2020-2021上海同济初级中学八年级数学上期中试卷附答案
2020-2021上海同济大学附属七一中学初二数学上期中第一次模拟试题及答案

2020-2021上海同济大学附属七一中学初二数学上期中第一次模拟试题及答案一、选择题1.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点 2.若分式11x x -+的值为零,则x 的值是( ) A .1 B .1- C .1± D .23.如图,在ABC ∆中,90A ∠=,30C ∠=,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC 的长为( )A .2B .4C .6D .8 4.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是( ) A .7B .8C .6D .5 5.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°6.为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x 米,则所列方程正确的是( )A .40004000210x x -=+ B .40004000210x x -=+ C .40004000210x x -=-D .40004000210x x -=- 7.如图,已知a ∥b ,∠1=50°,∠3=10°,则∠2等于( )A .30°B .40°C .50°D .60°8.若23m =,25n =,则322m n -等于 ( )A .2725B .910C .2D .25279.已知A =﹣4x 2,B 是多项式,在计算B+A 时,小马虎同学把B+A 看成了B•A ,结果得32x 5﹣16x 4,则B+A 为( )A .﹣8x 3+4x 2B .﹣8x 3+8x 2C .﹣8x 3D .8x 3 10.下列各式中,从左到右的变形是因式分解的是( ) A .()()2224a a a +-=-B .()ab ac d a b c d ++=++C .()2293x x -=-D .22()a b ab ab a b -=- 11.若分式25x x -+的值为0,则x 的值是( ) A .2 B .0 C .-2 D .-512.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么所列方程正确的是( )A .480x +480+20x =4 B .480x -480+4x =20 C .480x -480+20x =4 D .4804x --480x=20 二、填空题 13.已知射线OM.以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则∠AOB=________(度)14.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.15.已知m ﹣n=2,mn=﹣1,则(1+2m )(1﹣2n )的值为__.16.如图,在ABC ∆中,B 与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.17.若x-y≠0,x-2y=0,则分式1011x y x y --的值________. 18.已知:a+b=32,ab=1,化简(a ﹣2)(b ﹣2)的结果是 . 19.已知8a b +=,224a b =,则222a b ab +-=_____________. 20.已知x m =6,x n =3,则x 2m ﹣n 的值为_____.三、解答题21.如图,在Rt △ABC 中,∠ACB =90°,D 是AB 上一点,BD =BC ,过点D 作AB 的垂线交AC 于点E ,连接CD ,交BE 于点F.求证:BE 垂直平分CD .22.一个多边形的外角和等于内角和的27,求这个多边形的边数. 23.某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元.(1)该商家购进的第一批衬衫是多少件;(2)若两批衬衫都按每件150元的价格销售,则两批衬衫全部售完后的利润是多少元.24.解方程:(1)2102x x -=- (2)2133193x x x +=-- 25.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=,90B DCE ∴∠+∠=,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.2.A解析:A【解析】 试题解析:∵分式11x x -+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A . 3.C解析:C【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度【详解】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.【点睛】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.4.B解析:B【解析】【分析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.解析:D【解析】【分析】【详解】如图所示,过E 作EG ∥AB .∵AB ∥CD ,∴EG ∥CD ,∴∠ABE +∠BEG =180°,∠CDE +∠DEG =180°,∴∠ABE +∠BED +∠CDE =360°.又∵DE ⊥BE ,BF ,DF 分别为∠ABE ,∠CDE 的角平分线,∴∠FBE +∠FDE =12(∠ABE +∠CDE )=12(360°﹣90°)=135°, ∴∠BFD =360°﹣∠FBE ﹣∠FDE ﹣∠BED =360°﹣135°﹣90°=135°. 故选D .【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.6.A解析:A【解析】【分析】原计划每天绿化x 米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程.【详解】原计划每天绿化x 米,则实际每天绿化(x+10)米,由题意得,40004000210x x -=+, 故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.7.B解析:B【解析】【分析】由平行线的性质,得到∠4=∠1=50°,由三角形的外角性质,即可求出∠2的度数.【详解】∵a∥b,∴∠4=∠1=50°,∵∠4=∠2+∠3,∠3=10°,∴∠2=50°-10°=40°;故选:B.【点睛】本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.8.A解析:A【解析】分析:先把23m﹣2n化为(2m)3÷(2n)2,再求解.详解:∵2m=3,2n=5,∴23m﹣2n=(2m)3÷(2n)2=27÷25=27 25.故选A.点睛:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m﹣2n化为(2m)3÷(2n)2.9.C解析:C【解析】【分析】根据整式的运算法则即可求出答案.【详解】由题意可知:-4x2•B=32x5-16x4,∴B=-8x3+4x2∴A+B=-8x3+4x2+(-4x2)=-8x3故选C.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.D解析:D【解析】根据因式分解的意义对四个选项进行逐一分析即可.【详解】解:A、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;B、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;C、等式右边应该是(x+3)(x-3),故不符合题意,故本选项错误.D、等式右边是几个因式积的形式,故是分解因式,故本选项正确;故选D.【点睛】本题考查了因式分解的意义,解题的关键是掌握把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.11.A解析:A【解析】分析: 根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x的值.详解: 根据题意得:x-2=0,且x+5≠0,解得 x=2.故答案为A.点睛: 本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.12.C解析:C【解析】【分析】根据题意列出方程即可.【详解】由题意得480 x -480+20x=4故答案为:C.【点睛】本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.二、填空题13.60【解析】【分析】首先连接AB由题意易证得△AOB是等边三角形根据等边三角形的性质可求得∠AOB的度数【详解】连接AB根据题意得:OB=OA=AB∴△AOB是等边三角形∴∠AOB=60°故答案为:解析:60【解析】【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为:60.【点睛】本题考查了等边三角形的判定与性质.此题难度不大,解题的关键是能根据题意得到OB=OA=AB.14.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=2解析:2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=215.9【解析】∵m−n=2mn=−1∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9故答案为9点睛:本题考查了多项式乘多项式法则合并同类项时要注意项中的指数及解析:9【解析】∵m−n=2,mn=−1,∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9.故答案为9.点睛:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.16.80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB的度数再根据角平分线的定义求出∠ABC+∠ACB最后利用三角形内角和定理解答即可【详解】解:在△PBC中∠BPC=130°∴∠PBC+解析:80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB的度数,再根据角平分线的定义,求出∠ABC+∠ACB,最后利用三角形内角和定理解答即可.【详解】解:在△PBC中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB、PC分别是∠ABC和∠ACB的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB)=2×50°=100°,在△ABC中,∠A=180°-(∠ABC+∠ACB)=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.17.9【解析】【分析】【详解】解:∵x-2y=0x-y≠0∴x=2yx≠y∴==9故答案为:9解析:9【解析】【分析】【详解】解:∵x-2y=0,x-y≠0,∴x=2y,x≠y,∴1011x yx y--=201192y y yy y y-=-=9,故答案为:918.2【解析】【分析】根据多项式相乘的法则展开然后代入数据计算即可【详解】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4当a+b=ab=1时原式=1﹣2×+4=2故答案为2考点:整式的混合运算—化简求解析:2【解析】【分析】根据多项式相乘的法则展开,然后代入数据计算即可.【详解】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4,当a+b=32,ab=1时,原式=1﹣2×32+4=2.故答案为2.考点:整式的混合运算—化简求值.19.28或36【解析】【分析】【详解】解:∵∴ab=±2①当a+b=8ab=2时==﹣2×2=28;②当a+b=8ab=﹣2时==﹣2×(﹣2)=36;故答案为28或36【点睛】本题考查完全平方公式;分解析:28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2. ①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a+b=8,ab=﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.20.12【解析】【分析】逆用同底数幂的除法法则和幂的乘方的运算法则进行解答即可【详解】∵∴故答案为12【点睛】熟记同底数幂的除法法则:幂的乘方的运算法则:并能逆用这两个法则是解答本题的关键解析:12【解析】【分析】逆用“同底数幂的除法法则和幂的乘方的运算法则”进行解答即可.【详解】∵63m n x x ==,,∴222()6312m n m n x x x -=÷=÷=.故答案为12.【点睛】熟记“同底数幂的除法法则:m n m n a a a -÷=,幂的乘方的运算法则:()m n mn a a =,并能逆用这两个法则”是解答本题的关键. 三、解答题21.证明见解析.【解析】试题分析:首先根据互余的等量代换,得出∠EBC=∠EBD,然后根据线段垂直平分线的性质即可证明.试题解析:∵BD=BC,∴∠BCD=∠BDC.∵ED⊥AB,∴∠EDB=90°,∴∠EDB -∠BDC=∠ACB -∠BCD,即∠ECD=∠EDC,即DE=CE ,∴点E 在CD 的垂直平分线上.又∵BD=BC,∴点B 在CD 的垂直平分线上,∴BE 垂直平分CD .点睛:本题考查了全等三角形的判定与性质,等腰三角形“三线合一”的性质,得出∠EBC=∠EBD,是解题的关键.22.9【解析】【分析】设边数为n,根据外角与内角和关系列出方程求解即可.【详解】解:设这个多边形的边数为n,则27(n-2)·180= 360解之得 n=9答:这个多边形的边数是9.23.(1) 120件;(2) 15600元.【解析】【分析】(1)设第一批衬衫x件,则第二批衬衫为2x件,接下来依据第二批衬衫每件进价贵了10元列方程求解即可;(2)先求得每一批衬衫的数量和进价,然后再求得两批衬衫的每一件衬衫的利润,最后根据利润=每件的利润×件数求解即可.【详解】解:(1)设第一批衬衫x件,则第二批衬衫为2x件.根据题意得:1200026400102x x=-.解得;x=120.答;该商家购进的第一批衬衫是120件.(2)12000÷120=100,100+10=110.两批衬衫全部售完后的利润=120×(150﹣100)+240×(150﹣110)=15600元.答:两批衬衫全部售完后的利润是15600元.24.(1)x=﹣2;(2)无解【解析】【分析】(1)方程两边乘最简公分母x(x−2),可以把分式方程转化为整式方程求解;(2)方程两边乘最简公分母3(3x−1),可以把分式方程转化为整式方程求解.【详解】(1)212x x-= -解:去分母得:2x﹣x+2=0,解得:x=﹣2,经检验,x=﹣2是原方程的解.(2)21 33193xx x+=--最简公分母为3(3x﹣1),去分母得:6x﹣2+3x=1,即9x=3,解得:x=13,经检验:x=13是增根,原方程无解.【点睛】此题考查了分式方程的解法和因式分解.此题比较简单,注意掌握转化思想的应用,注意解分式方程一定要验根.25.(1)28和2012是神秘数(2)84k+是4的倍数(3)8k不能整除8k+4【解析】【分析】(1)根据“神秘数”的定义,设这两个连续偶数分别为2m,2m+2,列方程求出m的值即可得答案;(2)根据“神秘数”的定义可知(2n)2-(2n-2)2=4(2n-1),即可得答案;(3)由(2)可知“神秘数”是4的倍数,但一定不是8的倍数,而连续两个奇数的平方差一定是8的倍数,即可得答案.【详解】(1)设设这两个连续偶数分别为2m,2m+2,则根据题意得:(2m+2)2-(2m)2=28,8m+4=28,m=3,∴2m=6,2m+2=8,即82-62=28,∴28是“神秘数”.(2m+2)2-(2m)2=2012,8m+4=2012,m=501,∴2m=1002∴2012是“神秘数”.(2)是;理由如下:∵(2n)2-(2n-2)2=4(2n-1),∴由这两个连续偶数构造的神秘数是4的倍数.(3)由(2)可知“神秘数”可表示为4(2n-1),∵2n-1是奇数,∴4(2n-1)是4的倍数,但一定不是8的倍数,设两个连续的奇数为2n-1和2n+1,则(2n+1)2-(2n-1)2=8n.∴连续两个奇数的平方差是8的倍数,∴连续两个奇数的平方差不是“神秘数”.【点睛】本题首先考查了阅读能力、探究推理能力.对知识点的考查,主要是平方差公式的灵活应用。
2020-2021学年沪教版八上数学 期中综合测评(word版,含答案解析)

沪教版八上数学期中综合测评一、填空题(共14小题;共70分)1. 求值:√9=.2. 化简:√(√3−2)2=.3. 如果二次根式√2−4x有意义,那么x的取值范围是.4. 请写出√x−6的一个有理化因式:.5. 计算:√8−√18=.6. 计算:√15÷2√5=.a−1和√2a−1是同类二次根式,则7. 如果最简二次根式√3+2bab=.8. 方程x2−3x=0的解是.9. 在实数范围内因式分解:2x2−3x−1=.10. 一元二次方程x2−2x+a=0有两个不相等的实数根,那么a的取值范围是.11. 当x=时,代数式x2−x的值为6.12. 不等式x−2<√2x的解集为.13. 某种药品,由原售价连续两次降价,每次下降的百分率相同.已知原售价是100元,降价两次后的售价是64元.设每次降价的百分率为x,可以列出方程.14. 设等腰三角形的三条边长分别为a,b,c,已知a=4,b,c是关于x的方程x2−6x+m=0的两个根,则m的值是.二、选择题(共4小题;共20分)15. 下列二次根式中,属于最简二次根式的是( )B. √0.5C. √5D. √50A. √1516. 下列方程是一元二次方程的是( )=0A. (x+3)(x−3)+4=0B. x2−1xC. 3x2−4y=0D. (x+1)(x−3)+4=x2+x17. 下列关于x的方程中,一定有实数解的是( )A. x2−x+1=0B. √2x2−2x+1=0C. x2−mx−1=0D. x2−x−m=018. 化简√nm2(m<0)的结果是( )A. √nm B. −√nmC. √−nmD. −√−nm三、解答题(共9小题;共63分)19. 计算:13√9x3−5x2√1x+6x√x4.20. 计算:√12−√3−1√3+1−√43.21. 解方程:2x2+1=2√6x.22. 用配方法解方程:2x2+8x−1=0.23. 解方程:3(x−7)2=2(x−7).24. 已知关于x的一元二次方程m4x2−(m+1)x+m=0有两个相等的实数根,求m的值,并求出此时方程的根.25. 某校计划种植一块面积为960平方米的长方形草坪,已知该长方形草坪的长比宽的2倍还多8米,问这个长方形草坪的长为多少米?。
2020-2021学年八年级数学上学期期中测试卷01(沪教版)(原卷版)

八年级第一学期数学期中考试(一)一、单选题(本大题共6题,每题3分,共18分) 1.下列方程中,关于x 的一元二次方程是( )A .x 2﹣x (x +3)=0B .ax 2+bx +c =0C .x 2﹣2x ﹣3=0D .x 2﹣2y ﹣1=0 2.下列运算中,正确的是( )A .235+=;B .2(32)32-=-;C .2a a =;D .2()a b a b +=+. 3.若反比例函数y=k x 的图象经过点(2,3),则它的图象也一定经过的点是( ) A .()3,2-- B .()2,3- C .()3,2- D .()2,3- 4.若关于x 的一元二次方程(m ﹣1)x 2+2mx+m+3=0有两个不等的实根,则m 的取值范围( )A .m <32B .m <32且m≠1C .m≤32且m≠1D .m >32 5.函数1y k x =和2k y x=(120k k <且12k k <)的图象大致是( ) A . B .C .D .6.某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.每盆植入3株时,平均单株盈利5元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利为20元,需要每盆增加几株花苗?设每盆增加x 株花苗,下面列出的方程中符合题意的是( )A .(3)(50.5)20x x +-=B .(3)(50.5)20x x -+=C .(3)(50.5)20x x --=D .(3)(50.5)20x x ++=二、填空题(本大题共12题,每题3分,共36分)7.使得代数式3x -有意义的x 的取值范围是_____. 8.关于x 的方程x(x-1)+3(x-1)=0的解是________.9.正比例函数()21y k x =+的图像经过第二、四象限,则k ______.10.方程22430x x +-=,用配方法可把原方程化为2(1)x k +=,其中k =___________.11.如果最简根式22m 7-与48m 2+是同类二次根式,那么m=_______. 12.计算3393a a a a +-=__________. 13.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是.14.在实数范围内因式分解3x²-4xy-2y 2=______.15.在反比例函数k y x=(0k >)的图像上有三点111222333(,),(,),(,),A x y A x y A x y 若1230x x x <<<,则___________.(将123,,y y y 用<连接)16233x x -<的解集是______. 17.已知函数1()x f x x-=,若()2f x =,则________x =. 18.如图,在直角三角形ABC 中,∠C =90º,AC =6厘米,BC =8厘米,点P 、Q 同时由A 、C 两点出发,分别沿AC 、CB 方向匀速运动,它们的速度都是每秒1厘米,P 点运动_______秒时,△PCQ 面积为4平方厘米.三、解答题(本大题共7题,19-22每题5分,23-24每题8分,25题10分,共46分).19.(1112533(2)计算:)21320,06x x y xy x y y >> 20.已知:关于x 的方程2x (k 2)x 2k 0-++=,(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a=1,两个边长b ,c 恰好是这个方程的两个根,求△ABC 的周长.21.某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?22.已知y=y 1+y 2,并且y 1与(x ﹣1)成正比例,y 2与x 成反比例.当x=2时,y=5;当x=﹣2时,y=﹣9.求y 关于x 的函数解析式.23a ab a b+)÷ab b +ab a -ab )(a ≠b ). 24.用适当的方法解下列方程:(1)23(21)6x -=(2)(x 2)(x 222x(3)22(1)3(1)x x x -=-(4)23610x x -+=(配方法)25.如图,已知直线12y x =与双曲线(0)k y k x =>交于A B ,两点,且点A 的横坐标为4.(1)求k 的值;(2)若双曲线(0)k y k x=>上一点C 的纵坐标为8,求AOC 的面积; (3)过原点O 的另一条直线l 交双曲线(0)k y k x =>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.。
(word版本)2020-2021学年八年级(上)期中考试数学卷部分附答案共3份

期中综合检测题(附答案)一.选择题1.在以下节水、回收、节能、绿色食品四个标志中,是轴对称图形的是()A.B.C.D.2.以下列各组线段的长为边长,能组成三角形的是()A.2,3,5 B.3,4,5 C.3,5,10 D.4,4,83.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.54.等腰三角形一边长等于5,一边长等于9,则它的周长是()A.14 B.23 C.19 D.19或235.装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A.①B.②C.③D.④6.如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,则两个木桩离旗杆底部的距离BD与CD的距离间的关系是()A.BD>CD B.BD<CD C.BD=CD D.不能确定7.下列结论:①三角形至多有两条高在三角形的外部;②相等的角是对顶角;③两条平行直线被第三条直线所截,同旁内角的角平分线相互垂直;④若两个角的两边分别平行,那么这两个角相等;⑤在△ABC中,若∠A=2∠B=3∠C,则△ABC为直角三角形;其中错误结论有()A.2个B.3个C.4个D.5个8.如图,E是正方形ABCD边BC上一点,CE=2,BE=6,P是对角线BD上的一动点,则AP+PE的最小值是()A.B.8 C.10 D.以上都不对9.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD10.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°二.填空题11.一个多边形的每一个外角为30°,那么这个多边形的边数为.12.如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的性.13.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为.14.如图,△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=12,CF=3,则AC=.15.如图,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是(填上适当的一个条件即可)16.如图,在△ABC中,BD是边AC上的高,CE平分∠ACB,交BD于点E,DE=2,BC=5,则△BCE 的面积为.三.解答题17.如图所示,一辆汽车在笔直的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄,当汽车行驶到哪个位置时,与村庄M,N的距离相等.18.如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.19.如图,在△ABC中,∠A=50°,∠C=72°,BD是△ABC的一条角平分线,求∠ABD的度数.20.如图,平面直角坐标系中,A(﹣2,1),B(﹣3,4),C(﹣1,3),过点(1,0)作x轴的垂线l.(1)作出△ABC关于直线l的轴对称图形△A1B1C1;(2)直接写出A1(,),B1(,),C1(,);(3)在△ABC内有一点P(m,n),则点P关于直线l的对称点P1的坐标为(,)(结果用含m,n的式子表示).21.如图,已知∠B=∠C=90°,M是BC的中点,DM平分∠ADC.求证:(1)AM平分∠DAB;(2)DM⊥AM.22.如图,在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O,△ADE的周长为6cm.∠BAC=110°(1)求BC的长及∠DAE的度数;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.23.如图,已知A(a,0),B(0,b)且a、b满足a2+2ab+b2=0,C、D分别是OA、OB边上的动点,同时从原点O以相同的速度分别匀速向点A、点B运动(点C不与O、A重合,点D不与O、B 重合),AD和BC相交于点M,过点O作OE⊥AD交AB于点E,过点E作EF⊥BC交BO于点F.(1)求证:△AOD≌△BOC.(2)在C、D运动的过程中,是否为定值?如果是,请求出这个定值;如果不是,请说明理由.参考答案一.选择题1.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.故选:D.2.解:A、2+3=5,故不能构成三角形,故选项错误;B、3+4>5,故能构成三角形,故选项正确;C、3+5<10,故不能构成三角形,故选项错误;D、4+4=8,故不能构成三角形,故选项错误.故选:B.3.解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.4.解:当腰长为5时,则三角形的三边分别为5、5、9,满足三角形的三边关系,其周长为19;当腰长为9时,则三角形的三边分别为9、9、5,满足三角形的三边关系,其周长为23;综上可知三角形的周长为19或23,故选:D.5.解:②、③、④块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第①块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:A.6.解:∵AD⊥BC,∴∠ADB=∠ADC=90°,由AB=AC,AD=AD,∴△ABD≌△ACD(HL),∴BD=CD.故选:C.7.解:①正确.三角形至多有两条高在三角形的外部;②错误.相等的角不一定是对顶角;③正确.两条平行直线被第三条直线所截,同旁内角的角平分线相互垂直;④错误.若两个角的两边分别平行,那么这两个角相等或互补;⑤错误.在△ABC中,若∠A=2∠B=3∠C,则△ABC为钝角三角形;故选:B.8.10.9.解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.10.解:∵∠ABC、∠ACB的平分线BE、CD相交于点F,∴∠CBF=∠ABC,∠BCF=∠ACB,∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=120°,∴∠BFC=180°﹣(∠CBF+BCF)=180°﹣(∠ABC+∠ACB)=120°.故选:C.二.填空题11.解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.12.解:三角形的支架很牢固,这是利用了三角形的稳定性,故答案为:稳定.13.解:∵△ABC≌△ADE,∴∠D=∠B=40°,∴∠BED=∠A+∠D=60°+40°=100°,故答案为:100°.14.解:∵EF是AB的垂直平分线,∴FA=BF=12,∴AC=AF+FC=15.故答案为:15.15.解:BC=BD,理由是:∵∠CBE=∠DBE,∠CBE+∠ABC=180°,∠DBE+∠ABD=180°,∴∠ABC=∠ABD,在△ABC和△ABD中∴△ABC≌△ABD,故答案为:BC=BD.16.解:作EF⊥BC于F,∵CE平分∠ACB,BD⊥AC,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5.故答案为:5.三.解答17.解:(1)连接MN;(2)作线段MN的垂直平分线l,交直线AB于C点,则C点即为所求.18.证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠ACE=∠ABC=∠CDE=90°,∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,∴∠ACB=∠CED.在△ABC和△CDE中,,∴△ABC≌△CDE(ASA),∴AB=CD.19.解:∵在△ABC中,∠A=50°,∠C=72°,∴∠ABC=180°﹣50°﹣72°=58°,∵BD是△ABC的一条角平分线,∴∠ABD=29°.20.解:(1)如图,△A1B1C1为所作;(2)A(4,1),B,(5,4),G(3,3);(3)点P关于直线l的对称点P1的坐标为(2﹣m,n).故答案为4,1;5,4;3,3;﹣m+2,n.21.(1)AM平分∠DAB.证明:过点M作ME⊥AD,垂足为E,∵DM平分∠ADC,∴∠1=∠2,∵MC⊥CD,ME⊥AD,∴ME=MC(角平分线上的点到角两边的距离相等),又∵MC=MB,∴ME=MB,∵MB⊥AB,ME⊥AD,∴AM平分∠DAB(到角的两边距离相等的点在这个角的平分线上).(2)DM⊥AM.证明:∵∠B=∠C=90°,∴DC⊥CB,AB⊥CB,∴CD∥AB(垂直于同一条直线的两条直线平行),∴∠CDA+∠DAB=180°(两直线平行,同旁内角互补)又∵∠1=∠CDA,∠3=∠DAB(角平分线定义)∴2∠1+2∠3=180°,∴∠1+∠3=90°,∴∠AMD=90度.即DM⊥AM.22.解:(1)∵在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O,△ADE的周长为6cm,∠BAC=110°,∴DA=DB,EA=EC,AD+DE+AE=6,∠B+∠C=70°,∴BD+DE+EC=6,∠B=∠BAD,∠C=∠EAC,∴BC=6cm,∠DAE=110°﹣70°=40°,即BC的长是6cm,∠DAE的度数是40°;(2)由题意可得,OA=OB,OA=OC,BC=6cm,∴OB=OC,∵△OBC的周长为16cm,∴OB=OC=5cm,∴OA=5cm,即OA的长是5cm.23.(1)证明:由题意得:OC=OD,∵A(a,0),B(0,b)且a、b满足a2+2ab+b2=0,∴(a+b)2=0,∴a+b=0,a=﹣b,∴OA=OB,在△AOD和△BOC中,,∴△AOD≌△BOC(SAS);(2)解:为定值1,理由如下:过A作OA的垂线,过B作OB的垂线,两线交于点H,延长OE交BH于G,如图所示:则四边形AOBH是正方形,∴∠GBE=∠OBA,BH∥OA,∴∠BGE=∠AOG,由(1)得:△AOD≌△BOC,∴∠OAD=∠OBC,∵OE⊥AD,EF⊥BC,∴∠OAD+∠AOG=90°,∠OBC+∠BFE=90°,∴∠AOG=∠BFE,同理∠ADO=OGB,∴∠BGE=∠BFE,在△BGE和△BFE中,,∴△BGE≌△BFE(AAS),∴EG=EF,在△AOD和△OBG中,,∴△AOD≌△OBG(AAS),∴AD=OG,∴===1.道外区 2020—2021 学年度八年级上学期期中调研测试数学试卷(无答案)考生须知:1.本试满分为120分。
2020-2021初二数学上期中试卷(含答案)(2)

2020-2021初二数学上期中试卷(含答案)(2)一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是( ) A .9B .8C .7D .62.下列各式中,分式的个数是( )2x ,22a b +,a b π+,1a a +,(1)(2)2x x x -++,b a b+.A .2B .3C .4D .53.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣344.如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为( )A .40ºB .50ºC .60ºD .70º5.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .x x y -B .22x yC .2x yD .3232x y6.下列运算正确的是( )A .(-x 3)2=x 6B .a 2•a 3=a 6C .2a •3b =5abD .a 6÷a 2=a 3 7.如图,在ABC ∆中,64A ∠=︒,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;……;1n A BC -∠与1n A CD -∠的平分线交于点n A ,要使n A ∠的度数为整数,则n 的最大值为( )A .4B .5C .6D .78.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( ) A .3 B .2 C .1 D .1- 9.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( ) A .1B .2C .8D .1110.下列图形中,周长不是32 m 的图形是( )A .B .C .D .11.已知x m =6,x n =3,则x 2m ―n 的值为( ) A .9B .34C .12D .4312.如图,△ABC 中,∠B =60°,AB =AC ,BC =3,则△ABC 的周长为( )A .9B .8C .6D .12二、填空题13.当m=________时,方程233x m x x =---会产生增根. 14.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 15.清明节期间,初二某班同学租一辆面包车前去故宫游览,面包车的租金为600元,出发时又增加了5名同学,且租金不变,这样每个同学比原来少分摊了10元车费,若设实际参加游览的同学,一共有x 人则可列分式方程________. 16.因式分解:a 3﹣2a 2b+ab 2=_____.17.点P (-2, 3)关于x 轴对称的点的坐标为_________ 18.若分式67x--的值为正数,则x 的取值范围_____. 19.在实数范围因式分解:25a -=________. 20.因式分解:x 2y ﹣y 3=_____.三、解答题21.仔细阅读下面例题,解答问题:例题:已知二次三项式2x 4x m -+有一个因式是()x 3+,求另一个因式以及m 的值.解:设另一个因式为()x n +,得()()2x 4x m x 3x n -+=++则()22x 4x m x n 3x 3n -+=+++{n 34m 3n +=-∴=.解得:n 7=-,m 21=-∴另一个因式为()x 7-,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式22x 3x k +-有一个因式是()2x 5-,求另一个因式以及k 的值.22.先化简,再求值:222284()24a a a a a a+-+÷--,其中a 满足方程2410a a ++=. 23.材料阅读:若一个整数能表示成a 2+b 2(a 、b 是正整数)的形式,则称这个数为“完美数”.例如:因为13=32+22,所以13是“完美数”;再如:因为a 2+2ab +2b 2=(a +b)2+b 2(a 、b 是正整数),所以a 2+2ab +2b 2也是“完美数”.(1)请你写出一个大于20小于30的“完美数”,并判断53是否为“完美数”; (2)试判断(x 2+9y 2)·(4y 2+x 2)(x 、y 是正整数)是否为“完美数”,并说明理由. 24.(1)如图1,点A 为线段BC 外一动点,且BC=a ,AB=b ,填空:当点A 位于 时,线段AC 的长取到最大值,则最大值为 ;(用含a 、b 的式子表示).(2)如图2,若点A 为线段BC 外一动点,且BC=4,AB=2,分别以AB ,AC 为边,作等边ABD △和等边ACE △,连接CD ,BE.①图中与线段BE 相等的线段是线段 ,并说明理由; ②直接写出线段BE 长的最大值为 .(3)如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且PA=2,PM=PB ,∠BPM=90°,请直接写出线段AM 长的最大值为 ,及此时点P 的坐标为 .(提示:等腰直角三角形的三边长a 、b 、c 满足a :b :c=1:1225.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键. 2.B解析:B【解析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 【详解】22a b +, a bπ+的分母中均不含有字母,因此它们是整式,而不是分式;a 的分子不是整式,因此不是分式. 2x ,1 a a +,()()12 2x x x -++的分母中含有字母,因此是分式. 故选B. 【点睛】本题考查了分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式,A 叫做分式的分子,B 叫做分式的分母.注意π不是字母,是常数,所以a bπ+不是分式,是整式.3.B解析:B 【解析】 【分析】 【详解】解:去分母得:x+m ﹣3m=3x ﹣9, 整理得:2x=﹣2m+9,解得:x=292m -+, 已知关于x 的方程333x m mx x++--=3的解为正数, 所以﹣2m+9>0,解得m <92, 当x=3时,x=292m -+=3,解得:m=32, 所以m 的取值范围是:m <92且m≠32.故答案选B .4.D解析:D 【解析】 【分析】依据平行线的性质,即可得到∠1=∠DFG =40°,再根据三角形外角性质,即可得到∠2【详解】 ∵DF ∥EG , ∴∠1=∠DFG =40°, 又∵∠A =30°,∴∠2=∠A +∠DFG =30°+40°=70°, 故选D . 【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.5.A解析:A 【解析】 【分析】据分式的基本性质,x ,y 的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是. 【详解】解:根据分式的基本性质,可知若x ,y 的值均扩大为原来的2倍,A 、()2x 2=222x xx y x y x y=---,B 、224x 4xy y =, C 、()2222x 4222x x y y y==, D 、()()33322232x 243822x x y yy ⨯==, 故选A . 【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.6.A解析:A 【解析】 【分析】A .利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断;B .利用同底数幂的乘法法则计算得到结果,即可做出判断;C .利用单项式乘单项式法则计算得到结果,即可做出判断;D .利用同底数幂的除法法则计算得到结果,即可做出判断.A.(﹣x3)2=x6,本选项正确;B.a2•a3=a5,本选项错误;C.2a•3b=6ab,本选项错误;D.a6÷a2=a4,本选项错误.故选A.【点睛】本题考查了同底数幂的除法,同底数幂的乘法,单项式乘单项式以及积的乘方与幂的乘方,熟练掌握运算法则是解答本题的关键.7.C解析:C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,然后整理得到∠A1=12∠A,由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【详解】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∴∠A1+∠A1BC=12(∠A+∠ABC)=12∠A+∠A1BC,∴∠A1=12∠A=12×64°=32°;∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=12∠A,同理可得∠A1=2∠A2,∴∠A2=14∠A,∴∠A=2n ∠A n ,∴∠A n =(12)n ∠A=642n ︒,∵∠A n 的度数为整数, ∵n=6. 故选C. 【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键.8.A解析:A 【解析】 【分析】先将原代数式进行去括号化简得出242x x -+,然后根据2410x x --=得出241x x -=,最后代入计算即可. 【详解】由题意得:22(3)(1)3x x x ---+=242x x -+, ∵2410x x --=,∴241x x -=, ∴原式=242x x -+=1+2=3. 故选:A. 【点睛】本题主要考查了整式的化简求值,整体代入是解题关键.9.C解析:C 【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断. 【详解】设第三边长为x ,则有 7-3<x<7+3, 即4<x<10,观察只有C 选项符合, 故选C.【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边之间的关系是解题的关键.10.B解析:B 【解析】根据所给图形,分别计算出它们的周长,然后判断各选项即可. 【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32. 采用排除法即可选出B 故选B. 【点睛】此题考查多边形的周长,解题在于掌握计算公式.11.C解析:C 【解析】试题解析:试题解析:∵x m =6,x n =3,∴x 2m -n =2()m nx x =36÷3=12. 故选C.12.A解析:A 【解析】 【分析】根据∠B =60°,AB =AC ,即可判定△ABC 为等边三角形,由BC =3,即可求出△ABC 的周长. 【详解】在△ABC 中,∵∠B =60°,AB =AC , ∴∠B =∠C =60°,∴∠A =180°﹣60°﹣60°=60°, ∴△ABC 为等边三角形,∵BC =3,∴△ABC 的周长为:3BC =9, 故选A . 【点睛】本题考查了等边三角形的判定与性质,属于基础题,关键是根据已知条件判定三角形为等边三角形.二、填空题13.3【解析】【分析】根据分式性质分式方程增根的条件进行求解【详解】∵∴2(x -3)-x=m 求得x=-m∵x -3=0即x=3时原方程有增根∴-m=3m=-3故答案为-3【点睛】主要考察的是分式性质分式方【解析】 【分析】根据分式性质、分式方程增根的条件进行求解. 【详解】 ∵233x m x x ,=--- ∴233x mx x ,-=--- 2(x-3)-x=m, 求得x=-m ,∵ x-3=0 即 x=3 时,原方程有增根 ∴-m=3 m=-3 故答案为-3. 【点睛】主要考察的是分式性质、分式方程有增根的条件的知识点.14.k<6且k≠3【解析】分析:根据解分式方程的步骤可得分式方程的解根据分式方程的解是正数可得不等式解不等式可得答案并注意分母不分零详解:方程两边都乘以(x-3)得x=2(x-3)+k 解得x=6-k≠3解析:k <6且k≠3 【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零. 详解:233x k x x -=--, 方程两边都乘以(x-3),得 x=2(x-3)+k , 解得x=6-k≠3, 关于x 的方程程233x kx x -=--有一个正数解, ∴x=6-k >0, k <6,且k≠3,∴k 的取值范围是k <6且k≠3. 故答案为k <6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键.15.【解析】【分析】关键描述语是:每个同学比原来少分摊了10元车费;等量关系为:原有的同学每人分担的车费-实际每人分担的车费=20;据此列出分式方程即可【详解】解:设实际参加游览的同学一共有人由题意得:解析:60060010 5x x-= -【解析】【分析】关键描述语是:“每个同学比原来少分摊了10元车费”;等量关系为:原有的同学每人分担的车费-实际每人分担的车费=20;据此列出分式方程即可.【详解】解:设实际参加游览的同学一共有x人,由题意得:600600105x x-=-,故答案为:600600105x x-=-.【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到相应的等量关系是解决问题的关键.16.a(a﹣b)2【解析】【分析】先提公因式a然后再利用完全平方公式进行分解即可【详解】原式=a(a2﹣2ab+b2)=a(a﹣b)2故答案为a(a﹣b)2【点睛】本题考查了提公因式法与公式法的综合运用解析:a(a﹣b)2.【解析】【分析】先提公因式a,然后再利用完全平方公式进行分解即可.【详解】原式=a(a2﹣2ab+b2)=a(a﹣b)2,故答案为a(a﹣b)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.(-2-3)【解析】【分析】利用平面内两点关于x轴对称时:横坐标不变纵坐标互为相反数进行求解【详解】解:点P(-23)则点P关于x轴对称的点的坐标为(-2-3)故答案为:(-2-3)【点睛】本题考查解析:(-2,-3)【解析】【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【详解】解:点P(-2, 3),则点P关于x轴对称的点的坐标为(-2,-3)故答案为:(-2,-3).【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.18.x>7【解析】试题解析:由题意得:>0∵-6<0∴7-x <0∴x>7 解析:x>7【解析】试题解析:由题意得:67x-->0, ∵-6<0,∴7-x <0,∴x >7.19.【解析】【分析】将5改成然后利用平方差进行分解即可【详解】==故答案为【点睛】本题考查了在实数范围内分解因式把5写成是利用平方差公式进行分解的关键 解析:(a a 【解析】【分析】将5改成2,然后利用平方差进行分解即可. 【详解】25a -=2a -2=(a a +,故答案为(a a .【点睛】本题考查了在实数范围内分解因式,把5写成2是利用平方差公式进行分解的关键. 20.y(x +y)(x -y)【解析】【分析】(1)原式提取y 再利用平方差公式分解即可【详解】原式=y (x2-y2)=y (x+y )(x-y )故答案为y (x+y )(x-y )【点睛】此题考查了提公因式法与公式法解析:y(x +y)(x -y)【解析】【分析】(1)原式提取y ,再利用平方差公式分解即可.【详解】原式=y (x 2-y 2)=y (x+y )(x-y ),故答案为y (x+y )(x-y ).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.()4,x +【解析】【分析】根据例题中的已知的两个式子的关系,二次三项式2x 4x m -+的二次项系数是1,因式是()x 3+的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子22x 3x k +-的二次项系数是2,因式是()2x 5-的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【详解】解:设另一个因式为()x a +,得()()22x 3x k 2x 5x a +-=-+则()222x 3x k 2x 2a 5x 5a +-=+-- {2a 535a k -=∴-=-解得:a 4=,k 20=故另一个因式为()x 4+,k 的值为20【点睛】正确读懂例题,理解如何利用待定系数法求解是解本题的关键. 22.211443a a =++. 【解析】 试题分析:把原式括号里的第二项提取﹣1,然后把原式的各项分子分母都分解因式,找出括号里两项分母的最简公分母,利用分式的基本性质对括号里两项进行通分,然后利用同分母分式的减法运算法则:分母不变,只把分子相减,计算出结果,然后利用分式的除法法则:除以一个数等于乘以这个数的倒数,变形为乘法运算,约分后即可把原式化为最简分式,把a 满足的方程变形后,代入原式化简后的式子中即可求出值.试题解析:原式=28[](2)(2)(2)(2)(2)a a a a a a a a +-⨯--++- =2(2)8(2)(2)(2)(2)a a a a a a a a +-⨯-++- =2(2)(2)(2)(2)(2)a a a a a a a -⨯-++- =2211(2)44a a a =+++ ∵2410a a ++=,∴241a a +=-,∴原式=11 143=-+.考点:分式的化简求值.23.(1)25,53是完美数; (2)是,理由见解析.【解析】【分析】(1)根据“完美数”的定义判断即可;(2)根据多项式的乘法法则计算出结果后,根据“完美数”的定义判断即可.【详解】(1)25=4²+3²,∵53=49+4=7²+2²,∴53是“完美数”;(2)(x²+9y²)⋅(4y²+x²)是“完美数”,(x²+9y²)⋅(4y²+x²)=4x2y²+364y+4x+9x²y²=13x²y²+364y+4x=(6y²+x²) ²+x²y²,∴(x²+9y²)⋅(4y²+x²)是“完美数”.【点睛】本题考查了因式分解的应用,正确的理解新概念“完美数”是解题的关键.24.(1)CB延长线上;a+b(2)①DC②6;(3))或(2-,).【解析】【分析】1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD ≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为过P作PE⊥x轴于E,根据等腰直角三角形的性质,即可得到结论.【详解】(1)CB延长线上;a+b;(2)①DC,理由如下:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD AB CAD EAB AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△CAD ≌△EAB ,∴CD=BE.②6(3)()【点睛】本题考查的知识点是等边三角形的性质,解题的关键是熟练的掌握等边三角形的性质. 25.详见解析.【解析】试题分析:(1)由点O 是线段AB 和线段CD 的中点可得出AO =BO ,CO =DO ,结合对顶角相等,即可利用全等三角形的判定定理(SAS )证出△AOD ≌△BOC ;(2)结合全等三角形的性质可得出∠A =∠B ,依据“内错角相等,两直线平行”即可证出结论.试题解析:证明:(1)∵点O 是线段AB 和线段CD 的中点,∴AO =BO ,CO =DO . 在△AOD 和△BOC 中,∵AO =BO ,∠AOD =∠BOC ,CO =DO ,∴△AOD ≌△BOC (SAS ).(2)∵△AOD ≌△BOC ,∴∠A =∠B ,∴AD ∥BC .。
2020-2021上海上海中学八年级数学上期中第一次模拟试题带答案

2020-2021上海上海中学八年级数学上期中第一次模拟试题带答案一、选择题1.下列各式中,分式的个数是()2 x ,22a b+,a bπ+,1aa+,(1)(2)2x xx-++,bab+.A.2 B.3 C.4 D.52.如图是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°3.如图2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③4.下列条件中能判定△ABC≌△DEF的是 ( )A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠F C.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF5.下列运算正确的是()A.(-x3)2=x6 B.a2•a3=a6 C.2a•3b=5ab D.a6÷a2=a36.小淇用大小不同的 9 个长方形拼成一个大的长方形ABCD ,则图中阴影部分的面积是()A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1) 7.关于x 的分式方程2x a 1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1> B .a 1< C .a 1<且a 2≠-D .a 1>且a 2≠ 8.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( )A .3B .2C .1D .1-9.下列图形中,周长不是32 m 的图形是( )A .B .C .D .10.下列说法中正确的是( )A .三角形的角平分线、中线、高均在三角形内部B .三角形中至少有一个内角不小于60°C .直角三角形仅有一条高D .三角形的外角大于任何一个内角11.若二次三项式2249x mxy y ++是一个完全平方式,则m 的可能值是( ) A .6±B .12C .6D .12± 12.若x 2+mxy+4y 2是完全平方式,则常数m 的值为( )A .4B .﹣4C .±4 D .以上结果都不对 二、填空题13.从n 边形的一个顶点出发有四条对角线,则这个n 边形的内角和为______度.14.若关于x 的分式方程2222x m x x ++=--的解有增根,则m 的值是____. 15.某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%;那么当售出的甲、乙两种商品的件数相等时,这个商人的总利润率是____.(利润率=利润÷成本)16.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.17.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 18.当x =_________时,分式33x x -+的值为零. 19.多项式241a +加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是________.(填上一个你认为正确的即可)20.已知关于x 的方程2x a x 2-+=1的解是负值,则a 的取值范围是______. 三、解答题21.先化简,再求值:2421a a a -⎛⎫÷- ⎪⎝⎭,其中5a =. 22.水蜜桃是无锡市阳山的特色水果,水蜜桃一上市,水果店的老板用2000元购进一批水密桃,很快售完;老板又用3300元购进第二批水蜜桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批水蜜桃每件进价是多少元?(2)老板以每件65元的价格销售第二批水蜜桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批水密桃的销售利润不少于288元,剩余的仙桃每件售价最多打几折?(利润=售价-进价)23.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.24.计算(1)212111x x x -⎛⎫-÷ ⎪--⎝⎭. (2)211a a a ---25.因式分解、计算:(1)a 3-4ab 2;(2)2a 3-8a 2+8a .(3)22142a a a --- (4)3155a a a-+【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】22a b +, a b π+的分母中均不含有字母,因此它们是整式,而不是分式;a 的分子不是整式,因此不是分式. 2x ,1 a a +,()()12 2x x x -++的分母中含有字母,因此是分式. 故选B.【点睛】本题考查了分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式,A 叫做分式的分子,B 叫做分式的分母.注意π不是字母,是常数,所以a b π+不是分式,是整式. 2.D解析:D【解析】【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用△ABC 各内角的度数表示出∠1,∠2,∠3,再根据三角形内角和定理,即可得出结论.【详解】∵图中是三个等边三角形,∴∠1=180°−60°−∠ABC=120°−∠ABC,∠2=180°−60°−∠ACB=120°−∠ACB,∠3=180°−60°−∠BAC=120°−∠BAC,∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°−180°=180°,故选D.【点睛】本题主要考查等边三角形的性质定理,三角形内角和定理,熟练掌握上述定理,是解题的关键.3.D解析:D【解析】【分析】从已知条件进行分析,首先可得△ABE≌△ACF得到角相等,边相等,运用这些结论,进而得到更多的结论,最好运用排除法对各个选项进行验证从而确定最终答案.【详解】∵BE⊥AC于E,CF⊥AB于F∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(①正确)∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(②正确)∴DF=DE,连接AD∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD=∠EAD,即点D在∠BAC的平分线上(③正确).故答案选D.考点:角平分线的性质;全等三角形的判定及性质.4.D解析:D【解析】分析:根据全等三角形的判定定理AAS,可知应选D.详解:解:如图:A选项中根据AB=DE,BC=EF,∠A=∠D 不能判定两个三角形全等,故A错;B选项三个角相等,不能判定两个三角形全等,故B错;C选项看似可用“边角边”定理判定两三角形全等,而对照图形可发现它们并不符合此判定条件,故C错;D选项中根据“AAS”可判定两个三角形全等,故选D;点睛:本题考查了全等三角形的条件,本题没有给出图形,增加此题的难度.若能顺利画出图形,对照图形和选项即可得到正确选项.5.A解析:A【解析】【分析】A.利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断;B.利用同底数幂的乘法法则计算得到结果,即可做出判断;C.利用单项式乘单项式法则计算得到结果,即可做出判断;D.利用同底数幂的除法法则计算得到结果,即可做出判断.【详解】A.(﹣x3)2=x6,本选项正确;B.a2•a3=a5,本选项错误;C.2a•3b=6ab,本选项错误;D.a6÷a2=a4,本选项错误.故选A.【点睛】本题考查了同底数幂的除法,同底数幂的乘法,单项式乘单项式以及积的乘方与幂的乘方,熟练掌握运算法则是解答本题的关键.6.B解析:B【解析】【分析】通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.7.D解析:D【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a 的不等式,求出不等式的解集即可确定出a 的范围.【详解】分式方程去分母得:x 12x a +=+,即x 1a =-,因为分式方程解为负数,所以1a 0-<,且1a 1-≠-,解得:a 1>且a 2≠,故选D .【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为0.8.A解析:A【解析】【分析】先将原代数式进行去括号化简得出242x x -+,然后根据2410x x --=得出241x x -=,最后代入计算即可.【详解】由题意得:22(3)(1)3x x x ---+=242x x -+,∵2410x x --=,∴241x x -=,∴原式=242x x -+=1+2=3.故选:A.【点睛】本题主要考查了整式的化简求值,整体代入是解题关键. 9.B解析:B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.10.B解析:B【解析】【分析】根据三角形的角平分线、中线、高的定义及性质判断A ;根据三角形的内角和定理判断B ;根据三角形的高的定义及性质判断C ;根据三角形外角的性质判断D .【详解】A 、三角形的角平分线、中线与锐角三角形的三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,故本选项错误;B 、如果三角形中每一个内角都小于60°,那么三个角的和小于180°,与三角形的内角和定理相矛盾,故本选项正确;C 、直角三角形有三条高,故本选项错误;D 、三角形的一个外角大于和它不相邻的任何一个内角,故本选项错误;故选B .【点睛】本题考查了三角形的角平分线、中线、高的定义及性质,三角形的内角和定理,三角形外角的性质,熟记定理与性质是解题的关键.11.D解析:D【解析】【分析】根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】∵2222=(2)223(3)49x xy x m x y y y ±⨯⨯+++,∴12mxy xy =±,解得m=±12. 故选:D .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 12.C解析:C【解析】∵(x±2y )2=x 2±4xy+4y 2, ∴在x 2+mxy+4y 2中,±4xy=mxy ,∴m=±4. 故选C .二、填空题13.【解析】【分析】一个多边形的一个顶点出发一共可作4条对角线则这个多边形的边数7边形的内角和可以表示成代入公式就可以求出内角和【详解】由题意得:所以这个n 边形的内角和为度故填:【点睛】本题主要考查多边 解析:900【解析】【分析】一个多边形的一个顶点出发,一共可作4条对角线,则这个多边形的边数7,n 边形的内角和可以表示成2180n -︒()g ,代入公式就可以求出内角和.【详解】由题意得:()432180900+-⨯︒=︒所以这个n 边形的内角和为900度故填:900.【点睛】本题主要考查多边形内角、多边形的对角线,熟练掌握计算公式是关键.14.0【解析】【分析】根据题意先解出方程的根为x=4-2m 由题意可知x=2即可得4-2m=2解出m 即可【详解】解:方程两边同时乘以x-2得解得:∵分式方程有增根∴x=2∴∴故答案为:0【点睛】本题考查分解析:0【解析】【分析】根据题意先解出方程的根为x=4-2m ,由题意可知x=2,即可得4-2m=2,解出m 即可.【详解】解:方程两边同时乘以x-2,得22(2)x m x -++=-,解得:2x m =+,∵分式方程有增根,∴x=2,∴22m +=,∴0m =.故答案为:0.【点睛】本题考查分式方程的解法,熟练掌握分式方程的解法,理解增根的意义是解题的关键. 15.48%【解析】【分析】根据题意可设甲乙的进价甲售出的件数为未知数根据售出的乙种商品比售出的甲种商品的件数多50时这个商人得到的总利润率为50得到甲乙进价之间的关系进而求得售出的甲乙两种商品的件数相等 解析:48%【解析】【分析】根据题意可设甲,乙的进价,甲售出的件数为未知数,根据售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%得到甲乙进价之间的关系,进而求得售出的甲,乙两种商品的件数相等时,这个商人的总利润率即可.【详解】解:设甲进价为a 元,则售出价为1.4a 元;乙的进价为b 元,则售出价为1.6b 元; 若售出甲x 件,则售出乙1.5x 件, 即有0.40.6 1.50.51.5ax b x ax bx+⨯=+, 解得a=1.5b , ∴售出的甲,乙两种商品的件数相等,均为y 时,这个商人的总利润率为:0.40.60.40.6 1.248%2.5ay by a b b ay by a b b++===++. 故答案为:48%.本题考查分式方程的应用;根据利润率得到相应的等量关系是解决本题的关键;设出所需的多个未知数并在解答过程中消去是解决本题的难点.16.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.17.n <2且【解析】分析:解方程得:x=n ﹣2∵关于x 的方程的解是负数∴n ﹣2<0解得:n <2又∵原方程有意义的条件为:∴即∴n 的取值范围为n <2且解析:n <2且3n 2≠-【解析】 分析:解方程3x n 22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n 22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠-. ∴n 的取值范围为n <2且3n 2≠-. 18.3【解析】【分析】分式的值为零时:分子等于零但是分母不等于零【详解】依题意得:x-3=0且x+3≠0解得x=3故答案是:3【点睛】本题考查了分式的值为零的条件分式值为零的条件是分子等于零且分母不等于解析:3【解析】【分析】分式的值为零时:分子等于零,但是分母不等于零.【详解】依题意得:x-3=0且x+3≠0,解得x=3.故答案是:3.【点睛】本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.19.或或【解析】分①4a2是平方项②4a2是乘积二倍项然后根据完全平方公式的结构解答解:①4a2是平方项时4a2±4a+1=(2a±1)2可加上的单项式可以是4a 或-4a②当4a2是乘积二倍项时4a4+解析:4a 或4a -或44a【解析】分①4a 2是平方项,②4a 2是乘积二倍项,然后根据完全平方公式的结构解答. 解:①4a 2是平方项时,4a 2±4a+1=(2a±1)2,可加上的单项式可以是4a 或-4a ,②当4a 2是乘积二倍项时,4a 4+4a 2+1=(2a 2+1)2,可加上的单项式可以是4a 4,综上所述,可以加上的单项式可以是4a 或-4a 或4a 4.本题主要考查了完全平方式,注意分4a 2,是平方项与乘积二倍项两种情况讨论求解,熟记完全平方公式对解题非常重要.20.a <-2且a≠-4【解析】【分析】表示出分式方程的解由分式方程的解为负值确定出a 的范围即可【详解】解:方程=1去分母得:2x-a=x+2解得:x=a+2由分式方程的解为负值得到a+2<0且a+2≠-解析:a <-2且a ≠-4【解析】【分析】表示出分式方程的解,由分式方程的解为负值,确定出a 的范围即可.【详解】 解:方程22x a x -+=1, 去分母得:2x-a=x+2,解得:x=a+2, 由分式方程的解为负值,得到a+2<0,且a+2≠-2,解得:a <-2且a≠-4,故答案为:a <-2且a≠-4【点睛】此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.易错点是容易忽略x+2≠0这一条件.三、解答题21.【解析】【分析】根据分式的混合运算法则把原式化简,代入计算即可.【详解】2421a a a -⎛⎫÷- ⎪⎝⎭ 242a a a a a -⎛⎫=÷- ⎪⎝⎭ (2)(2)2a a a a a +-=⋅- 2a =+,当5a =时,原式527=+=.【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.22.(1)50;(2)6折.【解析】【分析】(1)根据题意设第一批水蜜桃每件进价是x 元,利用第二批水密桃进价建立方程求解即可;(2)根据题意设剩余的仙桃每件售价最多打m 折,并建立不等式,求出其解集即可得出剩余的仙桃每件售价最多打几折.【详解】解:(1)设第一批水蜜桃每件进价是x 元,则有:20003(5)33002x x ⨯⨯+=,解得50x =, 所以第一批水蜜桃每件进价是50元.(2)由(1)得出第二批水密桃的进价为:55元,数量为:33006055=件, 设剩余的仙桃每件售价最多打m 折,则有: 6580606065(180)3300288m ⨯⨯+⨯⨯--≥%%,解得0.6m ≥,即最多打6折.【点睛】本题考查分式方程的实际应用以及不等式的实际应用,理解题意并根据题意建立方程和不等式是解题的关键.23.(1) 现在平均每天生产200台机器.(2) 现在比原计划提前5天完成.【解析】【分析】(1)因为现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间,由此列出方程解答即可; (2)由(1)中解得的数据,原来用的时间-现在用的时间即可求得提前时间.【详解】解:(1)设现在平均每天生产x 台机器,则原计划可生产(x-50)台. 依题意得:60045050x x =-, 解得:x=200. 检验x=200是原分式方程的解.(2)由题意得3000300020050200--=20-15=5(天) ∴现在比原计划提前5天完成.【点睛】此题考查分式方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.24.(1)x+1;(2)11a -; 【解析】分析: 这是一组分式的混合运算题,按照分式运算的相关运算法则进行计算即可.详解:(1)原式=11(1)(1)112x x x x x x --+-⨯=+--; (2)原式=222(1)(1)111111a a a a a a a a a +--+-==----. 点睛:本题考查的是应用分式的相关运算法则进行分式的混合运算,熟记分式的相关运算法则是解题的关键.25.(1)()()22a a b a b +- (2)()222a a - (3)12a + (4)15 【解析】【分析】(1)先提取公因式,再用平方差公式进行因式分解即可.(2)先提取公因式,再用完全平方公式进行因式分解即可.(3)先同分母,再提取公因式即可.(4)先同分母,再提取公因式即可.【详解】(1)a 3-4ab 2()224a a b =-()()22a a b a b =+-.(2)2a 3-8a 2+8a()2244a a a =-+()222a a =-.(3)22142a a a --- 2224a a a --=- ()()222a a a -=+-12a =+. (4)3155a a a-+15155a a +-= 5a a = 15=. 【点睛】本题考查了因式分解和计算的问题,掌握完全平方公式、平方差公式是解题的关键.。
2020-2021初二数学上期中试卷附答案

2020-2021初二数学上期中试卷附答案一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个 B.3个 C.2个 D.1个2.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个3.下列各式中,分式的个数是()2 x ,22a b+,a bπ+,1aa+,(1)(2)2x xx-++,bab+.A.2 B.3 C.4 D.54.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°5.如图2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③6.为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是()A.40004000210x x-=+B.40004000210x x-=+C .40004000210x x -=-D .40004000210x x -=- 7.如图,直线123l l l 、、表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处8.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .xx y -B .22x yC .2x yD .3232x y9.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( ) A .3B .2C .1D .1-10.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b11.2019年5月24日,中国·大同石墨烯+新材料储能产业园正式开工,这是大同市争当能源革命“尖兵”的又一重大举措.石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,石墨烯的理论厚度为0.00000000034米,这个数据用科学记数法可表示为( ) A .90.3410-⨯ B .113.410-⨯C .103.410-⨯D .93.410-⨯12.式子:222123,,234x y x xy 的最简公分母是( ) A .24x 2y 2xyB .24 x 2y 2C .12 x 2y 2D .6 x 2y 2二、填空题13.某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%;那么当售出的甲、乙两种商品的件数相等时,这个商人的总利润率是____.(利润率=利润÷成本)14.当x=_____时,分式293xx-+的值为零.15.已知115x y+=,则2322x xy yx xy y-+=++_____.16.正多边形的一个外角是72o,则这个多边形的内角和的度数是___________________.17.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.18.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.19.若分式15x-有意义,则实数x的取值范围是_______.20.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.三、解答题21.列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?22.用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.23.因式分解、计算:(1)a3-4ab2;(2)2a3-8a2+8a.(3)22142a a a --- (4)3155a a a -+ 24.解方程:(1)2332x x =- (2)31144x x x++=--. 25.如图,在ABC 中,AB AC =,点D 在ABC 内,BD BC =,DBC 60∠︒=,点E 在ABC 外,BCE 150∠︒=,ABE 60∠︒=.(1)求ADB ∠的度数;(2)判断ABE 的形状并加以证明;(3)连接DE ,若DE BD ⊥,DE 8=,求AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:A 选项既是轴对称图形,也是中心对称图形; B 选项中该图形是轴对称图形不是中心对称图形; C 选项中既是中心对称图形又是轴对称图形; D 选项中是中心对称图形又是轴对称图形. 故选B .考点: 1.轴对称图形;2.中心对称图形.2.C解析:C 【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形. 【详解】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意; 第三个图形找不到对称轴,则不是轴对称图形,不符合题意. 第四个图形有1条对称轴,是轴对称图形,符合题意; 轴对称图形共有3个. 故选:C . 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.B解析:B 【解析】 【分析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 【详解】22a b +, a bπ+的分母中均不含有字母,因此它们是整式,而不是分式;a b+的分子不是整式,因此不是分式. 2x ,1 a a +,()()12 2x x x -++的分母中含有字母,因此是分式. 故选B. 【点睛】本题考查了分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式,A 叫做分式的分子,B 叫做分式的分母.注意π不是字母,是常数,所以a bπ+不是分式,是整式.4.C解析:C 【解析】 【分析】根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC =12∠1,再根据三角形内角和定【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.5.D解析:D【解析】【分析】从已知条件进行分析,首先可得△ABE≌△ACF得到角相等,边相等,运用这些结论,进而得到更多的结论,最好运用排除法对各个选项进行验证从而确定最终答案.【详解】∵BE⊥AC于E,CF⊥AB于F∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(①正确)∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(②正确)∴DF=DE,连接AD∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD=∠EAD,即点D在∠BAC的平分线上(③正确).故答案选D.考点:角平分线的性质;全等三角形的判定及性质.6.A解析:A 【解析】 【分析】原计划每天绿化x 米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程. 【详解】原计划每天绿化x 米,则实际每天绿化(x+10)米,由题意得,40004000210x x -=+, 故选A. 【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.7.D解析:D 【解析】 【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个. 【详解】解:∵△ABC 内角平分线的交点到三角形三边的距离相等, ∴△ABC 内角平分线的交点满足条件; 如图:点P 是△ABC 两条外角平分线的交点, 过点P 作PE ⊥AB ,PD ⊥BC ,PF ⊥AC , ∴PE=PF ,PF=PD , ∴PE=PF=PD ,∴点P 到△ABC 的三边的距离相等,∴△ABC 两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个; 综上,到三条公路的距离相等的点有4处, ∴可供选择的地址有4处. 故选:D【点睛】考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.8.A解析:A 【解析】 【分析】据分式的基本性质,x ,y 的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是. 【详解】解:根据分式的基本性质,可知若x ,y 的值均扩大为原来的2倍,A 、()2x 2=222x xx y x y x y=---,B 、224x 4xy y =, C 、()2222x 4222x x y y y==, D 、()()33322232x 243822x x y yy ⨯==, 故选A . 【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.9.A解析:A【分析】先将原代数式进行去括号化简得出242x x -+,然后根据2410x x --=得出241x x -=,最后代入计算即可. 【详解】由题意得:22(3)(1)3x x x ---+=242x x -+, ∵2410x x --=,∴241x x -=, ∴原式=242x x -+=1+2=3. 故选:A. 【点睛】本题主要考查了整式的化简求值,整体代入是解题关键.10.A解析:A 【解析】 【分析】4张边长为a 的正方形卡片的面积为4a 2,4张边长分别为a 、b 的矩形卡片的面积为4ab ,1张边长为b 的正方形卡片面积为b 2,9张卡片拼成一个正方形的总面积=4a 2+4ab+b 2=(2a+b)2,所以该正方形的边长为:2a+b . 【详解】设拼成后大正方形的边长为x , ∴4a 2+4ab+b 2=x 2, ∴(2a+b)2=x 2,∴该正方形的边长为:2a+b. 故选A. 【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.11.C解析:C 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】12.C解析:C 【解析】分母都是单项式,根据最简公分母的求法:系数取最大系数,不同字母取最高次幂,将它们相乘即可求得. 【详解】式子:222123,,234x y x xy的最简公分母是:12 x 2y 2. 故选:C . 【点睛】本题考查最简公分母的定义与求法.二、填空题13.48%【解析】【分析】根据题意可设甲乙的进价甲售出的件数为未知数根据售出的乙种商品比售出的甲种商品的件数多50时这个商人得到的总利润率为50得到甲乙进价之间的关系进而求得售出的甲乙两种商品的件数相等解析:48% 【解析】 【分析】根据题意可设甲,乙的进价,甲售出的件数为未知数,根据售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%得到甲乙进价之间的关系,进而求得售出的甲,乙两种商品的件数相等时,这个商人的总利润率即可. 【详解】解:设甲进价为a 元,则售出价为1.4a 元;乙的进价为b 元,则售出价为1.6b 元; 若售出甲x 件,则售出乙1.5x 件, 即有0.40.6 1.50.51.5ax b xax bx+⨯=+,解得a=1.5b ,∴售出的甲,乙两种商品的件数相等,均为y 时,这个商人的总利润率为:0.40.60.40.6 1.248%2.5ay by a b bay by a b b++===++.故答案为:48%. 【点睛】本题考查分式方程的应用;根据利润率得到相应的等量关系是解决本题的关键;设出所需的多个未知数并在解答过程中消去是解决本题的难点.14.3【解析】【分析】分式的值为零的条件:分子为0分母不为0据此即可求出x 的值【详解】∵分式的值为零∴x2-9=0且x+3≠0解得:x=3故答案为:3【点睛】本题考查了分式的值为零的条件若分式的值为零需解析:3 【解析】【分析】分式的值为零的条件:分子为0,分母不为0,据此即可求出x 的值.【详解】 ∵分式293x x -+的值为零, ∴x 2-9=0,且x+3≠0,解得:x=3,故答案为:3【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.1【解析】【分析】先根据可得出x+y 与xy 的关系式然后在式子中将xy 用x+y 来表示化简后可得结果【详解】∵∴则xy=故答案为:1【点睛】本题考查分式的化简求值解题关键是将xy 转化为x+y 的形式解析:1【解析】【分析】 先根据11 5x y +=可得出x+y 与xy 的关系式,然后在式子232 2x xy y x xy y-+++中,将xy 用x+y 来表示,化简后可得结果.【详解】 ∵11 5x y+= ∴ 5x y xy +=,则xy=()15x y + 372()2()23255 1272()()55x x y y x y x xy y x xy y x x y y x y -+++-+===++++++ 故答案为:1【点睛】本题考查分式的化简求值,解题关键是将xy 转化为x+y 的形式.16.540°【解析】【分析】【详解】根据多边形的外角和为360°因此可以求出多边形的边数为360°÷72°=5根据多边形的内角和公式(n-2)·180°可得(5-2)×180°=540°考点:多边形的内解析:540°【解析】【分析】【详解】根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和17.3【解析】在123处分别涂黑都可得一个轴对称图形故涂法有3种故答案为3解析:3【解析】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为3.18.70【解析】【分析】先利用HL 证明△ABE ≌△CBF 可证∠BCF=∠BAE=25°即可求出∠ACF=45°+25°=70°【详解】∵∠ABC=90°AB=AC ∴∠CBF=180°-∠ABC=90°∠解析:70【解析】【分析】先利用HL 证明△ABE ≌△CBF ,可证∠BCF=∠BAE=25°,即可求出∠ACF=45°+25°=70°.【详解】∵∠ABC=90°,AB=AC ,∴∠CBF=180°-∠ABC=90°,∠ACB=45°,在Rt △ABE 和Rt △CBF 中,AB CB AE CF =⎧⎨=⎩, ∴Rt △ABE ≌Rt △CBF(HL),∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为70.【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.19.【解析】由于分式的分母不能为0x-5在分母上因此x-5≠0解得x 解:∵分式有意义∴x-5≠0即x≠5故答案为x≠5本题主要考查分式有意义的条件:分式有意义分母不能为0 解析:【解析】由于分式的分母不能为0,x-5在分母上,因此x-5≠0,解得x . 解:∵分式15x -有意义, ∴x-5≠0,即x≠5.故答案为x≠5. 本题主要考查分式有意义的条件:分式有意义,分母不能为0.20.85°【解析】【分析】根据三角形内角和得出∠C=60°再利用角平分线得出∠DBC=35°进而利用三角形内角和得出∠BDC 的度数【详解】∵在△ABC 中∠A=50°∠ABC=70°∴∠C=60°∵BD 平解析:85°.【解析】【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC 的度数.【详解】∵在△ABC 中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD 平分∠ABC ,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为85°.三、解答题21.原计划每天加工20套.【解析】【分析】设原计划每天加工x 套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.【详解】解:设原计划每天加工x 套,由题意得:16040016018(120%)x x-+=+ 解得:x=20,经检验:x=20是原方程的解.答:原计划每天加工20套.考点:分式方程的应用22.A 型机器人每小时搬大米70袋,则B 型机器人每小时搬运50袋.【解析】【分析】工作效率:设A 型机器人每小时搬大米x 袋,则B 型机器人每小时搬运(x ﹣20)袋;工作量:A 型机器人搬运700袋大米,B 型机器人搬运500袋大米;工作时间就可以表示为:A 型机器人所用时间=700x ,B 型机器人所用时间=500x-20,由所用时间相等,建立等量关系.【详解】设A 型机器人每小时搬大米x 袋,则B 型机器人每小时搬运(x ﹣20)袋, 依题意得:700x =500x-20, 解这个方程得:x=70 经检验x=70是方程的解,所以x ﹣20=50.答:A 型机器人每小时搬大米70袋,则B 型机器人每小时搬运50袋.考点:分式方程的应用.23.(1)()()22a a b a b +- (2)()222a a - (3)12a + (4)15 【解析】【分析】(1)先提取公因式,再用平方差公式进行因式分解即可.(2)先提取公因式,再用完全平方公式进行因式分解即可.(3)先同分母,再提取公因式即可.(4)先同分母,再提取公因式即可.【详解】(1)a 3-4ab 2()224a a b =-()()22a a b a b =+-.(2)2a 3-8a 2+8a()2244a a a =-+()222a a =-.(3)22142a a a --- 2224a a a --=-()()222a a a -=+-12a =+. (4)3155a a a-+ 15155a a+-= 5a a= 15=. 【点睛】本题考查了因式分解和计算的问题,掌握完全平方公式、平方差公式是解题的关键.24.(1)9x =- (2)0x =【解析】【分析】(1)先去分母,再移项和合并同类项,最后检验即可.(2)先去分母,再移项和合并同类项,最后检验即可.【详解】(1)2332x x=- 439x x =-9x =-经检验,9x =-是方程的根.(2)31144x x x++=-- 341x x ++-=-20x =0x =经检验,0x =是方程的根.【点睛】本题考查了解分式方程的问题,掌握解分式方程的方法是解题的关键.25.(1) 150°;(2) △ABE 是等边三角形,理由见解析;(3)4【解析】【分析】(1)首先证明△DBC 是等边三角形,推出∠BDC=60°,再证明△ADB ≌△ADC ,推出∠ADB=∠ADC 即可解决问题.(2)结论:△ABE 是等边三角形.只要证明△ABD ≌△EBC 即可.(3)首先证明△DEC 是含有30度角的直角三角形,求出EC 的长,理由全等三角形的性质即可解决问题.【详解】(1)解:∵BD=BC ,∠DBC=60°,∴△DBC 是等边三角形,∴DB=DC ,∠BDC=∠DBC=∠DCB=60°,在△ADB 和△ADC 中,AB AC AD AD DB DC =⎧⎪=⎨⎪=⎩,∴△ADB ≌△ADC ,∴∠ADB=∠ADC ,∴∠ADB=12(360°﹣60°)=150°. (2)解:结论:△ABE 是等边三角形.理由:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE ,在△ABD 和△EBC 中, 150AB EB ADB BCE ABD CBE =⎧⎪∠=∠=︒⎨⎪∠=∠⎩,∴△ABD ≌△EBC ,∴AB=BE ,∵∠ABE=60°,∴△ABE 是等边三角形.(3)解:连接DE .∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°,∴∠EDC=30°,∴EC=12DE=4,∵△ABD ≌△EBC ,∴AD=EC=4. 【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、30度角的直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质.。
2020-2021学年度第一学期八年级数学期中试题卷含答案共三套

2020-2021学年八年级(上)期中数学试卷一、选择题(每小题2分,共16分)1.计算(﹣a)2•a3的结果是()A.a5B.a6C.﹣a5D.﹣a62.下列运算正确的是()A.(a+1)2=a2+1B.3ab2c÷a2b=3abC.(﹣2ab2)3=8a3b6D.x3•x=x43.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去4.要测量圆形工件的外径,工人师傅设计了如右图所示的卡钳,O为卡钳两柄交点,且有OA=OB=OC=OD,如果圆形工件恰好通过卡钳AB,则这个工件的外径必是CD之长了,其中的依据是全等三角形的判定条件()A.ASA B.AAS C.SAS D.SSS5.若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8B.﹣8C.0D.8或﹣86.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)(a+2b)=a2+ab﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b27.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°8.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BCA=∠DCA C.∠BAC=∠DAC D.∠B=∠D=90°二、填空题(每小题3分,共21分)9.计算:(x+3)2=.10.计算:22018×0.52018=.11.命题“两直线平行,同位角相等”的逆命题是命题.(填“真”或“假”)12.如图,已知△EFG≌△NMH,若EF=2.1,则MN=.13.(4a2﹣8a)÷2a=.14.若3m=6,9n=2,则3m﹣2n=.15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.三、解答题(本大题共8小题,共63分)16.(6分)先化简,再求值:a(1﹣4a)+(2a+1)(2a﹣1),其中a=4.17.(6分)已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C.求证:△ABF≌△DCE.18.(8分)把下列各式分解因式:(1)2x2﹣8x(2)6ab3﹣24a3b19.(8分)已知x+y=5,xy=1.(1)求x2+y2的值.(2)求(x﹣y)2的值.20.(7分)如图,A、B两个建筑分别位于河的两岸,要测得它们之间距离,可以从B 出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、A、C在同一条直线上,则DE长就是A、B之间的距离,请你说明道理.21.(7分)如图所示,有两个长度相等的滑梯,左边滑梯BC的高AC与右边滑梯EF水平方向的长度DF相等,两滑梯倾斜角∠ABC和∠DFE有什么关系?22.(9分)某学校的操场是一个长方形,长为2x米,宽比长少5米,实施“阳光体育”行动以后,学校为了扩大学生的活动场地,让学生能更好地进行体育活动,将操场的长和宽都增加4米.(1)求操场原来的面积是多少平方米(用代数式表示)?(2)若x=20,求操场面积增加后比原来多多少平方米?23.(12分)在△ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明.参考答案与试题解析一、选择题(每小题2分,共16分)1.计算(﹣a)2•a3的结果是()A.a5B.a6C.﹣a5D.﹣a6【分析】利用同底数幂的乘法运算,即可求得答案;注意同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.【解答】解:(﹣a)2•a3=a2•a3=a5.故选:A.【点评】此题考查了同底数幂的乘法.此题比较简单,注意掌握指数与符号的变化是解此题的关键.2.下列运算正确的是()A.(a+1)2=a2+1B.3ab2c÷a2b=3abC.(﹣2ab2)3=8a3b6D.x3•x=x4【分析】根据完全平方公式判断A;根据单项式除以单项式的法则判断B;根据积的乘方的运算法则判断C;根据同底数幂的乘法法则判断D.【解答】解:A、(a+1)2=a2+2a+1,故本选项错误;B、3ab2c÷a2b=,故本选项错误;C、(﹣2ab2)3=﹣8a3b6,故本选项错误;D、x3•x=x4,故本选项正确.故选:D.【点评】本题考查了整式的混合运算,熟记法则是解题的关键.3.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去【分析】根据全等三角形的判定,已知两角和夹边,就可以确定一个三角形.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.最省事的方法是应带③去,理由是:ASA.故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时要根据已知条件进行选择运用.4.要测量圆形工件的外径,工人师傅设计了如右图所示的卡钳,O为卡钳两柄交点,且有OA=OB=OC=OD,如果圆形工件恰好通过卡钳AB,则这个工件的外径必是CD之长了,其中的依据是全等三角形的判定条件()A.ASA B.AAS C.SAS D.SSS【分析】连接AB、CD,然后利用“边角边”证明△ABO和△DCO全等,根据全等三角形对应边相等解答.【解答】解:如图,连接AB、CD,在△ABO和△DCO中,,∴△ABO≌△DCO(SAS),∴AB=CD.故选:C.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.5.若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8B.﹣8C.0D.8或﹣8【分析】先根据多项式乘以多项式法则展开式子,并合并,不含x的一次项就是含x项的系数等于0,求解即可.【解答】解:∵(x+m)(x﹣8)=x2﹣8x+mx﹣8m=x2+(m﹣8)x﹣8m,又结果中不含x的一次项,∴m﹣8=0,∴m=8.故选:A.【点评】本题考查了多项式乘以多项式的法则,根据不含某一项就是说这一项的系数等于0得出是解题关键.6.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)(a+2b)=a2+ab﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b2【分析】根据空白部分的面积等于大正方形的面积减去两个长方形的面积再加上右上角小正方形的面积列式整理即可得解.【解答】解:空白部分的面积:(a﹣b)2,还可以表示为:a2﹣2ab+b2,所以,此等式是(a﹣b)2=a2﹣2ab+b2.故选:C.【点评】本题考查了完全平方公式的几何背景,利用两种方法表示出空白部分的面积是解题的关键.7.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【分析】根据直角三角形两锐角互余求出∠3,再利用“HL”证明Rt△ABC和Rt△ADC全等,根据全等三角形对应角相等可得∠2=∠3.【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选:D.【点评】本题考查了全等三角形的判定与性质,直角三角形两锐角互余的性质,熟练掌握三角形全等的判定方法是解题的关键.8.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BCA=∠DCA C.∠BAC=∠DAC D.∠B=∠D=90°【分析】由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.【解答】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;故选:B.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题关键,即SSS、SAS、ASA、AAS和HL.二、填空题(每小题3分,共21分)9.计算:(x+3)2=x2+6x+9.【分析】根据完全平方公式展开计算即可.【解答】解:(x+3)2=x2+6x+9,故答案为:x2+6x+9.【点评】此题考查完全平方公式,关键是完全平方公式的展开形式.10.计算:22018×0.52018=1.【分析】反用积的乘方的运算法则即可求解.【解答】解:22018×0.52018=(2×0.5)2018=1.故答案为1.【点评】本题考查了积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.即(ab)n=a n b n(n是正整数).注意法则正反两方面的应用.11.命题“两直线平行,同位角相等”的逆命题是真命题.(填“真”或“假”)【分析】将原命题的条件与结论互换即得到其逆命题,然后判断正误即可.【解答】解:∵原命题的条件为:两直线平行,结论为:同位角相等.∴其逆命题为:同位角相等,两直线平行,正确,为真命题,故答案为:真.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.12.如图,已知△EFG≌△NMH,若EF=2.1,则MN= 2.1.【分析】利用全等三角形的性质即可解决问题.【解答】解:∵△EFG≌△NMH,∴MN=EF=2.1,故答案为:2.1.【点评】本题考查全等三角形的性质,解题的关键是熟练掌握基本知识,属于中考基础题.13.(4a2﹣8a)÷2a=2a﹣4.【分析】根据整式的除法法则计算即可.【解答】解:(4a2﹣8a)÷2a=2a﹣4,故答案为:2a﹣4.【点评】本题考查了整式的除法,熟记法则是解题的关键.14.若3m=6,9n=2,则3m﹣2n=3.【分析】根据3m=6,9n=2,可以求得所求式子的值.【解答】解:∵3m=6,9n=2,∴3m﹣2n=3m÷32n=3m÷9n=6÷2=3,故答案为:3.【点评】本题考查同底数幂的除法、幂的乘法与积的乘方,解答本题的关键是明确它们各自的计算方法.15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【分析】求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△CAE.三、解答题(本大题共8小题,共63分)16.(6分)先化简,再求值:a(1﹣4a)+(2a+1)(2a﹣1),其中a=4.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:a(1﹣4a)+(2a+1)(2a﹣1)=a﹣4a2+4a2﹣1=a﹣1,当a=4时,原式=4﹣1=3.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.17.(6分)已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C.求证:△ABF≌△DCE.【分析】由BE=CF,两边加上EF,得到BF=CE,利用SAS即可得证.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS).【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.18.(8分)把下列各式分解因式:(1)2x2﹣8x(2)6ab3﹣24a3b【分析】(1)直接提取公因式2x,进而分解因式即可;(2)直接提取公因式6ab,进而利用平方差公式分解因式即可.【解答】解:(1)2x2﹣8x=2x(x﹣4);(2)6ab3﹣24a3b=6ab(b2﹣4a2)=6ab(b﹣2a)(b+2a).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.19.(8分)已知x+y=5,xy=1.(1)求x2+y2的值.(2)求(x﹣y)2的值.【分析】(1)原式利用完全平方公式变形,将各自的值代入计算即可求出值;(2)原式利用完全平方公式变形,将各自的值代入计算即可求出值.【解答】解:(1)∵x+y=5,xy=1,∴原式=(x+y)2﹣2xy=25﹣2=23;(2)∵x+y=5,xy=1,∴原式=(x+y)2﹣4xy=25﹣4=21.【点评】此题考查了完全平方公式,熟练掌握运算法则是解本题的关键.20.(7分)如图,A、B两个建筑分别位于河的两岸,要测得它们之间距离,可以从B 出发沿河岸画一条射线BF,在BF上截取BC=CD,过D作DE∥AB,使E、A、C在同一条直线上,则DE长就是A、B之间的距离,请你说明道理.【分析】让我们了解测量两点之间的距离的一种方法,只要符合全等三角形全等的条件,方案具有操作性,需要测量的线段和角度在陆地一侧可实施,问题就易解答.【解答】解:∵DE∥AB∴∠A=∠E在ABC和EDC中∴△ABC≌△EDC (AAS)∴AB=DE即DE长就是A、B之间距离【点评】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.21.(7分)如图所示,有两个长度相等的滑梯,左边滑梯BC的高AC与右边滑梯EF水平方向的长度DF相等,两滑梯倾斜角∠ABC和∠DFE有什么关系?【分析】已知Rt△ABC和Rt△DEF中,BC=EF,AC=DF,利用“HL”可判断两三角形全等,根据确定找对应角相等,根据直角三角形两锐角的互余关系,确定ABC与∠DFE的大小关系.【解答】证明:在Rt△ABC和Rt△DEF中,∴Rt△ABC≌Rt△DEF(HL)∴∠ABC=∠DEF又∵∠DEF+∠DFE=90°∴∠ABC+∠DFE=90°即两滑梯的倾斜角∠ABC与∠DFE互余.【点评】本题考查了全等三角形的应用;确定两角的大小关系,通常可证明这两角所在的三角形全等,根据对应角相等进行判定.22.(9分)某学校的操场是一个长方形,长为2x米,宽比长少5米,实施“阳光体育”行动以后,学校为了扩大学生的活动场地,让学生能更好地进行体育活动,将操场的长和宽都增加4米.(1)求操场原来的面积是多少平方米(用代数式表示)?(2)若x=20,求操场面积增加后比原来多多少平方米?【分析】(1)根据等式“操场原来的面积=操场的长×宽”列出代数式即可;(2)根据等式“操场增加的面积=(操场的原来的长+4)×(操场原来的宽+4)﹣操场原来的面积”列出代数式,再把x=20代入即可求出.【解答】解:(1)根据题意得:操场原来的面积=2x(2x﹣5);(2)根据题意:操场增加的面积=(2x+4)(2x﹣5+4)﹣2x(2x﹣5)=16x﹣4;则x=20时,16x﹣4=316.答:操场面积增加后比原来多316平方米.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.23.(12分)在△ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明.【分析】(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE,然后根据“AAS”可判断△ADC≌△CEB,所以CD=BE,AD=CE,再利用等量代换得到DE=AD+BE;(2)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CE﹣CD=AD﹣BE;(3)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CD﹣CE=BE﹣AD.【解答】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB,,∴△ADC≌△CEB(AAS),∴CD=BE,AD=CE,∴DE=CE+CD=AD+BE;(2)证明:与(1)一样可证明△ADC≌△CEB,∴CD=BE,AD=CE,∴DE=CE﹣CD=AD﹣BE;(3)解:DE=BE﹣AD.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.2020-2021学年八年级(上)期中数学试卷一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分)1.下列图形具有稳定性的是()A.B.C.D.2.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.113.下列四个图案中,不是轴对称图案的是()A.B.C.D.4.平面直角坐标系中点(﹣2,1)关于x轴的对称点的坐标为()A.(﹣2,﹣1 )B.(2,1)C.(﹣1,2)D.(1,﹣2)5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.96.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC7.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°8.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OA对称,P2与P于OB对称,则△P1OP2的形状一定是()A.直角三角形B.等边三角形C.底边和腰不相等的等腰三角形D.钝角三角形9.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°10.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β二、填空题(每小题3分,共18分)11.已知:等腰三角形的一条边长为2cm,另一条边长为5cm,则它的周长是cm.12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.13.如图,∠ACD是△ABC的一个外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠DCE 的大小是度.14.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是.15.如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC的周长分别是40cm,24cm,则AB=cm.16.请你仔细观察图中等边三角形图形的变换规律,写出你发现关于等边三角形内一点到三边距离的数学事实:.二、解答题:(共52分)17.(5分)如图,在△ABC中,BD⊥AC,垂足为D.∠ABD=54°,∠DBC=18°.求∠A,∠C的度数.18.(6分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.19.(7分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.20.(7分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标;(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹).21.(8分)如图,在△ABC中,AB=AC,E在CA延长线上,AE=AF,AD是高,试判断EF与BC的位置关系,并说明理由.22.(9分)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.23.(10分)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.参考答案与试题解析一、选择题(下列各题的四个选项中,只有一项符合题意,每小题3分,共30分)1.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.【点评】此题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.2.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.3.下列四个图案中,不是轴对称图案的是()A.B.C.D.【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.平面直角坐标系中点(﹣2,1)关于x轴的对称点的坐标为()A.(﹣2,﹣1 )B.(2,1)C.(﹣1,2)D.(1,﹣2)【分析】根据一个点关于x轴对称的点,它横坐标不变,纵坐标互为相反数可以解答本题.【解答】解:点(﹣2,1)关于x轴的对称点的坐标为(﹣2,﹣1),故选:A.【点评】本题考查关于x轴、y轴对称的点的坐标,解答本题的关键是明确一个点关于x轴对称的特点.5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.9【分析】根据多边形内角和公式180°(n﹣2)和外角和为360°可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.【点评】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.7.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°【分析】依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.【解答】解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.【点评】本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.8.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OA对称,P2与P于OB对称,则△P1OP2的形状一定是()A.直角三角形B.等边三角形C.底边和腰不相等的等腰三角形D.钝角三角形【分析】根据轴对称的性质,结合等边三角形的判定求解.【解答】解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形.故选:B.【点评】此题考查了轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.9.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:B.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.二、填空题(每小题3分,共18分)11.已知:等腰三角形的一条边长为2cm,另一条边长为5cm,则它的周长是12cm.【分析】因为已知长度为2cm和5cm两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当2cm为底时,其它两边都为5cm,2cm、5cm、5cm可以构成三角形,周长为12cm;②当2cm为腰时,其它两边为2cm和5cm,∵2+2<5,∴不能构成三角形,故舍去,故答案为:12.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=120°.【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠C=120°,故答案为:120°.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.13.如图,∠ACD是△ABC的一个外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠DCE 的大小是50度.【分析】根据角平分线的定义得到∠ACE=∠ECD,利用三角形的外角性质解答即可.【解答】解:∵∠ACD是△ABC的一个外角,∠A=60°,∠B=40°,∴∠ACD=60°+40°=100°,∵CE平分∠ACD,∴∠ACE=∠ECD=50°,故答案为:50.【点评】本题考查的是三角形的外角的性质,掌握角平分线的定义是解题的关键.14.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是2.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选答案为2.【点评】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.15.如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC的周长分别是40cm,24cm,则AB=16cm.【分析】首先根据DE是AB的垂直平分线,可得AE=BE;然后根据△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,可得△ABC的周长﹣△EBC 的周长=AB,据此求出AB的长度是多少即可.【解答】解:∵DE是AB的垂直平分线,∴AE=BE;∵△ABC的周长=AB+AC+BC,△EBC的周长=BE+EC+BC=AE+EC+BC=AC+BC,∴△ABC的周长﹣△EBC的周长=AB,∴AB=40﹣24=16(cm).故答案为:16.【点评】(1)此题主要考查了垂直平分线的性质,要熟练掌握,解答此题的关键是要明确:垂直平分线上任意一点,到线段两端点的距离相等.(2)此题还考查了等腰三角形的性质,以及三角形的周长的求法,要熟练掌握.16.请你仔细观察图中等边三角形图形的变换规律,写出你发现关于等边三角形内一点到三边距离的数学事实:等边三角形内任意一点到三边的距离之和等于该等边三角形的高.【分析】在这三个图形中,白色的三角形是等边三角形,里边镶嵌着三个黑色三角形.从左向右观察,其中上边两个黑色三角形按照顺时针的方向发生了旋转,但是形状没有发生变化,当然黑色三角形的高也没有发生变化.左起第一个图形里黑色三角形高的和是等边三角形里一点到三边的距离和,最后一个图形里,三个黑色三角形高的和是等边三角形的高.所以,等边三角形里任意一点到三边的距离和等于它的高.【解答】解:由图可知,等边三角形里任意一点到三边的距离和等于它的高.【点评】本题考查了等边三角形的性质;有些题目,虽然形式发生了变化,但是本质并没有改变.我们只要在观察形式变化的过程中,始终注意寻找它的不变量,就可以揭示出事物的本质规律.二、解答题:(共52分)17.(5分)如图,在△ABC中,BD⊥AC,垂足为D.∠ABD=54°,∠DBC=18°.求∠A,∠C的度数.【分析】根据题目中的数据和三角形内角和可以求得∠A和∠C的度数,本题得以解决.【解答】解:∵在△ABC中,BD⊥AC,∠ABD=54°,∴∠BDA=90°,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.3
12.若 x2+mxy+4y2 是完全平方式,则常数 m 的值为( )
A.4 B.﹣4
C.±4 D.以上结果都不对
二、填空题
D.4
13.关于
x
的分式方程
2 x 1
kx x2 1
3 x 1
会产生增根,则
k=_____.
14.若直角三角形的一个锐角为 50°,则另一个锐角的度数是_____度.
15.正多边形的一个外角是 72o ,则这个多边形的内角和的度数是___________________.
二、填空题
13.﹣4 或 6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分 式方程的分母为 0 的根把增根代入化为整式方程的方程即可求出 k 的值【详 解】方程两边都乘(x+1)(x﹣1)得 2(x+1)+kx=3(x﹣
解析:﹣4 或 6 【解析】 【分析】 根据增根是分式方程化为整式方程后产生的使分式方程的分母为 0 的根,把增根代入化为 整式方程的方程即可求出 k 的值. 【详解】 方程两边都乘(x+1)(x﹣1),得 2(x+1)+kx=3(x﹣1),即(k﹣1)x=﹣5, ∵最简公分母为(x+1)(x﹣1), ∴原方程增根为 x=±1, ∴把 x=1 代入整式方程,得 k=﹣4. 把 x=﹣1 代入整式方程,得 k=6. 综上可知 k=﹣4 或 6.
25.某商厦进货员预测一种应季衬衫能畅销市场,就用 8 万元购进这种衬衫,面市后果然 供不应求.商厦又用17.6 万元购进第二批这种衬衫,所购数量是第一批进量的 2 倍,但单价 贵了 4 元.商厦销售这种衬衫时每件定价 58 元,最后剩下150 件按八折销售,很快售完.在
这两笔生意中,商厦共盈利多少元?
DF BC 在 CDF 和 EBC 中, CDF EBC ,
CD EB ∴ CDF≌ EBC(SAS),故①正确; 在 ABCD 中,设 AE 交 CD 于 O,AE 交 DF 于 K,如图:
∵ AB∥CD , ∴ DOA=OAB=60, ∴ DOA=DFO , ∵ OKD=AKF , ∴ ODF=OAF ,
22.解方程:
(1) x 1 2 1
x2
x2
23.列方程解应用题
(2)
1 x 1
2 x 1
4 x2 1
某服装厂准备加工 400 套运动装,在加工完 160 套后,采用新技术,使得工作效率比原计 划提高了 20%,结果共用了 18 天完成任务,那么原计划每天加工服装多少套? 24.如图,AB=AC,MB=MC.直线 AM 是线段 BC 的垂直平分线吗?
故③正确;
CD EA 在 CDF 和 △EAF 中, CDF EAF ,
DF AF ∴ CDF≌ EAF(SAS), ∴ EF=CF , ∵△CDF ≌△EBC , ∴ CE=CF ,
∴ EC=CF=EF , ∴△ECF 是等边三角形,故②正确; 则 CFE=60 , 若 CE DF 时, 则 DFE=CEF=60, ∵ DFA=60=CFE , ∴ CFE DFE DFA=180,
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D 解析:D 【解析】 【分析】 从已知条件进行分析,首先可得△ABE≌△ACF 得到角相等,边相等,运用这些结论,进 而得到更多的结论,最好运用排除法对各个选项进行验证从而确定最终答案. 【详解】 ∵BE⊥AC 于 E,CF⊥AB 于 F ∴∠AEB=∠AFC=90°, ∵AB=AC,∠A=∠A, ∴△ABE≌△ACF(①正确) ∴AE=AF, ∴BF=CE, ∵BE⊥AC 于 E,CF⊥AB 于 F,∠BDF=∠CDE, ∴△BDF≌△CDE(②正确) ∴DF=DE, 连接 AD ∵AE=AF,DE=DF,AD=AD, ∴△AED≌△AFD, ∴∠FAD=∠EAD, 即点 D 在∠BAC 的平分线上(③正确). 故答案选 D.
选:C.
【点睛】 本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用 等腰三角形的性质和垂直平分线的性质是解答的关键.
8.A
解析:A 【解析】 【分析】
先将原代数式进行去括号化简得出 x2 4x 2 ,然后根据 x2 4x 1 0 得出 x2 4x 1,最后代入计算即可.
, ,
即
△ABC 和△DBC 同底等高,
∴
∴
故 A,B,C 正确,D 错误.
故选:D.
【点睛】
考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.
7.C
解析:C
【解析】
【分析】
连接 OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最
后根据等腰三角形的性质,问题即可解决.
【详解】
如图,连接 OB,∵∠BAC=50°,AO 为∠BAC 的平分线,
∴∠BAO= 1 ∠BAC=12×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO 是 AB 的垂直 2
平分线,∴OA=OB,∴∠ABO=∠BAO=25°,
∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO 为∠BAC 的平分线,AB=AC,∴直线 AO
割成( )个三角形.
A.6
B.5
C.8
D.7
11.如图所示,在平行四边形 ABCD 中,分别以 AB、AD 为边作等边△ABE 和等边△ADF,分
别连接 CE,CF 和 EF,则下列结论,一定成立的个数是( )
①△CDF≌△EBC;
②△CEF 是等边三角形;
③∠CDF=∠EAF;
④CE∥DF
A.1
B.2
A. 3
B. 2
C.1
D. 1
9.如图,把一张矩形纸片 ABCD 沿 EF 折叠后,点 A 落在 CD 边上的点 A′处,点 B 落在
点 B′处,若∠2=40°,则图中∠1 的度数为( )
A.115°
B.120°
C.130°
D.140°
10.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分
=x y x xy
x y
= x x y xy
x y
= x2 y
故答案为 C 【点睛】
本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.
4.C
解析:C 【解析】
试题分析:因为这个多边形的每个内角都为 108°,所以它的每一个外角都为 72°,所以它 的边数=360 ÷72=5(边). 考点:⒈多边形的内角和;⒉多边形的外角和.
2020-2021 上海同济初级中学八年级数学上期中试卷附答案
一、选择题
1.如图 2,AB=AC,BE⊥AC 于 E,CF⊥AB 于 F,BE,CF 交于 D,则以下结论: ①△ABE≌△ACF;②△BDF≌△CDE;③点 D 在∠BAC 的平分线上.正确的是( )
A.①
B.②
C.①②
D.①②③
2.下面是一名学生所做的 4 道练习题:① 22 4 ;② a3 a3 a6 ;
5.C
解析:C
【解析】
试题分析:利用多边形的外角和 360°,除以外角的度数,即可求得边数.360÷36=10.
故选 C.
考点:多边形内角与外角.
6.D
解析:D
【解析】
【分析】
根据同底等高判断△ABD 和△ACD 的面积相等,即可得到
,即
,
同理可得△ABC 和△BCD 的面积相等,即
.
【详解】
∵△ABD 和△ACD 同底等高,
④(xy2)3=x3y6,故本小题正确;
综上所述,做对的个数是 1.
故选 A.
点睛:本题考查了有理数的乘方,合并同类项法则,负整数指数次幂的运算,积的乘方的
性质,是基础题,熟记各性质是解题的关键.Fra bibliotek3.C
解析:C 【解析】
【分析】
根据分式的减法和除法可以解答本题
【详解】
xy x2 x y xy
全等三角形对应边相等可得 CE=CF=EF ,判定△ECF 是等边三角形,判定②正确;利 用“8 字型”判定③正确;若 CE DF ,则 C、F、A 三点共线,故④错误;即可得出答
案. 【详解】
在 ABCD 中, ADC=ABC , AD=BC , CD=AB , ∵ ABE、ADF 都是等边三角形, ∴ AD=DF , AB=EB , DFA=ADF=ABE=60 , ∴ DF=BC , CD=BE , ∴ CDF=ADC﹣60 , EBC=ABC﹣60 , ∴ CDF=EBC ,
20.因式分解: a2 (a b) 4(a b) =___.
三、解答题
21.某地有两所大学和两条相交叉的公路,如图所示(点 M,N 表示大学,AO,BO 表示 公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也
相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;
则 C、F、A 三点共线 已知中没有给出 C、F、A 三点共线,故④错误; 综上所述,正确的结论有①②③. 故选:C. 【点睛】 本题主要考查三角形全等的判定与性质,解题的关键是能通过题目所给的条件以及选用合 适的判定三角形全等的方法证明.
12.C
解析:C 【解析】∵(x±2y)2=x2±4xy+4y2, ∴在 x2+mxy+4y2 中,±4xy=mxy, ∴m=±4. 故选 C.
考点:角平分线的性质;全等三角形的判定及性质.
2.A
解析:A 【解析】
分析:根据有理数的乘方,合并同类项法则,负整数指数次幂等于正整数指数幂的倒数,
积的乘方的性质对各小题分析判断即可得解.