空间谱估计测向及其应用

合集下载

空间谱测向技术及其经典算法

空间谱测向技术及其经典算法

空间谱测向技术可应用于不同类型的多元阵列,例 如均匀线阵、方阵、圆阵等。本文为了更好地描述空间 谱算法,以较为简单的均匀线阵为例,来介绍空间谱测 向的原理和算法,示意图如图 2 所示。假设 N 个远场窄 带信号入射空间某直线阵列上,其中该阵列天线由 M 个 阵元组成,各阵元接收到信号后经各自的传输通道送至 处理器。
信号源
通道1 通道2
...
目标空间
通道M 观察空间
处 理 器
估计空间
图 1 空间谱测向技术的系统架构 [1] 目标空间即为真实来波方向(可能存在多个来波方 向)所构成的空间,该空间在自然界真实存在,但由于电 磁波既看不见,又摸不着,人类无法通过肉眼来观测入射 的电磁波,所以需要借助相应的工具来观测,该工具就是 天线和接收机。一个天线阵元和接收机构成一个信号通道, 多个通道构成一个观察空间。经观察空间得到的来波信号 是一系列的二进制 IQ 数据。根据原始的二进制数据仍无 法判断出来波方向,需要对其进行“解密”来估计来波方 向。估计空间即是使用一定的数学算法对 IQ 数据进行相 应的处理,估计出来波方向。而谱估计算法是将信号空间 进行拟合,构造出一个计算机可以识别的估计空间,然后 得出测向结果。
(7)
其中 Rs 为信号协方差矩阵,RN 为噪声协方差矩阵, σ2 为噪声功率。
对数据协方差矩阵 R 进行特征分解: (8)
其中 U 由两部分组成,一个是信号子空间 Us ,一个 是噪声子空间 UN。
(9) 信号子空间和噪声子空间的表达式见式(10)、式 (11):
(10) (11)
Σ 为数据协方差矩阵的特征对角矩阵,对角线上的 各 λ 值近似等于来波方向的信号功率或者噪声功率。
(12)
3 MUSIC 算法

基于空间谱估计技术测向系统的开场测试

基于空间谱估计技术测向系统的开场测试

基于空间谱估计技术测向系统的开场测试
邓天篧;文美兰
【期刊名称】《计量与测试技术》
【年(卷),期】2024(51)5
【摘要】本文利用相关干涉仪体制无线电监测测向系统的测试验证技术基础,通过分析基于空间谱估计技术的无线电测向系统的开场测试参数及方法,设计了针对空间谱测向系统特性的开场测试场地,完善了监测设施测试验证的技术手段。

【总页数】4页(P64-67)
【作者】邓天篧;文美兰
【作者单位】江苏省电子信息产品质量监督检验研究院;常州检验检测标准认证研究院
【正文语种】中文
【中图分类】TN9
【相关文献】
1.基于空间谱估计测向技术的无线广播电视监测系统设计
2.基于空间谱估计算法的短波测向系统
3.基于空间谱估计的短波测向系统设计
4.无线电测向系统开场测试测向精度的测试数据异常值判别方法
5.空间谱估计技术在无人机测向系统中的应用
因版权原因,仅展示原文概要,查看原文内容请购买。

基于空间谱估计的测向技术

基于空间谱估计的测向技术
中 图分 类号 : N8 0 T 2 文献标识码 : A
Re e r h o i e t o nd n a e n S ta p c r m tm a i n s a c n D r c i n Fi i g b s d o pa i lS e t u Es i t o
Ab t a t Th e h o o y o ie t n f d n y s a ils e t u e tma i n i v r fe t e t o l s r c : e t c n l g f d r c i i i g b p t p c r m s i to s e y e f c i o g a o n a v sg a s Is o t t n i g p r o m a c ie to i d n sv l e i h y b h h o y a d t ee g n e i g, i n l . t u s a d n e f r n ei d r c i n f i g i a u d h g l y t e t e r n h n i e rn n n t e e o e ma y u i u l o ih s h v p e r d,i i a a y e o t e t e M u tp e S g a a s f a i n h r f r n n q e a g rt m a e a p a e t s n ls d t h h li l i n lCl s i c t i o a g rt m a d l o ih n M a i m Li e i o d l o ih x mu k l o al rt m a d h g n Es i to o S g a P r me e s i Ro a i n l tma i n f i n l a a t r v a t to a

3无线电测向与空间谱估计测向体制-讲议稿03

3无线电测向与空间谱估计测向体制-讲议稿03

第3篇无线电测向与空间谱估计测向体制第五十八研究所朱锦生赵衡内容简介:本文简述无线电测向原理,几种典型的无线电模拟电子技术的无线电测向设备,以及空间谱估计测向的含义和它目前达到的水平。

1 无线电测向的基本原理1.1 无线电测向的目的是测定辐射源(或发射机)的位置无线电测向是靠测定电波传播的方向来实现的。

电波传播方向的轨迹是沿地球的大圆弧前进的,即地面上两点(如辐射源和观测点的两点)间的最短直线距离。

因此测定电波的来向,也即测定了辐射源的方向。

1.2 无线电测向的定位三角交会定位由地面两个以上的观测点对同一辐射源测定电波的来向,这些来波行进轨迹的交会点,即为辐射源或发射机的位置,如图1。

(1)单站定位(一般对短波测向而言)由观测点测定来波的方位角、仰角,通过精确电离层模型计算出电离层反射点的等效高度。

由仰角和电离层等效高度计算出观测点距辐射源的距离,由此距离与方位角一起就可确定辐射源的位置,见图2。

图1 多站测向交会定位示意图图2 短波单站定位示意图1.3 实际电波传播不可能是完全理想的影响电波传播行进轨迹的因素,最大有两个:(1) 电波传播短波远距传播均通过电离层反射来实现,但电离层并不是一面实际的镜子,它有一定的厚度,实际是漫反射,是由逐渐的折射达到反射,见图3。

因此电离层的电子密度对电波传播影响很大。

电离层电子密度的不均匀,相当反射镜面的倾斜,使得电波传播行进的轨迹偏离地球大圆弧(即直线)的轨迹。

除此还有电离层各个不同层的分别反射,即使同一层,也有不同的反射次数,即跳数,结果形成多径传播,见图4。

由于各个途径的电波传播是随时间变化的,结果合成的来波不仅方向上有误差,同时来波的方向还明显呈游动。

(1) 地形地物的影响地形地物如各种建筑物、铁塔、山脉、树林等障碍物,它们也接收电波的照射,同时还产生再次辐射。

这样到达观测点的电波,不仅有直接来自辐射源的电波,而且还有障碍物的再次辐射电波,它们合成的来波方向,偏离辐射源,并根据影响程度,向障碍物偏转一定的角度,这就产生误差。

不同无线电测向的原理

不同无线电测向的原理

不同无线电测向的原理通过测试无线电波到达某处时的一些参数,能够获得无线电波的来向。

对于一个固定测向站来说,在V/UHF频段,通常只测试电波在水平面上的来向,在HF的频段,通常还要测量它的仰角。

由于无线电波具有特定的传播规律,根据两个以上站点测得的电波来向,或者一个站点测得的来向、仰角、跳次数据和电离层反射区高度等数据可以得知无线电发射台的位置。

通过测试无线电波到达某处时的一些参数,能够获得无线电波的来向。

对于一个固定测向站来说,在V/UHF 频段,通常只测试电波在水平面上的来向,在HF的频段,通常还要测量它的仰角。

由于无线电波具有特定的传播规律,根据两个以上站点测得的电波来向,或者一个站点测得的来向、仰角、跳次数据和电离层反射区高度等数据可以得知无线电发射台的位置。

根据不同无线电测向的原理,通常有幅度测向法、相位测向法、空间谱估计测向法和时差测向法。

1、幅度测向法幅度测向法是历史最悠久的测向方法。

常见的幅度测向法采用一付有方向性的天线,通过旋转天线,找到信号最强的方向(大音点测向法)或者信号最弱的方向(小音点测向法),就可以确定来波方向。

业余无线电测向(猎狐)均基于幅度测向法。

采用旋转天线的方法测向,设备十分简单。

对于无线电爱好者而言,可以用具有方向性的八木-宇田天线,接上具有测量信号强度功能的接收机(例如对讲机和可变衰减器的组合)构成测向系统。

这种测向系统适合于一个人携带使用,在接近发射源的时候最为有效。

由于这种测向系统需要人工或者电动旋转天线,它的响应时间很长,如果需要捕捉短促信号持续时间很短,或者信号强度本来就在不停变化,则难以取得有效结果。

为了克服旋转天线响应时间长的缺点,发展了沃特森-瓦特测向机。

它用两付相互正交的艾德考克天线接收无线电信号,两付天线的信号分别送入两台接收机,并将接收机的电压输出(与信号幅度线性相关)分别送入示波器的X、Y偏转器,即可在显示屏上显示一条代表来波方向的亮线。

空间谱估计测向技术简介

空间谱估计测向技术简介

空间谱估计测向技术简介作者:刘庭杰胡瑞卿李建东来源:《硅谷》2011年第05期摘要:空间谱估计测向是建立在严格的信号模型和复杂的谱估计理论上的一种测向体制,具有高精度、高分辨率和抗多径干扰等优异性能,在无线电监测、测向中有着广阔的应用前景。

从空间谱估计测向的系统组成、原理、常用算法及在实际应用中遇到的技术难题等方面,介绍空间谱估计测向技术,以期读者对这一技术有更全面的了解。

关键词:空间谱估计测向;算法;无源测向;子空间分解中图分类号:TN 文献标识码:A 文章编号:1671-7597(2011)0310017-020 引言电磁信号的方向数据是对战场密集信号进行分选并引导干扰或指挥武器进行攻击的主要参数,而无源测向技术因其安全快速的优势受到广泛关注,得到了飞速发展。

目前常用的比幅法测向、相位干涉仪测向技术和线性相位多模圆阵测向技术都存在共同的不足,即不能对同时多信号进行测向和分辨,因此在高密度信号环境下,应用受到一定的限制。

空间谱估计测向技术迅速走进视野,成为现代无线电测向技术和无源测向领域的研究热点。

空间谱估计测向技术是一种不同于传统的振幅测向法和相位测向法的全新测向方法,它是近三十年在经典谱估计理论基础上发展起来的,是一种以多元天线阵结合现代数字信号处理技术为基础的新型测向技术。

对空间信号方位的判定和对信号的频谱分析相似,频域谱估计是对信号在频域上的能量分布的估计,而测向则可以看成是对空间各方向上信号能量分布的估计,这样,空间角度与频域点的对应就产生了空间谱的概念。

得到信号的“空间谱”,就能得到信号的到达方向(DOAdirections of arrival)。

因为采用了先进的数字信号处理方法,空间谱估计测向技术具有传统测向体制无可比拟的技术优势,可实现同时对多目标测向(包括相干信号与非相干信号),对天线阵元及阵的排列没有特别的约束条件,并且在低信噪比条件下的测向精度很高,理论上完全可以用于复杂电磁环境下辐射源测向。

1000KV特高压变电站周围电磁环境影响分析

1000KV特高压变电站周围电磁环境影响分析

1000KV特高压变电站周围电磁环境影响分析摘要:随着城市化建设的推进,城市用地面积趋于紧张化,同时在电力工程的建设中,也存在多样的问题。

1000KV的变电站电磁场本身的磁效应会给周边环境产生一定的影响,包括对人的健康和生活带来危害。

本文就1000KV变电站电磁场对周边环境产生的影响进行研究和分析。

关键词:1000kV变电站;电磁场;周边环境前言:城市经济的发展与繁荣,使各种电力设施和电信系统、电视、广播和微波传动以及雷达设备等迅速的增加,给城市发展带来了“电磁污染”,使人们的工作和生活受到了不同程度的影响。

本文就1000KV变电站电磁场对周边环境的影响进行分析。

极低频电磁场对人体的影响会诱发人体的电流,极低频电磁场暴露主要根据相应的机制来确定的,它的作用在于能够防止感应电场和感应电流以及神经组织出现电兴奋刺激。

尤其是防止极低频电磁场与中枢神经系统之间的作用,防止其给健康带来的损害。

当前关于工频磁场对健康是否存在影响的问题,还没有明确的定论。

一、1000KV变电站周边电磁辐射环境影响检测仪器是意大利进口的综合场强一,探头是意大利PMM公司的,监测方法主要根据《工频电场测量》的规定来实施。

对深圳市某1000kv的电站周边电流辐射的环境影响进行监测,监测结果表明,住户反映心理压力普遍比较大,有长期失眠、头疼、容易疲劳的现象。

还有一些住户反映具有神经衰弱以及小孩半夜不睡啼哭的情况。

许多住户都受到了电器的干扰,甚至一些住户出现了电脑损坏以及电视不能收看的现象。

办公楼的相关工作人员也反映了自身存在不舒服和容易疲劳的感受,电脑受到干扰不能够正常使用。

监测结果表明,电场并非居民受到影响的原因,而是磁场带来的影响,磁场的环境超过了国家规定的标准限值,因此工频磁场是1000KV变压器和配电房影响居民的主要因素。

上述检测的结果比我国环境保护行业的标准规范要低,辐射环境的评价标准的加速规范与我国的不同,将公众暴露在限值内的电场强度限值和磁感应强度限定值中。

空间谱估计测向技术简介

空间谱估计测向技术简介

空间谱估计测向技术简介随着无线通信技术的不断发展,无线通信系统的容量和覆盖范围不断扩大,给无线通信系统的设计和优化带来了新的挑战。

其中,测向技术是无线通信系统中非常重要的一环,可以用于定位、跟踪移动目标、反向链路信道估计等多种应用场景。

本文将介绍一种常用的测向技术——空间谱估计测向技术。

一、空间谱估计测向技术的基本概念空间谱估计测向技术是一种利用接收阵列来获取信号角度信息的方法。

在接收阵列中,各个天线之间的距离和相对位置可以确定,通过接收到的信号在各个天线上的相位差,可以计算出信号来自的方向,从而实现信号的测向。

二、空间谱估计测向技术的原理空间谱估计测向技术的原理是基于信号的空间谱分析。

空间谱是指信号在接收阵列中的传播路径和信号源的位置之间的关系,可以用来描述信号在接收阵列上的分布情况。

空间谱分析可以通过接收阵列上不同天线接收到的信号相位差来实现。

在接收阵列上,每个天线接收到的信号可以表示为:s(t) = A(t)exp(jφ(t))其中,A(t)和φ(t)分别表示信号的振幅和相位,t表示时间。

对于接收阵列上的第i个天线,其接收到的信号可以表示为:si(t) = A(t)exp(j(φ(t)+θi))其中,θi表示第i个天线的相位差,θi =2πdi/λsin(θ),其中,d表示天线之间的距离,λ表示信号波长,θ表示信号来自的方向。

在接收阵列上,可以通过对不同天线接收到的信号进行空间谱分析,得到信号在不同方向上的功率谱密度,即空间谱。

空间谱估计测向技术通过对空间谱进行分析,可以得到信号来自的方向。

三、空间谱估计测向技术的算法空间谱估计测向技术主要有两种算法:波达法和最小二乘法。

波达法是一种基于空间谱分析的方法,可以直接求出信号来自的方向。

最小二乘法是一种基于信号采样的方法,通过对采样信号进行线性回归,可以得到信号来自的方向。

四、空间谱估计测向技术的应用空间谱估计测向技术可以应用于很多领域,如雷达、通信、声纳等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档