——15.3分式方程同步练习及含答案2

合集下载

15.3 分式方程 同步练习及答案)

15.3 分式方程 同步练习及答案)

第15章《分 式》同步练习(§15.3 分式方程)班级 学号 姓名 得分一、选择题 1.方程132+=x x 的解为( ). (A)2 (B)1(C)-2(D)-12.解分式方程12112-=-x x ,可得结果( ). (A)x =1 (B)x =-1(C)x =3(D)无解3.要使54--x x 的值和xx--424的值互为倒数,则x 的值为( ). (A)0 (B)-1 (C)21(D)14.已知4321--=+-y y x x ,若用含x 的代数式表示y ,则以下结果正确的是( ). (A)310+=x y (B)y =x +2(C)310xy -=(D)y =-7x -25.若关于x 的方程xkx --=-1113有增根,则k 的值为( ). (A)3(B)1(C)0(D)-16.若关于x 的方程323-=--x mx x 有正数解,则( ). (A)m >0且m ≠3 (B)m <6且m ≠3(C)m <0 (D)m >67.完成某项工作,甲独做需a 小时,乙独做需b 小时,则两人合作完成这项工作的80%,所需要的时间是( ). (A))(54b a +小时 (B))11(54ba +小时 (C))(54b a ab+小时(D)ba ab+小时 8.a 个人b 天可做c 个零件(设每人速度一样),则b 个人用同样速度做a 个零件所需天数是( ).(A)c a 2(B)2ac(C)a c 2(D)2ca 二、填空题9.x =______时,两分式44-x 与13-x 的值相等. 10.关于x 的方程324+=-b xa 的解为______. 11.当a =______时,关于x 的方程4532=-+x a ax 的根是1.12.若方程114112=---+x x x 有增根,则增根是______.13.关于x 的方程11=+x a的解是负数,则a 的取值范围为____________.14.一艘轮船在静水中的最大航速为20千米/时,它在江水中航行时,江水的流速为v 千米/时,则它以最大航速顺流航行s 千米所需的时间是______. 三、解方程15..32121=-+--xx x16.⋅+=+--1211422x xx x x 17.⋅-+=+-xx x x x 25316四、列方程解应用题18.甲工人工作效率是乙工人工作效率的212倍,他们同时加工1500个零件,甲比乙提前18个小时完工,问他们每人每小时各加工多少个零件?19.甲、乙两地相距50km,A骑自行车,B乘汽车,同时从甲城出发去乙城.已知汽车的速度是自行车速度的2.5倍,B中途休息了0.5小时还比A早到2小时,求自行车和汽车的速度.20.面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,在全国范围内实施“家电下乡”,农民购买入选产品,政府按原价购买总..额的..13..%.给予补贴返还.某村委会组织部分农民到商场购买入选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?(2)列出方程(组)并解答.参考答案1.A . 2.D . 3.B . 4.C . 5.A. 6.B . 7.C . 8.A .9.x =-8. 10.⋅--=462b a x 11.⋅-=317a12.x =1. 13.a <1且a ≠0. 14.20+v s小时.15.无解. 16.⋅-=21x 17.无解.18.设乙的工作效率为x 个/时,甲的工作效率为x 25个/时.182515001500+=x x .50=x .经检验,x =50是原方程的根. 答:甲每小时加工125个,乙每小时加工50个.19.设自行车速度为x 千米/时,汽车速度为2.5x 千米/时.xx 502215.250=++.x =12.经检验x =12是原方程的根. 答:自行车的速度为12km/时,汽车的速度为30km/时. 20.(1)2x ,40000×13%,x2%1340000⨯,15000×13%,x %1315000⨯;(2)冰箱、电视机分别购买20台、10台.。

人教版八年级数学上册《15.3分式方程》同步练习题-带参考答案

人教版八年级数学上册《15.3分式方程》同步练习题-带参考答案

人教版八年级数学上册《15.3分式方程》同步练习题-带参考答案学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.方程的解为()A.B.C.D.2.有两块面积相同的小麦试验田,分别收获小麦9000kg和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg,若设第一块试验田每公顷的产量为x kg,由题意可列方程()A.B.C.D.3.随着快递业务量的增加,某快递公司为快递物品更换快捷的交通工具,公司投递快件的能力由每天300件提高到420件,平均每人每天比原来多投递8件,若快递公司的快递员人数不变,求原来平均每人每天投递快件多少件?设原来平均每人每天投递快件x件,根据题意列方程为()A.B.C.D.4.“五一劳动节”期间,某校开展了以“劳动光荣”以主题的教育活动,该校组织全校教师和部分学生去郊区植树,已知老师平均每小时比学生多植5棵,且老师植树60棵所需的时间与学生植树45棵所需的时间相同,老师平均每小时植树()A.10棵B.15棵C.20棵D.25棵5.解分式方程时,去分母正确的是()A.B.C.D.6.已知关于x的分式方程的解是非正数,则m的取值范围是()A.B.C.D.7.关于的方程会产生增根,则的值为()A.0 B.-4 C.0或-4 D.-4或68.若关于x的一元一次不等式组的解集为,且关于y的分式方程的解是负整数,则所有满足条件的整数a的值之和是()A.-26 B.-24 C.-15 D.-13二、填空题:(本题共5小题,每小题3分,共15分.)9.方程的解为.10.某物流仓储公司用A,B两种型号的机器人搬运物品,已知A型机器人比B型机器人每小时多搬运20kg,A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等,设B型机器人每小时搬运x kg物品,列出关于x的方程为.11.已知关于x的方程的解是正数,则m的取值范围为:.12.我国是一个水资源贫乏的国家,每一个公民都应自觉养成节约用水的意识和习惯,为提高水资源的利用率,某住宅小区安装了循环用水装置.经测算,原来天用水吨,现在这些水可多用4天,现在每天比原来少用水吨.13.一项工程需在规定日期内完成,如果甲队单独做,就要超规定日期1天,如果乙队单独做,就要超过规定日期4天,现在由甲、乙两队共做3天,剩下的工程由乙队单独做,刚好在规定日期完成,则规定日期为天.三、解答题:(本题共5题,共45分)14.解分式方程(1);(2)15.A、B两地相距480km,甲、乙两人同时从A地匀速驶往B地,已知甲的行驶速度是乙的行驶速度的1.2倍,甲比乙提前1h到达B地,求甲、乙两人的行驶速度各是多少?16.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗,还可以通过运动做公益(如图).对比手机数据发现小强步行15000步与小丽步行11000步消耗的能量相同.若每消耗1千卡能量小强行走的步数比小丽多20步,求小丽,小强每消耗1千卡能量各需要行走多少步.17.为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若干个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?18.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)分别求出每个甲种配件、每个乙种配件的价格为多少万元?(2)现投入资金40万元,根据维修需要预测,甲种配件要比乙种配件至少多25件,乙种配件最多可购买多少件?参考答案:1.B 2.C 3.D 4.C 5.C 6.A 7.D 8.D9.10.=11.m>﹣3且m≠﹣212.13.814.(1)解:方程两边同乘得:去括号得:解得:检验:当时所以是增根,原方程无解(2)解:方程的两边同乘(1−x)(1+x)得:2(1+x)+(1−x)(1+x)=x(1−x)解得:x=−3.检验:把x=−3代入(1−x)(1+x)=−8≠0.∴原方程的解为:x=−3.15.解:设乙的行驶速度为xkm/h,则甲的行驶速度为1.2xkm/h,由题意可得:解得: x=80经检验,x = 80是分式方程的根,且符合题意所以1.2x = 96.答:甲的行驶速度为96km/h,乙的行驶速度为80km/h.16.解:设小丽每消耗1千卡能量需要走x步,则小强走(x+20)步.根据题意得.=解得x=55经检验x=55是原方程的解x+20=75答:每消耗1千卡能量,小丽走55步,小强走75步.17.(1)解:设每个足球x元,每个篮球(2x-30)元根据题意得:解得x=60经检验x=60是方程的根且符合题意2x-30=90答:每个足球60元,每个篮球90元(2)解:设买篮球m个,则买足球(200-m)个由题意得:解得 .∵ m为正整数,∴最多购进篮球116个18.(1)解:设每个乙种配件的价格为x万元,则每个甲种配件的价格为(x﹣0.4)万元根据题意得:解得:x=1.2经检验,x=1.2是原分式方程的解∴x﹣0.4=1.2﹣0.4=0.8.答:每个甲种配件的价格为0.8万元、每个乙种配件的价格为1.2万元.(2)解:设购买甲种配件m件,购买乙种配件n件根据题意得:0.8m+1.2n=40∴m=50﹣1.5n.∵m﹣n≥25∴50﹣1.5n﹣n≥25∴n≤10∵m,n均为非负整数∴n的最大值为10.答:乙种配件最多可购买10件。

人教版-数学-八年级上册-《15.3分式方程》同步练习

人教版-数学-八年级上册-《15.3分式方程》同步练习

15.3分式方程 一、选择题(每小题3分,共18分) 1、下列方程中属于分式方程的是( ) A.x 5232x 21x =-++ B.43x 52x -= C.)1x 34(43x 21-= D.x 1=1 2、方程x 21x 22x 53x -++=--的解是( ) A.x=0 B.x=1 C.x=2 D.x=-23、若关于x 的方程43x a 32ax =-+的解为x=1,则a 应取( ) A.1 B.3 C.-3 D.-14、方程2x 2x 4x 162x 2x 2-+=--+-的解的情况是( ) A.有正整数解 B.有负整数解C.有负分数解 D.无解5、某实验室现有30%的盐水50克,要配制25%的盐水,需加入x 克水,下面是小明等同学所列的关于x 的方程,你认为正确的是( )A.x 5030+=25%B.x 5050+=25%C.x 1515+=25%D.x5015+=25% 6、“十一”期间,红旗中学“东升文学社”的全体同学包租一辆面包车前去某景点游览,面包车的租价为180元.出发时又增加了两名同学,结果每个同学比原来少摊了3元车费.若设“东升文学社”有x 人,则所列方程为( )A.32x 180x 180=--B.32x 180x 180=+-C.3x 1802x 180=-+D.3x1802-x 180=-二、填空题(每小题3分,共24分)1、方程x704x 3-=的解是 . 2、方程4x 4x 2x 12x 12-=+--的解是 . 3、当x= 时,分式1x 4+与1x 3-的值相等. 4、若分式x1x 1++的值等于1,则x 为 . 5、若R+s n r =,则n= . 6、如果x 11x --的值为0,那么代数式x1-x 的值为 .7、如果关于x 的方程x1x +=a 无解,则a 的值是 . 8、甲队单独做一项工程刚好如期完成,乙队单独完成这项工程要比预期多用3天.若甲、乙两队合作2天,余下的工程由乙队单独做也正好如期完成,则规定的工期是 天.三、解答题(共58分)1、解方程(每小题4分):(1)2x 7x 5-=;(2)1x 61x 31x 22-=-++. 2、(本小题8分)当x 为何值时,2x 1+比x 2x 1+-的值小2? 3、(本小题8分)在深圳“净畅宁”行动中,有一块面积为150亩的绿化工程面向全社会公开招标.现有甲、乙两工程队前来竞标,甲队计划比规定时间少4天,乙按规划时间完成.甲队比乙队每天多绿化10亩,问:规定时间是多少天?4、(本小题12分)某商店用80000元购进一批时装,以58元/件销售,结果供不应求.然后又用176000元购进数量是第一次的2倍,单价比第一次贵4元的同样的时装继续销售,最后剩下150件按八折销售完毕.问这批服装一共有多少件?该商店这笔生意是盈还是亏,是多少?5、(本小题10分)甲、乙两人从某火车上下来,沿着一个方向到同一个地方,甲一半的路程以速度a 行走,另一半的路程以速度b 行走;乙一半时间以速度a 行走,另一半时间以速度b 行走,问哪个旅客先到达目的地?(速度的单位都是千米/小时)6、(本小题12分)“五一”期间,某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:消费金额p (元)的范围 200≤p<400400≤p <500 500≤p <700 700≤p <900 …… 获得奖券金额(元)30 60 100 130 ……根据上述促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得有惠额为:450×0.2+30=120(元).设购买商品的优惠率=商品的标价购买商品获得的优惠率.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为31,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?参考答案:一、1、D ;2、A ;3、C ;4、D ;5、D ;6、B . 二、1、x=30;2、x=1;3、7;4、不等于1的实数;5、R s r -;6、0;7、1;8、6. 三、1、(1)x=5;(2)无解.2、x=-34. 3、设规定时间为x 天,10x 1504x 150=--, 解之得x=10.经检验知,x=10是原方程的解.4、设这批时装进价为x 元/件,则x8000024x 176000⨯=+,解得x=40,所以第一次购进2000件,第二次购进4000件.共盈利(6000-150)×58+150×58×0.8-80000-176000=90260(元).5、设甲、乙两人所用的时间分别为t 1和t 2,两地的路程为2s ,则t 1=b s a s +,t 2=2b 2a 2s +, 故t 1-t 2=(b s a s +)-2b 2a 2s +=s ()b a (ab s )b a (b a 4ab b a 2+-=+-+),因为a ,b ,s 均为正数,所以t 1-t 2≥0.即乙先到达目的地.6、解:(1)优惠率=40138001002.0800=+⨯=32.5%. (2)设该件西装的标价x 元,则700<x <850,∴560<0.8x <680,所以,此时顾客得到的奖卷额为100元.根据题意,得31x 1002x .0=+, 整理得152x 100=,解之得x=750.经检验x=750是原方程的解. 答:(1)顾客得到的优惠率为32.5%,(2)西装标价为750元.。

人教版初中数学八年级上册《15.3 分式方程》同步练习卷(含答案解析

人教版初中数学八年级上册《15.3 分式方程》同步练习卷(含答案解析

人教新版八年级上学期《15.3 分式方程》同步练习卷一.选择题(共7小题)1.在下列方程①x2﹣x+;②﹣3=a+4;③+5x=6;④+=1中,是分式方程的有()A.1个B.2个C.3个D.4个2.已知关于x的分式方程﹣=1无解,则m的值为()A.0B.0或﹣8C.﹣8D.0或﹣8或﹣4 3.方程=的解为()A.x=﹣1B.x=0C.x=D.x=14.方程=的解是()A.x﹣9B.x=3C.x=9D.x=﹣65.分式方程=有增根,则增根为()A.0B.1C.1或0D.﹣56.已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米.若设甲车的速度为x千米/时,依题意列方程正确的是()A.=B.=C.=D.=7.学校最近新配备了一批图书需要甲乙两人进行整理,若甲单独整理完成需要4小时完工;若甲乙共同整理2小时后,乙再单独整理2小时才能完工,则乙单独整理完成需要()A.4小时B.6小时C.8小时D.10小时二.填空题(共5小题)8.已知关于x的分式方程=2+无解,则k的值为.9.分式方程=4的解是x=.10.如果关于x的分式方程=1有增根,那么m的值为.11.A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程.12.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果提前2天完成全部任务.则采用技术后每天加工套运动服.三.解答题(共4小题)13.解下列分式方程:(1)+=3(2)﹣=014.一项旧城区改造工程,如果由甲工程队单独做,需要60天可以完成;如果由甲乙两队合作12天后,剩下的工程由乙工程队单独做,还需20天才能完成.求乙工程队单独完成这项工程需要多少天?15.近几年我国高铁及城际铁路快速发展,2017年12月28日“青烟威荣”城际铁路正式开通.从烟台到北京的高铁里程比普快里程缩短了100千米,运行时间减少了8小时.已知烟台到北京的普快列车里程约1000千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约700千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至该市的高铁票,而且从该市火车站到会议地点最多需要 1.5小时,试问在高铁列车准点到达的情况下他能在开会之前赶到吗?16.(换元法)解方程:(x2﹣3x)2﹣2(x2﹣3x)﹣8=0解:设x2﹣3x=y则原方程可化为y2﹣2y﹣8=0解得:y1=﹣2,y2=4当y=﹣2时,x2﹣3x=﹣2,解得x1=2,x2=1当y=4时,x2﹣3x=4,解得x1=4,x2=﹣1∴原方程的根是x1=2,x2=1,x3=4,x4=﹣1,根据以上材料,请解方程:(1)(2x2﹣3x)2+5(2x2﹣3x)+4=0.(2)x2﹣3x+5+=0人教新版八年级上学期《15.3 分式方程》同步练习卷参考答案与试题解析一.选择题(共7小题)1.在下列方程①x2﹣x+;②﹣3=a+4;③+5x=6;④+=1中,是分式方程的有()A.1个B.2个C.3个D.4个【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【解答】解:①x2﹣x+是代数式;②﹣3=a+4是分式方程;③+5x=6是一元一次方程;④+=1是分式方程,故选:B.【点评】判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).2.已知关于x的分式方程﹣=1无解,则m的值为()A.0B.0或﹣8C.﹣8D.0或﹣8或﹣4【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:(x﹣2)2﹣mx=(x+2)(x﹣2),解得:(4+m)x=8,当m=﹣4时整式方程无解;当x=﹣2时分母为0,方程无解,即m=﹣8;当x=2时分母为0,方程无解,即m=0.故选:D.【点评】本题考查了分式方程无解的条件,分式方程无解分两种情况:整式方程本身无解;分式方程产生增根,是需要识记的内容.3.方程=的解为()A.x=﹣1B.x=0C.x=D.x=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.4.方程=的解是()A.x﹣9B.x=3C.x=9D.x=﹣6【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程去分母得:2x=3x﹣9,解得:x=9,经检验,x=9是分式方程的解,故选:C.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.分式方程=有增根,则增根为()A.0B.1C.1或0D.﹣5【分析】分式方程去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的增根.【解答】解:=,去分母得:6x=x+5,解得:x=1,经检验x=1是增根.故选:B.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.6.已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米.若设甲车的速度为x千米/时,依题意列方程正确的是()A.=B.=C.=D.=【分析】设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,根据“甲车行驶30千米与乙车行驶40千米所用时间相同”,结合时间=路程÷时间,列出关于x的分式方程,即可得到答案.【解答】解:设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,甲车行驶30千米所用的时间为:,乙车行驶40千米所用时间为:,根据题意得:=,故选:C.【点评】本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.学校最近新配备了一批图书需要甲乙两人进行整理,若甲单独整理完成需要4小时完工;若甲乙共同整理2小时后,乙再单独整理2小时才能完工,则乙单独整理完成需要()A.4小时B.6小时C.8小时D.10小时【分析】设乙单独整理完成需要x小时,根据总工作量=甲完成部分+乙完成部分,即可得出关于x的分式方程,解之并检验后即可得出结论.【解答】解:设乙单独整理完成需要x小时,根据题意得:+=1,解得:x=8,经检验,x=8是原方程的解.故选:C.【点评】本题考查了分式方程的应用,根据总工作量=甲完成部分+乙完成部分,列出关于x的分式方程是解题的关键.二.填空题(共5小题)8.已知关于x的分式方程=2+无解,则k的值为4.【分析】分式方程去分母转化为整式方程,由分式方程无解得到x﹣4=0求出x 的值,代入整式方程求出k的值即可.【解答】解:分式方程去分母得:x=2x﹣8+k,即x=8﹣k,由分式方程无解得到x﹣4=0,即x=4,代入整式方程得:4=8﹣k,解得:k=4,故答案为:4.【点评】此题考查了分式方程的解,需注意在解分式方程时要考虑分母不为0.9.分式方程=4的解是x=﹣9.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8,解得:x=﹣9,经检验x=﹣9是分式方程的解,故答案为:﹣9【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.10.如果关于x的分式方程=1有增根,那么m的值为﹣4.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【解答】解:=1,去分母,方程两边同时乘以x﹣2,得:m+2x=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,m+4=2﹣2,m=﹣4.故答案为:﹣4.【点评】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.11.A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程﹣=.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键.12.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果提前2天完成全部任务.则采用技术后每天加工24套运动服.【分析】设原计划每天加工x套运动服,则采用了新技术每天加工(1+20%)x 套运动服,根据结果提前2天完成全部任务,列方程求解即可【解答】解:设原计划每天加工x套运动服,则采用了新技术每天加工(1+20%)x套运动服,由题意得,+,解得:x=20,经检验:x=20是原分式方程的解,所以采用技术后每天加工1.2×20=24套,答:则采用技术后每天加工24套运动服,故答案为:24.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系列出方程.三.解答题(共4小题)13.解下列分式方程:(1)+=3(2)﹣=0【分析】(1)根据解分式方程的方法可以解答此方程;(2)根据解分式方程的方法可以解答此方程.【解答】解:(1)+=3方程两边同乘以2(x﹣1),得3﹣2=3×2(x﹣1),去括号,得1=6x﹣6移项及合并同类项,得6x=7,系数化为1,得x=,经检验,x=是原分式方程的解;(2)﹣=0方程两边同乘以x(x﹣1),得3x﹣(x+2)=0去括号,得3x﹣x﹣2=0移项及合并同类项,得2x=2系数化为1,得x=1,检验:当x=1时,x(x﹣1)=0,故原分式方程无解.【点评】本题考查解分式方程,解答本题的关键是明确解分式方程的方法,注意分式方程要检验.14.一项旧城区改造工程,如果由甲工程队单独做,需要60天可以完成;如果由甲乙两队合作12天后,剩下的工程由乙工程队单独做,还需20天才能完成.求乙工程队单独完成这项工程需要多少天?【分析】设乙工程队单独完成这项工程需要x天,根据“甲、乙合作完成的工作量+乙单独完成的工作量=1”列分式方程求解可得.【解答】解:设乙工程队单独完成这项工程需要x天,根据题意,得:(+)×12+=1,解得:x=40,经检验:x=40是原分式方程的解且符合题意,答:乙工程队单独完成这项工程需要40天.【点评】本题主要考查分式方程的应用,列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.15.近几年我国高铁及城际铁路快速发展,2017年12月28日“青烟威荣”城际铁路正式开通.从烟台到北京的高铁里程比普快里程缩短了100千米,运行时间减少了8小时.已知烟台到北京的普快列车里程约1000千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约700千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至该市的高铁票,而且从该市火车站到会议地点最多需要 1.5小时,试问在高铁列车准点到达的情况下他能在开会之前赶到吗?【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意可得,高铁走(1000﹣100)千米比普快走1000千米时间减少了8小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.【解答】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x 千米/小时,由题意得,﹣=8,解得:x=80,经检验,x=80是原分式方程的解,且符合题意,则2.5x=200,答:高铁列车的平均时速为200千米/小时;(2)700÷200=3.5,则坐车共需要3.5+1.5=5(小时),8:40+5=13:40王老师能在14:00开会之前到达.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.16.(换元法)解方程:(x2﹣3x)2﹣2(x2﹣3x)﹣8=0解:设x2﹣3x=y则原方程可化为y2﹣2y﹣8=0解得:y1=﹣2,y2=4当y=﹣2时,x2﹣3x=﹣2,解得x1=2,x2=1当y=4时,x2﹣3x=4,解得x1=4,x2=﹣1∴原方程的根是x1=2,x2=1,x3=4,x4=﹣1,根据以上材料,请解方程:(1)(2x2﹣3x)2+5(2x2﹣3x)+4=0.(2)x2﹣3x+5+=0【分析】(1)设2x2﹣3x=y,则原方程可化为y2+5y+4=0,解得y的值,即可得到原方程的根;(2)设x2﹣3x=y,则原方程可化为y+5+=0,解得y的值,检验后即可得到原方程的根.【解答】解:(1)设2x2﹣3x=y,则原方程可化为y2+5y+4=0解得:y1=﹣1,y2=﹣4当y=﹣1时,2x2﹣3x=﹣1,解得x1=,x2=1当y=﹣4时,2x2﹣3x=﹣4,方程无解∴原方程的根是x1=,x2=1;(2)设x2﹣3x=y,则原方程可化为y+5+=0去分母,可得y2+5y+6=0解得y1=﹣2,y2=﹣3当y=﹣2时,x2﹣3x=﹣2,解得x1=2,x2=1当y=﹣3时,x2﹣3x=﹣4,方程无解经检验:x1=2,x2=1都是原方程的解∴原方程的根是x1=2,x2=1.【点评】本题主要考查了运用换元法解一元二次方程以及分式方程,解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.。

人教版八年级数学上册《15.3分式方程》同步测试题及答案

人教版八年级数学上册《15.3分式方程》同步测试题及答案

人教版八年级数学上册《15.3分式方程》同步测试题及答案一、解答题1.甲乙两人制作某种机械零件.已知甲每小时比乙多做3个,甲做96个所用时间与乙做84个所用时间相等,求甲乙两人每小时各做多少个零件?2.小明用12元买软面笔记本,小丽用21元买硬面笔记本.已知每本硬面笔记本比软面笔记本贵1.2元.(1)设软面笔记本每本x 元,则小丽买硬面笔记本 本;(2)小明和小丽能买到相同数量的笔记本吗?3.某天小明沿平路从家步行去图书馆借书,到达图书馆后,发现没有带借书证(停留时间忽略不计),立即骑共享单车沿原路返回家中取借书证.已知在平路上骑车的平均速度是步行平均速度的3倍,小明家到图书馆的平路距离为3600米,小明从离家到返回家中共用60分钟.(1)求小明在平路上骑车的平均速度(单位:米/分)是多少?(2)小明找到借书证后,遇到上班高峰,平路拥堵,为了节约时间,小明骑共享单车选择走另外一条不拥堵的坡路去图书馆,小明骑车先上坡再下坡,只用了18分钟就到达图书馆.已知骑共享单车在上坡的平均速度是平路上的平均速度的56,下坡的平均速度是平路上的平均速度的54,且下坡的路程是上坡路程的3倍,求这段坡路的总路程是多少米?4.某校开展数学节活动,预算用1800元到某书店购买数学经典书籍《几何原本》和《九章算术》奖励获奖同学,《九章算术》的单价是《几何原本》单价的1.5倍,用900元购买《几何原本》比用900元购买《九章算术》可多买10本.(1)求《几何原本》和《九章算术》的单价分别为多少元;(2)学校实际购买时,恰逢该书店进行促销活动,所有图书均按原价六折出售,若学校在不超过预算的前提下,购买了《几何原本》和《九章算术》两种图书共80本,则学校至少购买了多少本《几何原本》? 5.在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用3000元购进医用口罩若干个,第二次又用3000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少300个.求第一次购进的医用口罩每个口罩的进价是多少元? 6.以下是小明同学解分式方程213111x x x --=+-的过程: 解:(x −1)2−1=3……第一步()214x -=……第二步12x -=±……第三步13x = 21x =-……第四步经检验:13x=21x=-是原方程的解.(1)以上解题过程中,第一步变形的依据是()A.不等式的基本性质B.等式的基本性质C.分式的基本性质(2)从第____步开始出现错误,这一步错误的原因是____;(3)请求出该方程的正确解.7.西部建设中,某工程队承包了一段72千米的铁轨的铺设任务,计划若干天完成,在铺设完一半后,增添工作设备,改进了工作方法,这样每天比原计划可多铺3千米,结果提前了2天完成任务.问原计划每天铺多少千米,计划多少天完成?8.端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.市场上豆沙粽的进价比猪肉粽的进价每盒便宜10元,某商家用8000元购进的猪肉粽和用6000元购进的豆沙粽盒数相同.求猪肉粽和豆沙粽每盒的进价.9.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?10.随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A,B两种型号的无人机都被用来运送快件,A型机比B型机平均每小时多运送20件,A型机运送700件所用时间与B型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?11.某鞋店春节后进行促销活动,客户每购买一双某款运动鞋,可优惠50元,若同样用5500元购买此款运动鞋,促销活动后可购买的数量比促销活动前可购买的数量多10%,求这款运动鞋促销前的售价.12.八年级(1)班学生周末乘汽车到游览区游览,游览区距学校120km.一部分学生乘慢车先行,出发0.5h 后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.2倍,求慢车的速度13.九台区城子街中心学校进行秋季学生运动会,九(1)班的何佳与九(3)班的陈春阳分别参加了100米和400米跑的比赛,如果何佳在100米比赛中的速度是陈春阳在400米比赛中速度的1.2倍,且比陈春阳早1903秒到达终点,求陈春阳的速度是多少米/秒?14.化简代数式 22()224x x x x x x -÷-+- ,请在-2,0,1,2中选择一个你喜欢的x 的值代入化简后的代数式并求值.15.“节能减排,绿色出行”,越来越多的人喜欢骑自行车出行.某自行车车行经营的A 型自行车去年销售总额为60000元,今年该自行车每辆售价比去年降低100元.若该自行车今年的销售总额与去年相同,那么今年的销售总量需要比去年增加20%.请解答以下问题:(1)A 型自行车今年每辆售价为多少?(2)该车行今年计划新进一批A 型车和新款B 型车共80辆,且B 型进货数量不超过A 型车数量的3倍.A 型车和B 型车每辆的进价分别为400元和500元,B 型车每辆的售价为700元,该自行车行应如何组织进货才能使这批自行车获利最多?获利最多是多少?16.A 、B 两座城市相距40千米,甲骑自行车从A 城出发前往B 城,1小时后,乙才骑摩托车从A 城出发前往B 城,已知乙的速度是甲的2.5倍,且乙比甲早30分钟到B 城,求甲、乙两人的速度各是多少? 17.某旅游商店购进一批文创产品, 有钥匙扣和明信片, 已知钥匙扣的进价为 20 元/个, 明信片的进价为 5 元/套. 一个钥匙扣的售价比一套明信片的售价高 20 元. 若顾客花 180 元购买的钥匙扣数量与花 60 元购买的明信片数量相同.(1)求钥匙扣和明信片的售价.(2) 为了促销, 商店对钥匙扣进行九折销售. 某顾客同时购买钥匙扣和明信片两种商品若干件, 商家获毛利润 100 元, 请问有几种购买方案.18.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用30天时间完成整个工程.当一号施工队工作10天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前8天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?19.某市公交快速通道开通后,为响应市政府“绿色出行”的号召,家住新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的37.小王用自驾车方式上班平均每小时行驶多少千米? 20.对于两个不相等的非零实数m 、n ,分式()()x m x n x --的值为零,则x m =或x n =,又因为2()()()()x m x n x m n x mn mn x m n x x x---++==+-+,所以关于x 的方程mn x m n x +=+有两个解,分别为1x m =,2x n =应用上面的结论解答下列问题: (1)方程67x x+=有两个解,分别为1x =________,2x =________; (2)关于x 的方程42m n m mn n x mnx mn -+-+=的两个解分别为1x 和2x ,若1x 与2x 互为倒数且12x x <,则1x =________,2x =________;(3)关于x 的方程23231n n x n x -+=-的两个解分别为1x 和2x (12x x <),求1223x x -的值. 参考答案1.【答案】解:设乙每小时做x 个零件,则甲每小时做(x+3)个零件,由题意得:96843x x=+ 解得x=21经检验x=21是方程的解,x+3=24.答:甲乙两人每小时各做24和21个零件.【解析】【分析】设乙每小时做x 个零件,则甲每小时做(x+3)个零件,根据题意列出方程96843x x =+求解即可。

新人教版八年级数学上册15.3分式方程同步练习题(含答案)

新人教版八年级数学上册15.3分式方程同步练习题(含答案)

15.3 分式方程(时间:45分钟满分:100分)一、选择题(每题3分,共18分)1.下列方程不是分式方程的是( )2.(荆州中考)解分式方程时,去分母后可得到( ) A.x(2+x)-2(3+x)=1 B.x(2+x)-2=2+xC.x(2+x)-2(3+x)=(2+x)(3+x)D.x-2(3+x)=3+x 3.(毕节中考)分式方程3x =2x -1的解是( )A .x =-3B .x =-35C .x =3D .无解4.(德州中考)分式方程的解是( )A.x=1B.x=-1+5C.x=2D.无解5.(北海中考)北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时,设原来火车的平均速度为x 千米/时,则下列方程正确的是( ) A.210x +1.8=2101.5x B.210x -1.8=2101.5x C.210x +1.5=2101.8x D.210x -1.5=2101.8x6.(黑河中考)若关于x 的分式方程x x x m 2132=--+无解,则m 的值为( ) A.-1.5 B.1 C.-1.5或2D.-0.5或-1.5 二、填空题(每题4分,共16分)7.当x=___时,两分式44-x 与13-x 的值相等. 8.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产____台机器.9.今年6月1日起,国家实施了中央财政补贴条例支持高效节能电器的推广使用,某款定速空调在条例实施后,每购买一台客户可获财政补贴200元,若同样用1万元所购买的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为____元.10.(齐齐哈尔中考)若关于x 的分式方程22231--=-x a x x 有非负数解,则a 的取值范围是____. 三、解答题(共66分)11.(20分)解下列方程: (1)(舟山中考)x x +1-4x 2-1=1; (2)2x x -1+11-x =3; (3)5x -4x -3+13=6x +53x -9; (4)x x 2-4+2x +2=1x -2.12.(6分)已知关于x 的方程的根是x=1,求a 的值.13.(8分)(玉溪中考)某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?14.(10分)(贺州中考)马小虎的家距离学校1 800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.15.(10分)(六盘水中考)某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x 在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x 是多少?16.(12分)(济宁中考)济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x 天完成,乙做另一部分用了y 天完成,其中x 、y 均为正整数,且x <46,y <52,求甲、乙两队各做了多少天?参考答案1.B2.C3.C4.D5.D6.D7.-88.2009.2 200 10.a ≥-34且a ≠32 11.(1)x=-3. (2)x=2. (3)x=2. (4)x =3. 12.-21. 13.排球的单价为50元,则篮球的单价为80元. 14.马小虎的速度是80米/分. 15.(1)设参赛学生人数有x 人,由题意得,x <200且x +45≥200,解得155≤x <200.答:参赛学生人数在155≤x <200范围内.(2)根据题意得,900x ×12=900x +45×15.解得x =180.经检验,x =180是原方程的解.答:参赛学生人数是180人.16.(1)设乙工程队单独完成这项工作需要x 天,由题意得30120+36(1120+1x )=1,解得x =80.经检验,x =80是原方程的解.答:乙工程队单独做需要80天完成.(2)∵甲队做其中一部分用了x 天,乙队做另一部分用了y 天,∴x 120+y 80=1,即y =80-23x.又∵y <52,∴80-23x<52.解得x>42.又∵x <46,∴42<x <46.∵x 、y 均为正整数,∴x =45,y =50.答:甲队做了45天,乙队做了50天.。

八年级数学上册15.3分式方程(第2课时)同步练习含答案

八年级数学上册15.3分式方程(第2课时)同步练习含答案

作品编号:51897654258769315745896 学 校: 五朱角市鸟砟镇四灵小学*教 师: 猴挪黑*班 级: 占卜参班*15.3 分式方程(2)一、选择题1.分式方程的解是( )A . x =﹣3B .C . x =3D . 无解 2.分式方程0242=+-xx 的解是( ) . A.2-=x B. 0=x C.2=x D.无解3.下列说法中,错误的是 ( )A .分式方程的解等于0,就说明这个分式方程无解B .解分式方程的基本思路是把分式方程转化为整式方程C .检验是解分式方程必不可少的步骤D .能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解4.解分式方程22311x x x 时,去分母后变形为( )A .2+(x+2)=3(x-1)B .2-x+2=3(x-1)C .2-(x+2)=3(1- x )D . 2-(x+2)=3(x-1)5.关于x 的方程()a 1x 4x 3+=+的解是负数,则a 的取值范围是( ).A .aB .a <3C .a≥3D .a≤36.已知m=-1,则方程mx -1=m+x的解的情况是( ).A .有唯一的解B .有两个解C .无解D .任何有理数都是它的解7.若方程342(2)a x x x x =+--有增根,则增根可能为( ) A :0 B :2 C.0或2 D :1二、填空题9.方程012=++x x x 的解是_________________. 10.若代数式的值为零,则x= . 11.分式方程的解为 . 12.分式方程21311x x x+=--的解是 . 13.若关于x 的方程211=--ax a x 的解是x=2,则a= ; 14.若分式方程21321-+=+-x a x 有增根,则a 的值是 . 15.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围是 . 16.若关于x 的分式方程的解为正数,那么字母a 的取值范围是 .17.若关于x 的方程=+1无解,则a 的值是 .18.若关于x 的方程2x-2 +x+m 2-x=2有增根,则m 的值是 . 三、解答题19.解下列分式方程(1)313221x x +=-- (2)11222x x x -=---(3)271326x x x +=++; (4)xx x --=+-34231.20.设23111x A B x x ==+--,,当x 为何值时,A 与B 的值相等?21.当x 为何值时,分式x x --23的值比分式21-x 的值大3?22.已知关于的取值范围。

153分式方程(第2课时)同步练习含答案解析人教版数学八年级上初二数学试题试卷.doc

153分式方程(第2课时)同步练习含答案解析人教版数学八年级上初二数学试题试卷.doc

15.3分式方程(2)一、选择题1.分式方程£的解是( )X X — 1A x= - 3B _ 3C x=3D无解x-2x-42.分式方程 ----- =0的解是( ).2 + xA.x = -2B. x = QC.x = 2D.无解3.下列说法中,错误-的是( )A.分式方程的解等于0,就说明这个分式方程无解B.解分式方程的基木思路是把分式方程转化为整式方程C.检验是解分式方程必不可少的步骤D.能使分式方程的最简公分母等丁•零的未知数的值不是原分式方稈的解2 兀+24.解分式方程—— +——=3时,去分母后变形为(一)x- 1 1- xA. 2+ (x+2) =3 (x-1) _B. 2-x+2=3 (x-1)C. 2- (x+2) =3 (1-x)D. 2- (x+2) =3 (x-1)5.关于x的方程(a + l)x = 4x + 3的解是负数,则a的取值范围是( ).A・ a B・ a< 3 C. a> 3 D・ a< 36.己知m.= — 1 ,则方程mx— 1 =m+ x的解的情况是( )•A.有唯一的解一B.有两个解C.无解-D.任何有理数都是它的解7.若方程—有增根,则增根可能为( )x-2 x x(x - 2)A: 0 B: 2 C.0 或2 D: 1二、填空题兀2 + Y9.方程------- =0的解是 __________________ .兀+11().若代数式2-1的值为零,则X- 111.分式方程1 3的解为x 2x+l2x112・分式方程+ —3的解是x-1 1-XX — (I I13・若关于x 的方程丄上=丄的解是x=2,贝ij a=ax-l 214.若分式方程丄+ 3 = 出有增根,则a 的值是 _____________________ . x — 2 x~ 215・己知关于x 的方程土伫=3的解是正数,则m 的取值范围是 ________________ x-216. 若关于x 的分式方程空二亘二1的解为正擞,那么字母a 的取值范.围是 _____ X - 117. 若关于x 的方程」一+1无解,则a 的值是_______________________x-2 x-218. 若关于x 的方程吉+寮 =2有增根,则m 的值是 _______________ •三、解答题19. 解下列分式方程(1) -^— + — = 3(2) — = —— -2 2x-2 1一兀x-2 2-xX 32°-设“百‘冲+ 1,当泅何值时,的值相等?3-rI21.当x 为何值时,分式:L 上的值比分式的值大3? 2 — x x — 2 22己知关I 的方程土亠羔的解是正数,求涮取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15.3 第2课时 分式方程
一、选择题
1.分式方程
的解是( ) A . x =﹣3 B . C . x =3 D . 无解
2.分式方程
0242=+-x
x 的解是( ) . A.2-=x B. 0=x C.2=x D.无解 3.下列说法中,错误的是 ( )
A .分式方程的解等于0,就说明这个分式方程无解
B .解分式方程的基本思路是把分式方程转化为整式方程
C .检验是解分式方程必不可少的步骤
D .能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解
4.方程
的解是( ) A . x =2 B . x =1 C . x= D . x =﹣2
5.解分式方程
22311x x x
++=--时,去分母后变形为( ) A .2+(x+2)=3(x-1) B .2-x+2=3(x-1)
C .2-(x+2)=3(1- x )
D . 2-(x+2)=3(x-1) 6.关于x 的方程()a 1x 4x 3+=+的解是负数,则a 的取值范围是( ).
A .a
B .a <3
C .a ≥3
D .a ≤3
7.已知m=-1,则方程mx -1=m+x的解的情况是( ).
A .有唯一的解
B .有两个解
C .无解
D .任何有理数都是它的解
8.若方程342(2)a x x x x =+--有增根,则增根可能为( )
A :0
B :2 C.0或2 D :1
二、填空题
9.方程01
2=++x x x 的解是_________________. 10.若代数式
的值为零,则x= . 11.分式方程的解为 .
12.分式方程21311x x x +=--的解是 . 13.若关于x 的方程211=--ax a x 的解是x=2,则a= ; 14.若分式方程2
1321-+=+-x a x 有增根,则a 的值是 . 15.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围是 . 16.若关于x 的分式方程
的解为正数,那么字母a 的取值范围是 .
17.若关于x 的方程=+1无解,则a 的值是 .
18若关于x 的方程2x-2 +x+m 2-x
=2有增根,则m 的值是 . 三、解答题
19.解下列分式方程
(1)
313221x x +=-- (2)11222x x x -=--- (3)271326x x x +=++; (4)x
x x --=+-34231. 20.(7分)设23111
x A B x x ==+--,,当x 为何值时,A 与B 的值相等? 21.当x 为何值时,分式x x --23的值比分式2
1-x 的值大3? 22.已知关于的取值范围。

的解是正数,求的方程m x m x x x 3
23-=-- 23.已知关于x 的方程4333k x x x
-+=--有增根,试求k 的值.
第2课时 分式方程
一、选择题
1.C 2.C 3.A 4.A 5.D 6. B 7. A 8.A 二、填空题
9.0=x 10.3=x 11.1=x 12.2=x 13.43=a 14.0=a 15.6->m 16.1>a 17.21==a a 或 18.0=m 三、解答题
19(1)67=
x (2)2=x (3)61=x (4)1=x 20.根据题意得11312+-=-x x x ,解得2=x ,当x =2时,A 与B 的值相等.
21.根据题意得32
123=----x x x ,解得1=x ,当1=x 时分式x x --23的值比分式21-x 的值大3. 22.解方程3
23-=--x m x x 得m x --=6Θ它的解是正数06>--∴m 解得1=k。

相关文档
最新文档