第二节 对薛定谔方程解的讨论
第二节 对薛定谔方程解的讨论

⑴ s 轨道
l = 0 的轨道称为 s 轨道。s轨 道与角度无关,呈“球”状,为各向 同性,无角节面。
z + y x +
z y
⑵ p 轨道 m = 0,±1
l = 1 的轨道称为 p 轨道。p 轨道在空间有三个取向。即:
p 轨道呈“双球”状,轨道在空间的特定轴—极轴上振幅最大,角节 面通过原点垂直极轴。
方等于l(l + 1);量子数 l 越大,体系轨道的角动量及角动量的平方 越大,故称其为角量子数(azimuthal quantum number) 。
⑵决定轨道的形状
角量子数(azimuthal quantum number) 决定原子轨道或电子云的形 状。 例如:
l =
0(s)
1(p)
2(d)
∫ ∫
∞
r= 0
Rn,l(r)•Yl,m(θ,φ)
2
r2sinθdrdθdφ
由于Rn,l(r)是归一化的。即:
∞ r= 0
Rn,l(r)2r2dr = 1
则:
∫
∞
r =0
Rn,l(r)•Yl,m(θ,φ)
2
r2sinθdrdθdφ =∫Y2l,m(θ,φ) dΩ
=∫Y2l,m (θ,φ) sinθdθdφ 位立体角 dΩ 内出现的概率。
+
y
两个锥形角 节面 x
dz2轨道
l = 2 ,m = 0
-
+ y
两个角节面
+
dx2-y2轨道
l = 2 ,m = 2
⑷ f 轨道
f 轨道l = 3 有7个简并轨道。即:m = 0,±1, ±2,±3 (角
节面数为 l = 3)。 z z
量子力学中的薛定谔方程及其求解

量子力学中的薛定谔方程及其求解量子力学是研究微观粒子行为的重要理论,其核心是薛定谔方程。
薛定谔方程描述了量子体系中粒子的波函数以及随时间演化的规律。
本文将介绍薛定谔方程的基本原理,并讨论一些常见的求解方法。
一、薛定谔方程的基本原理薛定谔方程是波动方程,描述了量子体系中粒子的行为。
它的一般形式为:iħ∂ψ/∂t = Hψ其中,i是虚数单位,ħ是约化普朗克常数,ψ是粒子的波函数,t 是时间,H是哈密顿算符。
薛定谔方程的左边代表了波函数随时间变化的导数,右边代表了粒子在量子力学描述下的总能量。
通过求解这个方程,我们可以得到波函数的时间演化规律,从而揭示粒子的行为。
二、薛定谔方程的求解方法求解薛定谔方程是量子力学中的关键问题,涉及到很多数学方法和物理概念。
下面介绍几种常见的求解方法。
1. 一维自由粒子的求解方法对于一维自由粒子,其哈密顿算符可以简化为动能算符,即H = -ħ^2/2m * ∂^2/∂x^2。
将这个算符代入薛定谔方程,可以得到一维自由粒子的薛定谔方程为:iħ∂ψ/∂t = -ħ^2/2m * ∂^2ψ/∂x^2这是一个简单的偏微分方程,可以通过分离变量法求解。
假设波函数可以分解为时间部分和空间部分的乘积,即ψ(x, t) = φ(x) * χ(t),代入薛定谔方程后可以分离变量,得到两个独立的常微分方程。
分别求解这两个方程,再将它们的解合并,即可得到一维自由粒子的波函数。
2. 一维势阱的求解方法一维势阱是限制粒子运动在有限空间内的一种势场。
在势阱中,波函数的形式将受到势场的影响。
求解一维势阱的薛定谔方程需要考虑势场对波函数的贡献。
对于势阱中的波函数,只有在势阱内部才能存在。
在势阱内部,薛定谔方程的形式与自由粒子类似,但是边界条件会影响波函数的形式。
边界条件一般为波函数在势阱边界处连续且导数连续。
通过求解这个边界问题,可以得到一维势阱中的波函数。
3. 二维和三维量子体系的求解方法对于二维和三维的量子体系,薛定谔方程将变为偏微分方程。
薛定谔方程的含义和求解方法

薛定谔方程的含义和求解方法薛定谔方程是量子力学中的基本方程之一,描述了微观粒子(如电子)的行为。
本文将介绍薛定谔方程的含义及其求解方法。
一、薛定谔方程的含义薛定谔方程是由奥地利物理学家薛定谔于1926年提出的,用来描述微观粒子的运动和性质。
该方程是一个偏微分方程,包含粒子的波函数(Ψ)和哈密顿量(H)。
薛定谔方程的一般形式为:iℏ∂Ψ/∂t = HΨ其中,i是虚数单位,ℏ是约化普朗克常数,t是时间。
Ψ是粒子的波函数,H是系统的哈密顿量。
薛定谔方程描述了一个量子系统的演化过程。
通过对波函数的求解,我们可以得到粒子在不同位置和时间的概率分布,从而理解其行为和性质。
二、薛定谔方程的求解方法薛定谔方程是一个高度复杂的偏微分方程,一般情况下无法通过解析方法求解。
但可以通过一些近似方法和数值方法来求解。
1. 解析方法对于简单的系统,可以通过解析方法求解薛定谔方程。
例如,对于自由粒子,可以得到平面波的解。
对于一维谐振子,可以得到谐振子波函数的解。
然而,对于复杂的系统,如多电子体系或相互作用体系,解析方法往往不适用。
因此,需要使用近似方法和数值方法来求解。
2. 近似方法常用的近似方法包括变分法、微扰法和量子力学近似等。
变分法通过选取适当的波函数的形式和参数,使得波函数的能量最小化。
微扰法将系统的哈密顿量分解为一个已知的部分和一个微扰项,通过级数展开的方式求解波函数。
3. 数值方法数值方法是求解薛定谔方程的重要手段之一。
常用的数值方法包括有限差分法、有限元法和动态变分法等。
这些方法通过将波函数和哈密顿量离散化,将偏微分方程转化为一组代数方程,然后通过迭代求解来得到波函数的数值解。
数值方法的优点是适用于各种复杂系统,并且可以提供较高的精度。
但需要注意选择合适的离散化方法和参数,以及控制误差和收敛性。
总之,薛定谔方程是研究微观粒子的基本工具之一,可以描述粒子的运动和性质。
通过适当的求解方法,我们可以获得粒子的波函数,从而深入理解量子力学中的各种现象和行为。
量子力学 薛定谔方程的建立和定态问题

第二章 波函数和薛定谔方程 2.3、 薛定谔方程 2.3.2、 薛定谔方程的建立
2.3.2、 薛定谔方程的建立 1、自由粒子满足的微分方程: 由自由粒子波函数
i ( p⋅r − Et ) ψ p ( r , t ) = Ae
(1)
将上式两边对时间 t 求一次偏导,得:
∂ψ p
i ( p⋅r − Et ) i i = − EAe = − Eψ p ∂t
第二章 波函数和薛定谔方程 2.3、 薛定谔方程 2.3.1、 描写波函数随时间变化的方程应满足条件
经典力学和量子力学关于描述粒子运动状态的差别。 经典力学 质点的状态用 r , p 描述。 量子力学
微观粒子状态用波函数 Ψ (r , t ) 描述。
每个时刻, r , p 均有确定值, 波函数 Ψ 描述的微观粒子不可能同
第二章 波函数和薛定谔方程 2.3、 薛定谔方程 2.3.1、 描写波函数随时间变化的方程应满足条件
2.3、 薛定谔方程
在 2.1 节中, 我们讨论了微观粒子在某一时刻 t 的状态, 以及描写这个状态的波函数 Ψ 的性质, 但未涉及当时间改 变时粒子的状态将怎样随着变化的问题。本节中我们来讨 论粒子状态随时间变化所遵从的规律。
。
第二章 波函数和薛定谔方程 2.3、 薛定谔方程 2.3.3、 关于薛定谔方程的几点说明
2.3.3、 关于薛定谔方程的几点说明 (1)薛定谔方程是建立的,而不是推导出来的,建立的 方式有多种。 (2)薛定谔方程是量子力学最基本的方程,也是量子力 学的一个基本假定。薛定谔方程正确与否靠实验检验。 (3)薛定谔方程描述了粒子运动状态随时间的变化,揭 示了微观世界中物质的运动规律。
第二章 波函数和薛定谔方程 2.4、 粒子流密度和粒子数守恒定律2.4.1、 几率分布变化及连续性方程
量子物理 第二章 薛定谔方程

v v Ψ ( r , t ) = ψ ( r ) f (t )
ih df 1 ⎡ h2 2 v ⎤ (1) ⇒ = − ⎢− ∇ + U ( r ) ⎥ψ = E f dt ψ ⎣ 2μ ⎦
(2)
⎡ h2 2 v ⎤ v v ∇ + U ( r ) ⎥ψ ( r ) = Eψ ( r ) ⎢− ⎣ 2μ ⎦
当
A≠0 B=0 nπ αn =
2a
,有
sin αa = 0
(6)
(n为偶数) ,有
当
A=0 B≠0
nπ αn = 2a
cos αa = 0
(7)
(n为奇数)
(6)和(7)两式统一写成
nπ αn = , 2a
n = 1,2,3, L
(8)
22
2.3 一维无限深势阱 The infinite potential well
(3)
10
2.2 定态薛定谔方程 Time independent Schrödinger equation
df ih = Ef (t ) dt
(4) (2) 令 则 (4)
i − Et h
⇒
f (t ) = Ce
(5)
i − Et h
v ⇒ Ψ ( r , t ) = ψ ( r )e
(6)
ω = E/ h E =hω
9
2.2 定态薛定谔方程 Time independent Schrödinger equation
1.定态,定态波函数 v ∂Ψ(r , t ) ⎡ h 2 2 v ⎤ v = ⎢− ∇ + U (r , t )⎥ Ψ(r , t ) ih ∂t ⎣ 2μ ⎦ 若
(1)
量子力学中的薛定谔方程解析

量子力学中的薛定谔方程解析量子力学是研究微观世界中的粒子行为和现象的重要分支学科。
其中,薛定谔方程是量子力学的基石之一,描述了粒子的波函数演化规律。
本文将介绍薛定谔方程的基本原理和解析方法。
一、薛定谔方程的基本原理薛定谔方程是由奥地利物理学家埃尔温·薛定谔于1925年提出的,用于描述微观粒子的行为。
薛定谔方程的一般形式为:iħ∂Ψ/∂t = ĤΨ其中,ħ是普朗克常数的约化形式,Ψ是粒子的波函数,t是时间,Ĥ是哈密顿算符。
该方程是一个偏微分方程,描述了波函数随时间的变化。
二、薛定谔方程的解析方法在实际应用中,我们通常采用特定形式的波函数来解析求解薛定谔方程。
下面介绍几种常见的薛定谔方程解析方法。
1. 分离变量法分离变量法是一种常用的薛定谔方程解析方法。
它的基本思想是将多变量波函数分解为若干个单变量的乘积形式,然后将其代入薛定谔方程进行求解。
2. 平面波方法平面波方法是一种常见的简化模型,适用于特定情况下的薛定谔方程。
该方法假设波函数可以用平面波的线性叠加表示,然后通过代入薛定谔方程得到对应的能量本征值和本征函数。
3. 变分法变分法是薛定谔方程求解的一种非常灵活的方法。
该方法通过引入一组试探波函数,利用变分原理寻找使波函数能量达到最小值的解。
4. 系统对称性方法系统对称性方法适用于具有特殊对称性的系统。
通过利用系统的对称性,可以简化薛定谔方程的求解过程,并得到更加精确的解析解。
三、薛定谔方程的应用与发展薛定谔方程不仅在量子力学的基础研究中发挥着重要作用,也广泛应用于各个实际领域。
在原子物理学中,薛定谔方程用于描述电子在原子中的运动轨迹和能级结构,揭示了量子力学的基本规律,对原子光谱和分子结构的解释有重要贡献。
在固体物理学中,薛定谔方程应用于研究电子在晶体中的行为,解释了导电性等晶体性质,为材料科学和电子器件的发展提供理论基础。
在量子信息科学中,薛定谔方程被用于研究量子态的演化和测量,为量子计算和量子通信等领域的发展带来了新的可能性。
量子力学-第二章-定态薛定谔方程详解

需要注意的是,尽管分离解自身是定态解,
n (x,t) n (x)eiEnt , 其几率和期望值都不依赖时间,但是一般解并不具备这个性质;
因为不同的定态具有不同的能量,在计算时含时指数因子不能相互抵消
2.2一维无限深势阱
0, V ( x)
| x | a | x | a
V(x)
I
II
III
l 求解 S — 方程 分四步: l (1)列出各势域的一维S—方程 l (2)解方程 l (3)使用波函数标准条件定解 l (4)定归一化系数
(三)求解定态问题的步骤
讨论定态问题就是要求出体系可能有的定态波函数 Ψ(r,t)和在这些态中的能量 E。其具体步骤如下:
(1)列出定态 Schrodinger方程
[
2
2
V ] (r )
E (r )
2
(2)根据波函数三个标准 本征值: 条件求解能量 E 的
E1, E2 , , En ,
本征值问题,得:
i
d dt
f (t) Ef (t)
[
2
2
V
]
(r )
E
(r )
2
f (t ) ~ eiEt /
于是:
(r ,
t
)
(r )e
i
Et
(r ,
t
)
(
r
)e
i
Et
此波函数与时间t的关系是正弦型的,其角频率ω=2πE/h。 由de Broglie关系可知: E 就是体系处于波函数Ψ(r,t)所描写 的状态时的能量。也就是说,此时体系能量有确定的值,所以这 种状态称为定态,波函数Ψ(r,t)称为定态波函数。
(3)写出定态波函数即得 到对应第 n 个本征值 En 的定态波函数
量子力学chapter2-薛定谔方程解析

12
§2 态叠加原理
(一)态叠加原理
微观粒子具有波动性,会产生衍射图样。而干 涉和衍射的本质在于波的叠加性,即可相加性, 两个相加波的干涉的结果产生衍射。因此,同 光学中波的叠加原理一样,量子力学中也存在 波叠加原理。因为量子力学中的波,即波函数 决定体系的状态,称波函数为状态波函数,所 以量子力学的波叠加原理称为态叠加原理。
|Ψ(r,t)|2 的意义是代表电子在 t 时刻出现在 r 点附近几率的大小, 确切的说,|Ψ(r,t)|2 Δx Δy Δz 表示在 t 时刻,在 r 点处,体 积元ΔxΔyΔz中找到粒子的概率。波函数在空间某点的强度(振幅绝 对值的平方)和在这点找到粒子的概率成比例,
Ψ(r,t)
概率波
8
(三)波函数的性质
= |C1 Ψ1|2+ |C2Ψ2|2 + [C1*C2Ψ1*Ψ2 + C1C2*Ψ1Ψ2*]
电子穿过狭缝 1出现在P点
题,以后再予以讨论。
10
(3)归一化波函数
Ψ(r,t )和CΨ(r,t )所描写状态的相对概率是相同的,这
里的 C 是常数。因为在 t 时刻,空间任意两点 r1 和 r2 处找到粒子的相对概率之比是:
2
2
C(r1 , t ) (r1 , t )
C(r2 , t )
(r2 , t )
可见,Ψ(r,t) 和 CΨ(r,t )描述的是同一概率波,所以波函 数有一常数因子不定性。
C = 1/∫∞|Ψ(r,t)|2dτ
这即是要求描写粒子量子 状态的波函数Ψ必须是
绝对值平方可积的函数。
若 ∫∞|Ψ(r,t)|2dτ∞, 则 C0, 这是没有意义的。
除了个别孤立奇点外,波函数单值,有界,连续
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此外,在多电子原子体系中我们知道:E3d > E3p > E3s。即n值一定
时,角量子数l越大,轨道的能级越高。
也就是说,在多电子原子中主量子数n和角量子数l一起决定电子的 能级。
3.磁量子数 m
数m至少有如下几个方面的意义。
取值由角量子 数限制
通过求解Φ方程得到了量子数 m = 0,±1,±2,„ ±l,磁量子
= Eψ
ψn,l,m = Rn,l(r) Yl,m(θ,φ) = R(r)Θ(θ)Φ(φ) Z2 En = - 2 ³13.6(eV) n
n = 1,2,3,„ I = 0,1,2,„ m = 0,±1,±2 „
通过求解原子的薛定谔方程,只 能得到n、l、m三个量子数。
一、量子数
quantum number
∫ ∫
∞
r= 0
Rn,l(r)•Yl,m(θ,φ)
2
r2sinθdrdθdφ
由于Rn,l(r)是归一化的。即:
∞ r= 0
Rn,l(r)2r2dr = 1
则:
∫
∞
r =0
Rn,l(r)•Yl,m(θ,φ)
2
r2sinθdrdθdφ =∫Y2l,m(θ,φ) dΩ
=∫Y2l,m (θ,φ) sinθdθdφ 位立体角 dΩ 内出现的概率。
1.主量子数 n
通过求解R方程,我们得到了量子数 n = 1,2,3,„ ,从其与体
系的能级、状态的关系来看,量子数n至少有如下几个方面的意义。
⑴决定体系能量的大小 1 En = - 2 n Z2 Z2 e2 = - 13.6 2 (eV) 2a0 n
(氢原子或类氢离子)
体系的能量取决于量子数 n,与 n2 成反比;n 的取值越大,体系
2sinθdθ=(1/2)1/2 ∫ Θ θ=0
π
2π
则:
∫ φ=0
于是:
2π
Φ2 d φ∫ Θ2sinθdθ=(1/4π)1/2 θ=0
π
ψns =(1/4π)1/2²Rn,l(r)
R2n,l(r) = 4π²ψ2ns
即: D(r) = r2 [Rn,l(r)]2 = 4πr2[ψns(r)]2
⑵钻穿效应
fz3
z
z
z
x
+
+ -
- + + - z2)
+ y x +
fxyz
+ + -
y
x
-
++ +
+ -
y
-
+
+
y
fz(x2
fz(x2
– 3y2)
fy(3x2
+
x
+
– y2)
2.角度分布函数
所谓角度分布函数,是用波函数 Y2l,m(θ,φ)表征电子在角轨道中
分布的概率密度。 由∣ψ∣2 dτ——概率(出现在体积元dτ中的概率)可知:
z z x
+
y x y
角节面
z
pz轨道
x
y
l = 1, m = 0
l = 1, m = 1
⑶ d 轨道
l = 2 的轨道称为 d 轨道,m = 0,±1,±2(5个简并轨道)。d 随
角度变化比 p 轨道复杂的多,分别有 2 个角节面。
例如: z x z
+
y x
+
-
+
dyz轨道
l = 2,m = -1
3p轨道的径向节面数 = 1(总节面数 = 2)
2.角量子数 l
通过求解Θ方程得到了量子数 l = 0,1,2,„ n - 1 ,角量子
数 l 至少有如下几个方面的意义。
取值由主量子 数限制
⑴决定轨道角动量的大小 M= l(l+1) ħ h 2π
=[l(l+1)]1/2
M2 = l(l+1)ħ2
体系的轨道角动量取决于量子数l,体系轨道角动量轨道角动量平
D(r)
1s
2s 3s
2a0
4a0
6a0
8a0
10a0
12a0
14a0 16a0
18a0
r
1s轨道电子云径向分布D(r)在 r = a0 = 0.529³10-10 m (氢原子的
波尔半径)处有极大值。
对于 2s 轨道和 3s 轨道,其电子云径向分布的最高峰随 n的增大 而远离原子核。 但它们的次级峰、亚次级峰出现在距核较近周围的空间。即:各轨 道间产生了相互渗透现象。这种现象称为钻穿效应。
方等于l(l + 1);量子数 l 越大,体系轨道的角动量及角动量的平方 越大,故称其为角量子数(azimuthal quantum number) 。
⑵决定轨道的形状
角量子数(azimuthal quantum number) 决定原子轨道或电子云的形 状。 例如:
l =
0(s)
1(p)
2(d)
三、轨道径向函数
Radial Function of Orbit
1.径向波函数 2Z (n-l-1)! 2l+1 3 1/2 ρ/2 l Rn,l(r)= -{( nα ) } e ρ L n+1 (ρ) 3 0 2n[(n+l)!]
径向波函数 Rn,l(r)是反映在任意给定角度方向上,波函数随 r 变化 的情况。 波函数的径向分布节面(即:Rn,l(r)= 0)数为 n - l- 1。 Rn,l(r)
⑴ s 轨道
l = 0 的轨道称为 s 轨道。s轨 道与角度无关,呈“球”状,为各向 同性,无角节面。
z + y x +
z y
⑵ p 轨道 m = 0,±1
l = 1 的轨道称为 p 轨道。p 轨道在空间有三个取向。即:
p 轨道呈“双球”状,轨道在空间的特定轴—极轴上振幅最大,角节 面通过原点垂直极轴。
Rn,l(r)
Rn,l(r)
Rn,l(r)
Rn,l(r)
Rn,l(r)
1s 2p
2s 3p
3s 4p
+ +
rr
++
-
-
rr
++
-
-
+ +
r r
2.径向分布函数 ⑴径向分布函数 D(r)= r2[ Rn,l(r)]2
电子出现的概率。
D(r)= 4πr2 R2n,l
——“教材”P38
Why?
径向分布函数 D(r)表示,在半径为r的球面附近单位厚度球壳中 我们知道,电子出现在空间某点(r,θ,φ)附近体积元 dτ内出 现的概率为: |ψ(r,θ,φ)|2 dτ = |ψ(r,θ,φ)|2r2sinθdr dθdφ 则:
例如:
z y x s m = 0 z y z y x pz m = 0 x z y
x
px m = 1
py m = - 1
光谱实验证实,在磁场中,相同主量子数和角量子数的原子轨道 还能发生分裂,显示出微小的能量差别。
二、轨道角函数
Angular Function of Orbit
1.轨道的角度波函数
出现在距核较近区域的概率愈小。
R2n,l 1s 2s 3s 1s 2s 3s
r
⑶决定波函数的径向节面数和总节面数
波函数的节面有径向节面和角度节面两种。即:
Rn,l
Rn,l
径向节面
径向节面数
z
角节面
角节面数 = l
+
y
1s + r +
2s r
= n - l -1
x
pz轨道
总节面数 = n - 1(个) = 径向节面数 + 角节面数 径向节面数 = n - l - 1(个) 例如:1s轨道的无节面(总节面数 = 0) 4s轨道的径向节面数 = 3(总节面数 = 3)
D(r) 2s 2p 2a0 4a0 6a0 8a0 10a0 12a0 14a0 16a0 18a0
r
从2s轨道和2p轨道的电子云的径向分布图来看,2s 轨道的第一个峰
比2p轨道的第一个峰距核更近(2s 轨道比2p轨道钻得更深)。进而比较
其它轨道,我们不难得出: 当 n 相同时,l 越小的轨道,其第一个峰钻得越深。(例如:3p轨 道比3d轨道钻得更深) 镧系收缩 镧(La) 而逐渐减小。 镥(Lu),其原子半径(或离子半径)随原子系数的增加
y
问题思考与练习
2-3 4s轨道和4d轨道的角节面数、径向节面数和总节面数各是多少? 2-4 分析 dx2-y2 轨道及 fz3 轨道的角节面数各是多少?分别在何方向? 2-5 证明,角量子数是决定轨道角动量的大小的量子数。 2-6 证明,磁量子数是决定轨道角动量在Z(磁)方向分量的大小的量 子数。
2 2 D(r)dr =∫ φ=0∫ θ=0 |ψ(r,θ,φ)| r sinθdr dθdφ
2π
π
2 2 2 2 =∫ φ=0 Φ dφ∫ θ=0 Θ sinθdθ²R r dr
2π
π
归一性
= r2 R2 dr
资料卡片
对D(r)= 4πr2 R2n,l 的解释 对于ns轨道而言
∫ Φ2 dφ=(1/2π)1/2 φ=0
第二节 对薛定谔方程解的讨论
Discussion of result for Schrödinger equation
一、量子数 二、轨道角函数 三、轨道径向函数 四、轨道能级
上节通过对氢原子薛定谔方程的讨论,我们得到了氢原子或类氢离 子(核外电子)的波函数和体系的能级。即:
>
Hψ= Eψ