自动驾驶传感器布置如何布置

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言:无人驾驶汽车的研究越来越多,各环境感知传感器的分布位置也不同,到底这些传感器要遵循一个什么样的布置原则?

智能驾驶汽车环境感知传感器主要有超声波雷达、毫米波雷达、激光雷

达、单/双/三目摄像头、环视摄像头以及夜视设备。目前,处于开发中的典型智能驾驶车传感器配置如表 1所示。

表 1 智能驾驶汽车传感器配置

•环视摄像头:主要应用于短距离场景,可识别障碍物,但对光照、天气等外在条件很敏感,技术成熟,价格低廉;

•摄像头:常用有单、双、三目,主要应用于中远距离场景,能识别清晰的车道线、交通标识、障碍物、行人,但对光照、天气等条件很敏感,而且需要复杂的算法支持,对处理器的要求也比较高;

•超声波雷达:主要应用于短距离场景下,如辅助泊车,结构简单、体积小、成本低;

•毫米波雷达:主要有用于中短测距的 24 GHz 雷达和长测距的 77 GHz 雷达

2 种。毫米波雷达可有效提取景深及速度信息,识别障碍物,有一定的穿透

雾、烟和灰尘的能力,但在环境障碍物复杂的情况下,由于毫米波依靠声波定位,声波出现漫反射,导致漏检率和误差率比较高;

•激光雷达:分单线和多线激光雷达,多线激光雷达可以获得极高的速度、距离和角度分辨率,形成精确的 3D 地图,抗干扰能力强,是智能驾驶汽车发展的最佳技术路线,但是成本较高,也容易受到恶劣天气和烟雾环境的影响。

•不同传感器的感知范围均有各自的优点和局限性(见图 1),现在发展的趋势是通过传感器信息融合技术,弥补单个传感器的缺陷,提高整个智能驾驶系统的安全性和可靠性。

图 1 环境感知传感器感知范围示意图

全新奥迪A8配备自动驾驶系统的传感器包括

-12个超声波传感器,位于前后及侧方

-4个广角360度摄像头,位于前后和两侧后视镜

-1个前向摄像头,位于内后视镜后方

-4个中距离雷达,位于车辆的四角

-1个长距离雷达,位于前方

-1个红外夜视摄像头,位于前方

-1个激光扫描仪Laser Scanner,位于前方

传感器的布置原则

无人车传感器的布置,需要考虑到覆盖范围和冗余性。

覆盖范围:车体360度均需覆盖,根据重要性,前方的探测距离要长

(100m),后方的探测距离稍短(80m),左右侧的探测距离最短

(20m)。为了保证安全性,每块区域需要两个或两个以上的传感器覆盖,以便相互校验,如下图所示[1]:

图2:一种典型的传感器全覆盖、多冗余配置示意图

Host Vehicle是无人车实体,ESR,RSDS是毫米波,UTM、LUX、HDL是激光,Camera是工业相机。从图中也可以看出,各个方向上均有多个传感器配置。为了简洁,图中的Camera只画出了前方的,实际上前后左右Camera 配置了很多个,使得系统的冗余度更高。

具体安装在车上,是这样样子的:

图3:传感器在无人车上的实际安装,大部分传感器都是隐藏式安装(车前保、后保内),唯

一的特例,三维激光安装在车顶上。

前后探测距离的差异,主要是考虑一些特殊场景下的安全问题。

例如,车辆刚驶出高速公路服务区,准备自动变道:初始车速

V1=60km/h;变道过程约需要 t = 3 s;变道完成时与后方车辆的车间时距τ ≥ 2 s (注 1)左后方来车车速 V2 = 120 km/h;为保证变道安全,本车与左后方车辆的初始安全距离至少为

(V2-V1)×(t+τ)=(120km/h-60km/h)×(3s+2s) ≈ 83m

注1:目前自动变道无相关的法规要求,故参考GB /T20608-2006《智能运输系统自适应巡航控制系统性能要求与检测方法》中,第5.2.2 条对自适应巡航的车间时距做出规定:τ_min 为可供选择的最小的稳态车间时距,可适用于各种车速v 下的ACC 控制。τ_min ( v) 应大于或等于1 s,并且至少应提供一个在1.5 ~ 2.2 s 区间内的车间时距τ。在自动变道场景的计算中,为保证安全,选取τ = 2 s 进行计算。

一般后向 24 GHz 毫米波雷达的探测距离为 60 m 左右,如果车后安装一台24GZ毫米波雷达,60~83 m 是危险距离。若前后车距在此范围内,开始变道时,系统误判为符合变道条件。随着左后方车辆高速接近,自动变道过程中安全距离不足,本车中途终止变道,返回本车道继续行驶。这种情况会干扰其他车辆的正常驾驶,存在安全隐患,也会给本车的乘员带来不安全感(见图 4)。

图 4:自动变道场景

要解决这个极端场景下智能驾驶汽车自动变道的安全问题,可以考虑增加一个 77 GHz 后向毫米波雷达,它的探测距离可以达到 150 m 以上,完全能满足这个场景中 83 m 的探测距离要求。当然,可以采用探测距离达到100 m 以上的 8 线激光雷达或摄像头( 如 Tesla 车型) 解决 24 GHz 毫米波雷达探测距离不足的问题,还可以通过控制算法设定车辆必须加速到一定车速才允许自动变道。

而前车安全距离要保证至少100米左右,也保证了车辆有足够的制动时间。

冗余度:谁都不希望把自己的生命交付给一个/种传感器,万一它突然失效了呢?所谓的冗余度,也可以划分为硬件冗余,或软件冗余。

如图1中,前方的障碍物有4类传感器覆盖,这样最大程度上保证前方障碍物检测不会漏检或者虚警。这属于硬件冗余。

再比如车道线检测。现阶段大量的对车道线的检测均是基于视觉(此处不讨论基于激光的传感器),对它的冗余则遵循3选2,或少数服从多数的选择。通过多支算法来保证识别的正确性。

算法设计上用到Sensor Fusion,下图是CMU的多传感器融合的障碍物检测/跟踪框架:

图5:CMU的障碍物检测、跟踪框架。主要分为两层,Sensor Layer负责收集各个传感器测量,并将其抽象为公共的障碍物特征表示;Fusion Layer接收障碍物特征表示,输出最终的

障碍物结果(位置、速度、类别等)。

除了要保证覆盖和冗余度,当然在实际安装中,还要符合每个传感器和车辆的安装条件。比如把激光雷达放置在高处,增大了扫描的面积。

智能驾驶车辆的传感器中,以需要考虑因素较多的毫米波雷达布置为例进行介绍。

毫米波雷达的位置

毫米波雷达的位置

(1)正向毫米波雷达

相关文档
最新文档