荡失步的原因及现象发生振荡时的处理规则及措施 起发电机振荡失步处理实例 2-4 防止汽轮发电机组超速运行事故

1 .关于机组超速运行事故的事例及界定 2 防止机组超速运行事故的措施 、发电机的的正常运行方式 1-1 发电机的铭牌出力和运行范围图 发电机的正常运行方式是指按照制造厂规定的技术条件和铭牌数据运行的方式,发电机可在这种方式下,在出力图范围内长期连续运行。 发电机铭牌上标明了以下额定数据:额定功率、额定电压、额定电流、额定功率因数、额定频率、额定励磁电压及电流、额定转速等。 还标明了冷却介质的温度及压力等。 额定功率是指额定功率因数时发电机端输出的视在功率(以MVA 或KVA表示),也可以是发电机端的有功功率(以MW或KW表之)。 发电机按以上条件,在各相电压及电流都对称的稳态状态下运行时,具有损耗少、效率高、转矩均匀等较好效能,故运行部门应力图保持发电机在正常状态下(按铭牌规定的技术数据)稳定运行。

发电机正常运行时各主要参量(电压、电流、频率、功率因数)的允许变化范围:发电机运行电压的变化范围在额定电压的正负5% 以内而功率因数为额定值时,其额定容量保持不变;发电机连续运行的最高允许电压不得大于额定值的110%;最低运行电压不得低于额定值的90%,此时定子电流不得超过额定值的105%,以保持定子绕 组温升不超过规定值;发电机应能在额定功率因数,频率变化不超过正负0.5Hz 时,按额定容量运行;发电机应在迟相功率因数不大于0.95,进相功率因数不小于0.95 范围内,按额定容量运行。图1-1、系发电机的出力图,即运行范围图。

发电机型号含义及工作原理

发电机型号含义及工作原理 1. 概述 电能是现代社会最主要的能源之一。发电机是将其他形式的能源转换成电 能的机械设备,最早产生于第二次工业革命时期,由德国工程师西门子于1866 年制成,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流, 燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换 为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的 磁路和电路,以产生电磁功率,达到能量转换的目的。 发电机的分类可归纳如下: 发电机:直流发电机、交流发电机、同步发电机、异步发电机(很少采用) 交流发电机还可分为单相发电机与三相发电机。 2. 结构及工作原理 发电机通常由定子、转子、端盖.机座及轴承等部件构成。 定子由机座.定子铁芯、线包绕组、以及固定这些部分的其他结构件组成。 转子由转子铁芯(有磁扼.磁极绕组)滑环、(又称铜环.集电环).风扇及转轴等部件组成。 由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定[1]子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引出,接在回 路中,便产生了电流。 汽轮发电机与汽轮机配套的发电机。为了得到较高的效率,汽轮机一般 做成高速的,通常为3000转/分(频率为50赫)或3600转/分(频率为60赫)。核电站中汽轮机转速较低,但也在1500转/分以上。高速汽轮发电机为了减少因离心力而产生的机械应力以及降低风摩耗,转子直径一般做得比较小, 长度比较大,即采用细长的转子。特别是在3000转/分以上的大容量高速机组,

同步电机常见故障的原因分析与维修

高级技师专业论文 论文题目:同步电动机常见故障的原因分析与维修 姓名:张军 单位:山东晋煤明水化工有限公司 职业名称:维修电工

同步电动机常见故障的原因分析与维修 张军 (山东晋煤明水化工集团有限公司明泉化肥厂,济南,250200) 内容摘要:本文阐述同步电动机在运行过程中频繁损坏的原因不仅在电动机本身及设备原因,励磁控制柜技术性能太差也是造成同步机频繁损坏的主要原因之一。 关键词:同步电动机;故障;维修 引言:同步电动机,由于其具有一系列优点,特别是能向电网发送无功功率,支持电网电压,已在各行各业得到广泛应用。但是,长期以来在运行过程中,发生同步电动机及其励磁装置损坏的事故屡见不鲜。特别是一些连续性生产的企业,由于同步电动机的频繁损坏,直接影响生产的安全、连续及稳定进行,严重影响企业的经济效益,成为一个十分棘手的问题。本文综合多年来我厂同步机出现的各类故障及与同行业相关部门沟通、交流,将同步机常见的故障原因及维修方法总结如下: 一、同步电动机运行中出现的主要故障现象 同步电动机的损坏现象主要表现在:(1)定子绕组端部绑扎线崩断,绝缘蹭坏,连接处开焊;(2) 定子线圈在槽口处及线圈跨接部位断裂,进而引起接地、短路;(3) 转子励磁绕组线圈串联接头处产生裂纹,开焊,局部过热烤焦绝缘;(4)转子磁级的燕尾楔松动,退出;(5)转子线圈绝缘损伤;(6)起动绕组笼条短路环焊接处开焊,甚至笼条断裂;(7)电刷滑环松动;(8)风叶裂断;(9)定子铁芯松动,运行中噪声增大等故障。 按照设计理论计算同步机定、转子线圈的使用寿命应在20年左右,而在我们生产运行过程中由于电机所带的负载及线圈温升等主要技术指标均在额定指标以下,并且现在电机定子线圈的绝缘等级均采用F极绝缘,因此,电机的正常使用寿命还应更长些。但据相关维修企业统计,部分损坏的同步电动机,运

发动机及发电机原理

培训主题 一、发动机及发电机原理 二、发电机组操作与保养 三、EPIC并机柜原理与操作 1 / 58

发动机及发电机原理 2 / 58

3400系列 3300系列 Mak系列3600系列3500系列 3 / 58

代表机型 3300系列3304、3306机械式调速器 3400系列3406、3408、3412机械式调速器3406、3408、3412 PEEC 3406(EUI)、3408(HEUI)、3412(HEUI) 3500系列3508(MUI)、3512(MUI)、3516(MUI) 3508B、3512B、3516B(EUI) 3600系列C系列3606、3608、3612、3616、3618 C7、C9、C15、C18、C32、C175 4 / 58

5 / 58 发动机型号 缸径 3516B 170 mm 190 mm 行程 排量 69.0升 压缩比 14.0: 1 吸气方式 涡轮增压后冷却 电子单体喷射 16缸V 型(60度) 1-2-5-6-3- 4-9-10-15-16-11-12-13-14-7-8 0.50 mm 喷油系统 气缸数及排列方式 发火顺序(喷射顺序) 气门间隙 进气门 (停机冷态下) 排气门 1.00 mm 曲轴旋向(从飞轮端看) 逆时针方向

6 / 58 发动机型号 缸径 3512B 170 mm 行程 190 mm 排量 51.80升 压缩比 14.0 : 1 吸气方式 涡轮增压后冷却 电子单体喷射 12缸V 型(60度) 1-12-9-4-5-8-11-2-3-10-7-6 0.50 mm 喷油系统 气缸数及排列方式 发火顺序(喷射顺序) 气门间隙 进气门 (停机冷态下) 排气门 1.00 mm 曲轴旋向(从飞轮端看) 逆时针方向

永磁同步电机原理

永磁同步电机原理、特点、应用详解 电机对于工农业来说至关重要,本文将会对电机的定义、分类、电机驱动的分类进行简介,并详细介绍永磁同步电机的原理、特点以及应用。 电机的定义 所谓电机,顾名思义,就是将电能与机械能相互转换的一种电力元器件。当电能被转换成机械能时,电机表现出电动机的工作特性;当电能被转换成机械能时,电机表现出发电机的工作特性。电机主要由转子,定子绕组,转速传感器以及外壳,冷却等零部件组成。 电机的分类 按结构和工作原理划分:直流电动机、异步电动机、同步电动机。 按工作电源种类划分:可分为直流电机和交流电机。 交流电机还可分:单相电机和三相电机。 直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。 有刷直流电动机可划分:永磁直流电动机和电磁直流电动机。 电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。 永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钻永磁直流电动机。 按结构和工作原理划分:可分为直流电动机、异步电动机、同步电动机。 同步电机可划分:永磁同步电动机、磁阻同步电动机和磁滞同步电动机。 异步电机可划分:感应电动机和交流换向器电动机。 感应电动机可划分:三相异步电动机、单相异步电动机和罩极异步电动机等。 交流换向器电动机可划分:单相串励电动机、交直流两用电动机和推斥电动机。 按起动与运行方式划分:电容起动式单相异步电动机、电容运转式单相异步电动机、电容起动运转式单相异步电动机和分相式单相异步电动机。 按用途划分:驱动用电动机和控制用电动机

永磁同步电机 所谓永磁,指的是在制造电机转子时加入永磁体,使电机的性能得到进一步的提升。而所谓同步,则指的是转子的转速与定子绕组的电流频率始终保持一致。因此,通过控制电机的定子绕组输入电流频率,电动汽车的车速将最终被控制。而如何调节电流频率,则是电控部分所要解决的问题。 永磁同步电动机的特点 永磁电动机具有较高的功率/质量比,体积更小,质量更轻,比其他类型电动机的输出转矩更大,电动机的极限转速和制动性能也比较优异,因此永磁同步电动机已成为现今电动汽车应用最多的电动机。但永磁材料在受到振动、高温和过载电流作用时,其导磁性能可能会下降,或发生退磁现象,有可能降低永磁电动机的性能。另外,稀土式永磁同步电动机要用到稀土材料,制造成本不太稳定 永磁同步电机与异步电机 除了永磁同步电机,异步电机也因特斯拉的使用而被广泛关注。与同步电机相比起来,电机转子的转速总是小于旋转磁场(由定子绕组电流产生)的转速。因此,转子看起来与定子绕组的电流频率总是“不一致”,这也是其为什么叫异步电机的原因。 相比于永磁同步电机,异步电机的优点是成本低,工艺简单;当然其缺点就是其功率密度与转矩密度要低于永磁同步电机。而特斯拉Models为何选用异步电机而不是永磁同步电机,除了控制成本这个主要原因之外,较大的Models车体能够有足够空间放的下相对大一点的异步电机,也是一个很重要的因素。 永磁同步电动机怎样产生动力? 在交流异步电动机中,转子磁场的形成要分两步走:第一步是定子旋转磁场先在转子绕组中感应出电流;第二步是感应电流再产生转子磁场。在楞次定律的作用下,转子跟随定子旋转磁场转动,但又“永远追不上”,因此才称其为异步电动机。如果转子绕组中的电流不是由定子旋转磁场感应的,而是自己产生的,则转子磁场与定子旋转磁场无关,而且其磁极方向是固定的,那么根据同性相斥、异性相吸的原理,定子的旋转磁场就会拉动转子旋转,并且使转子磁场及转子与定子旋转磁场“同步”旋转。这就是同步电动机的工作原理。 根据转子自生磁场产生方式的不同,又可以将同步电动机分为两种: 一是将转子绕组通上外接直流电(励磁电流),然后由励磁电流产生转子磁场,进而使转子与 定子磁场同步旋转。这种由励磁电流产生转子磁场的同步电动机称为励磁同步电动机。 二是干脆在转子上嵌上永久磁体,直接产生磁场,省去了励磁电流或感应电流的环节。这种由永久磁体产生转子磁场的同步电动机,就称为永磁同步电动机。

柴油发电机工作原理

发电机 { 直流发电机、交流发电机 { 同步发电机、异步发电机(很少采用)交流发电机还可分为单相发电机与三相发电机。 由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引出,接在回路中,便产生了电流。 直流发电机的工作原理 直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。 电刷上不加直流电压,用原动机拖动电枢使之逆时针方向恒速转动,线圈两边就分别切割不同极性磁极下的磁力线,而在其中感应产生电动势,电动势方向按右手定则确定。这种电磁情况表示在图上。由于电枢连续地旋转,,因此,必须使载流导体在磁场中所受到线圈边ab和cd交替地切割N极和S极下的磁力线,虽然每个线圈边和整个线圈中的感应电动势的方向是交变的.线圈内的感应电动势是一种交变电动势,而在电刷A,B端的电动势却为直流电动势(说得确切一些,是一种方向不变的脉振电动势)。因为,电枢在转动过程中,无

论电枢转到什么位置,由于换向器配合电刷的换向作用,电刷A通过换向片所引出的电动势始终是切割N极磁力线的线圈边中的电动势,因此,电刷A始终有正极性。同样道理,电刷B始终有负极性,所以电刷端能引出方向不变的但大小变化的脉振电动势。如每极下的线圈数增多,可使脉振程度减小,就可获得直流电动势。这就是直流发电机的工作原理。同时也说明子直流发电机实质上是带有换向器的交流发电机。 铁芯具有吸引磁力线的作用(因为其磁阻很小),发电机电枢线圈是放在定子铁芯槽中的,磁场N-S的磁力线将被吸引,穿过定子铁芯后闭合。磁场的磁力线转动时,也就被电枢线圈切割了,自然就产生了电动势和电流。 异步电机一般定子通电,转子有感应电势,所以我们也称异步电机为感应电机。转子的转速与同步转速总是有一定的差异,这才叫异步电机的。 同步电机是定转子都要通电,而且转子的转速与同步转速一直是一样的,所以叫同步电机。

同步发电机常见故障及对策

同步发电机常见故障及对策 发电机在运行中会不断受到振动、发热、电晕等各种机械力和电磁力的作用,加之由于设计、制造、运行管理以及系统故障等原因,常常引起发电机温度升高、转子绕组接地、定子绕组绝缘损坏、励磁机碳刷打火、发电机过负载等故障,同步发电机运行中常见的一些故障分析如下。 发电机常见故障及措施 2.1 发电机非同期并列 发电机用准同期法并列时,应满足电压、周波、相位相同这3个条件,如果由于操作不当或其它原因,并列时没有满足这3个条件,发电机就会非同期并列,它可能使发电机损坏,并对系统造成强烈的冲击,因此应注意防止此类故障的发生。当待并发电机与系统的电压不相同,其间存有电压差,在并列时就会产生一定的冲击电流。一般当电压相差在±10%以内时,冲击电流不太大,对发电机也没有什么危险。如果并列时电压相差较多,特别是大容量电机并列时,如果其电压远低于系统电压,那么在并列时除了产生很大的电流冲击外,还会使系统电压下降,可能使事故扩大。一般在并列时,应使待并发电机的电压稍高于系统电压。如果待并发电机电压与系统电压的相位不同,并列时引起的冲击电流将产生同期力矩,使待并发电机立刻牵入同步。如果相位差在土300以内时,产生的冲击电流和同期力矩不会造成严重影响。如果相位差很大时,冲击电流和同期力矩将很大,可能达到三相短路电流的2倍,它将使定子线棒和转轴受到一个很大的冲击应力,可能造成定子端部绕组严重变形,联轴器螺栓被剪断等严重后果。为防止非同期并列,有些厂在手动准同期装置中加装了电压差检查装置和相角闭锁装置,以保证在并列时电差、相角差不超过允许值。 2.2 发电机温度升高 (1)定子线圈温度和进风温度正常,而转子温度异常升高,这时可能是转子温度表失灵,应作检查。发电机三相负荷不平衡超过允许值时,也会使转子温度升高,此时应立即降低负荷,并设法调整系统已减少三相负荷的不平衡度,使转子温度降到允许范围之内。 (2)转子温度和进风温度正常,而定子温度异常升高,可能是定子温度表失灵。测量定子温度用的电阻式测温元件的电阻值有时会在运行中逐步增大,甚至开路,这时就会出现某一点温度突然上升的现象。 (3)当进风温度和定子、转子温度都升高,就可以判定是冷却水系统发生了故障,这时应立即检查空气冷却器是否断水或水压太低。 (4)当进风温度正常而出风温度异常升高,这就表明通风系统失灵,这时必须停机进行检查。有些发电机组通风道内装有导流挡板,如因操作不当就会使风路受阻,这时应检查挡板的位置并纠正之。 2.3 发电机定子绕组损坏

直流发电机的工作原理与结构

直流发电机的工作原理及结构 电机的可逆运行原理 两个定理与两个定则 1、电磁感应定理 在磁场中运动的导体将会感应电势,若磁场、导体和导体的运动方向三者互相垂直,则作用导体中感应的电势大小为: e = B·l·v 符号物理量单位 B 磁场的磁感应强度Wb/m2 v 导体运动速度米/秒 l 导体有效长度m e 感应电势V 电势的方向用右手定则

2.电磁力定律载流导体在磁场中将会受到力的作用,若磁场与载流导体互相垂直(见下图),作用在导体上的电磁力大小为:f = B·l·i 符号物理量单位 i 导体中的电流A l 导体有效长度m f 电磁力N 力的方向用左手定则 (一)直流发电机的工作原理 1.直流发电机的原理模型

2.发电机工作原理

a、直流电势产生 用电动机拖动电枢使之逆时针方向恒速转动,线圈边a b 和c d 分别切割不同极性磁极下的磁力线,感应产生电动势直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势因为电刷A 通过换向片所引出的电动势始终是切割N 极磁力线的线圈边中的电动势。所以电刷A 始终有正极性,同样道理,电刷 B 始终有负极性。所以电刷端能引出方向不变但大小变化的脉动电动势 b、结论 线圈的感应电动势是一种交变电动势,而在电刷A B 端的电动势却是直流电动势。 直流发电机[浏览次数:约145次] ?直流发电机是一种把机械能转换为直流电输出的电机,流电动机具有良好的起动性能和调速性能,因此广泛应用于要求调速平滑,调速围广等对调速要求较高的电气传动系统中,如电力机车、无轨电车、轧钢机起重设备等。 目录 ?直流发电机的结构 ?直流发电机的部件功能 ?直流发电机的工作原理 ?直流发电机的额定值

同步发电机的基本原理复习课程

同步发电机的基本原 理

同步发电机的基本原理 同步发电机是利用电磁感应原理将机械能转换成电能的旋转机械。 同步发电机的构造:是由定子和转子两个基本部分构成。定子部分也常称为电枢,它由机座﹑定子铁芯和三相绕组等组成,是电机中产生感应电动势的部分。同步发电机转子是磁极,其铁芯上绕有励磁绕组,用直流电励磁。因为转子在空间旋转,所以励磁绕组的两端分别接到固定在旋转轴上的两个滑环上,环与环﹑环与转轴都是相互绝缘的,在环上,用弹簧压着两个固定的电刷,直流励磁电流从此通入励磁绕组。 当直流电经电刷﹑滑环通入转子绕组时,在磁极间就产生了磁力线,磁力线从转子N极经过定子﹑转子之间的空气隙和定子铁芯后,回到转子的S极。此时,若发电机的转子由原动机(即汽轮机)带动旋转,则转子磁场的磁力线就会感应出电动势。 当转子旋转时,定子绕组内磁通的大小和方向便不断的变化,转子每旋转一周,定子绕组中感应电动势的方向交变一次。 当定子绕组与外部负载接通后,则在定子绕组和负载中就会有电流通过,如果三相负载是对称的,则三相电流也是对称的。对称的三相电流流过三相定子绕组时,也会产生一个磁场,该磁场是在空间旋转的,其旋转速度等于发电机转子的转速,即与转子同步旋转,这样,发电机内部的旋转磁就有两部分组成,一部分是转子绕组的直流电产生的磁场,称为直流激励的旋转磁场,或机械旋转磁场;另一部分是定子绕组中的三相电流产生的,称为交流激励的磁场,或电气旋转磁场,两个磁场在发电机内部相互作用,产生电磁转矩,这个转矩与转子旋转方向相反,趋于阻止转子旋转,为了维持转子在同步速度旋转,原动机一定要增加一个机械力矩,以抵消上述电磁力矩的作用,也就是说,原动机的机械能通过发电机中的电磁相互作用而转变为定子绕组中的电能。

电机学第11章同步发电机的基本工作原理和结构思考题与习题参考答案

1 第11章同步发电机的基本工作原理和结构思考题与习题参考答案 11.1 同步发电机感应电动势的频率和转速有什么关系? 在频率为50H Z 时,极数和转速有什么关系? 答:频率与转速的关系为:60 pn f = 当频率为Hz 50时,30005060=?=pn 。 11.2 为什么汽轮发电机采用隐极式转子,水轮发电机采用凸极式转子? 答:汽轮发电机磁极对数少(通常p =1),转速高,为了提高转子机械强度,降低转子离心力,所以采用细而长的隐极式转子;水轮发电机磁极对数多,转速低,所以采用短而粗的凸极式转子。 11.3 试比较同步发电机与异步电动机结构上的主要异同点。 答:同步发电机和异步电动机的定子结构相同,都由定子铁心、定子三相对称绕组、机座和端盖等主要部件组成。但这两种电机的转子结构却不同,同步发电机的转子由磁极铁心和励磁绕组组成,励磁绕组外加直流电流产生恒定的转子磁场。转子铁心又分为隐极式和凸极式两种不同结构。异步电动机的转子分为笼型和绕线型两种结构形式,转子绕组中的电流及转子磁场是依靠定子磁场感应而产生的,故也称为感应电动机。 11.4 一台汽轮发电机,极数22=p ,MW 300=N P , kV 18=N U ,85.0cos =N ?,Hz 50=N f ,试求:(1)发电机的额定电流;(2)发电机额定运行时的有功功率和无功功率。 解:(1)A U P I N N N N 6.1132085.010********cos 336=????==? (2)MW P N 300= MVA P S N N N 94.35285.0/300cos /===? var 186527.094.352sin M S Q N N N =?==? 11.5一台水轮发电机,极数402=p ,MW 100=N P ,kV 813.U N =,9.0cos =N ?,Hz 50=N f ,求:(1)发电机的额定电流;(2)发电机额定运行时的有功功率和无功功率;(3)发电机的转速。 解:(1)A U P I N N N N 553.46489.0108.13310100cos 336=????==? (2)MW P N 100= MVA P S N N N 11.1119.0/100cos /===? var 44.48436.011.111sin M S Q N N N =?==? (3)min /15020 506060r p f n N =?==

相关文档
最新文档