二次规划解法
序列二次规划

起作用集方法
起作用集方法
(*****)
起作用集方法
起作用集方法
起作用集方法
起作用集方法
Questions
如何得到(*******)?
Answer
起作用集方法
起作用集方法
Questions
起作用集方法
起作Байду номын сангаас集方法
起作用集方法
起作用集方法
起作用集方法
Algorithm
起作用集方法
(***)
Proof
起作用集方法
起作用集方法
(a)
起作用集方法
(b)
满足(a)的 x* 肯定满足(b),且为满足(b)的 x* 的
一部分,但满足(b)的解是唯一的,所以问题(b)的解 就是问题(a)的解。
Remark
起作用集方法
起作用集方法
Questions
起作用集方法
起作用集方法
序列二次规划法
A characteristic of a large class of early methods is the translation of the constrained problem to a basic unconstrained problem by using a penalty function for constraints that are near or beyond the constraint boundary. In this way the constrained problem is solved using a sequence of parameterized unconstrained optimizations, which in the limit (of the sequence) converge to the constrained problem.
带约束的非线性优化问题解法小结

(1)带约束的非线性优化问题解法小结考虑形式如下的非线性最优化问题(NLP):min f(x)「g j (x )“ jI st 彳 g j (x)=O j L其 中, ^(x 1,x 2...x n )^ R n, f : R n > R , g j :R n > R(j I L) , I 二{1,2,…m }, L ={m 1,m 2...m p}。
上述问题(1)是非线性约束优化问题的最一般模型,它在军事、经济、工程、管理以 及生产工程自动化等方面都有重要的作用。
非线性规划作为一个独立的学科是在上世纪 50年 代才开始形成的。
到70年代,这门学科开始处于兴旺发展时期。
在国际上,这方面的专门性 研究机构、刊物以及书籍犹如雨后春笋般地出现,国际会议召开的次数大大增加。
在我国, 随着电子计算机日益广泛地应用,非线性规划的理论和方法也逐渐地引起很多部门的重视。
关于非线性规划理论和应用方面的学术交流活动也日益频繁,我国的科学工作者在这一领域 也取得了可喜的成绩。
到目前为止,还没有特别有效的方法直接得到最优解,人们普遍采用迭代的方法求解: 首先选择一个初始点,利用当前迭代点的或已产生的迭代点的信息,产生下一个迭代点,一 步一步逼近最优解,进而得到一个迭代点列,这样便构成求解( 1)的迭代算法。
利用间接法求解最优化问题的途径一般有:一是利用目标函数和约束条件构造增广目标 函数,借此将约束最优化问题转化为无约束最优化问题,然后利用求解无约束最优化问题的 方法间接求解新目标函数的局部最优解或稳定点,如人们所熟悉的惩罚函数法和乘子法;另 一种途径是在可行域内使目标函数下降的迭代点法,如可行点法。
此外,近些年来形成的序 列二次规划算法和信赖域法也引起了人们极大的关注。
在文献[1]中,提出了很多解决非线性 规划的算法。
下面将这些算法以及近年来在此基础上改进的算法简单介绍一下。
1. 序列二次规划法序列二次规划法,简称SQ 方法.亦称约束变尺度法。
线性规划常见题型及解法 均值不等式(含答案)

线性规划常见题型及解法一.基础知识:(一)二元一次不等式表示的区域二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧的所有点组成的区域,把直线画成虚线表示不包括边界, 0≥++C By Ax 所表示的区域应包括边界,故边界要画成实线.由于在直线0=++C By Ax 同一侧的所有点(x,y ),把它的坐标(x,y )代入C By Ax ++,所得的符号相同,所以只需在此直线的某一侧取一个特殊点(0,0y x ),从C By Ax ++00的正负即可判断0≥++C By Ax 表示直线哪一侧的平面区域。
通常代特殊点(0,0)。
(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. (5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解. 最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下常见题型。
数学建模十大经典算法( 数学建模必备资料)

建模十大经典算法1、蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。
2、数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、MATLAB软件实现。
4、图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。
这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7、网格算法和穷举法。
网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8、一些连续离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9、数值分析算法。
如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10、图象处理算法。
赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。
历年全国数学建模试题及解法赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A 出版资源配置06B 艾滋病疗法的评价及疗效的预测 07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10A 10B赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B ,某些问题需要使用计算机软件,01A 。
解读支持向量机中的二次规划问题与求解方法

解读支持向量机中的二次规划问题与求解方法支持向量机(Support Vector Machine,简称SVM)是一种常用的机器学习算法,广泛应用于分类和回归问题中。
在SVM的训练过程中,二次规划问题是关键步骤之一,它的解决方法对于SVM的性能和效率具有重要影响。
本文将解读支持向量机中的二次规划问题与求解方法。
一、SVM的基本原理SVM的目标是找到一个超平面,将不同类别的样本分开。
超平面的选择是基于最大间隔原则,即使得样本点到超平面的距离最大化。
为了实现这一目标,SVM将问题转化为一个二次规划问题。
二、二次规划问题的定义给定一组线性约束条件和一个二次目标函数,二次规划问题的目标是找到一组变量的取值,使得目标函数最小化或最大化,同时满足线性约束条件。
在SVM中,二次规划问题的目标是最小化一个二次函数,同时满足一组线性不等式约束。
三、二次规划问题的形式在SVM中,二次规划问题的形式如下:minimize 1/2 * x^T * Q * x + p^T * xsubject to G * x <= hA * x = b其中,x是待求解的变量,Q是一个正定矩阵,p是一个向量,G是一个矩阵,h是一个向量,A是一个矩阵,b是一个向量。
四、求解二次规划问题的方法针对SVM中的二次规划问题,有多种求解方法。
常用的方法包括序列最小最优化(Sequential Minimal Optimization,简称SMO)、内点法等。
1. 序列最小最优化(SMO)SMO是一种迭代的优化算法,通过每次选择两个变量进行优化,并固定其他变量,来求解二次规划问题。
SMO算法的核心思想是将原问题分解为一系列子问题,并通过求解子问题的最优解来逐步逼近原问题的最优解。
SMO算法具有较好的收敛性和高效性,因此在SVM中得到了广泛应用。
2. 内点法内点法是一种基于迭代的优化算法,通过在可行域内搜索最优解来求解二次规划问题。
内点法的核心思想是通过引入松弛变量,将不等式约束转化为等式约束,从而将原问题转化为一个无约束的优化问题。
二次规划基本介绍

BXB CXC b
XB B-1C bB-1
(2) 确定被替换基本变量 x r
bi br 0) min( aik 1i m aik ark
x1 b1 x b r r xm bm
4.3二次规划
Find x min f ( x ) s. t . g ( x ) ≤ 0 ( j 1, 2,, n ) j
非线性约束优化问题
(目标函数—非线性) (约 束—非线性)
非线性优化问题
(目标函数—非线性)
线性约束优化问题
(目标函数—非线性) (约 束—线 性)
有约束优化问题
ai x( k1) bi ai ( x( k ) k d ) bi ai x( k ) bi
ai x ( k 1) bi
二次规划:不等式约束问题的有效集法
二次规划:不等式约束问题的有效集法
二次规划:其它算法简介
这就是K-K-T条件,
P
f (x)
2
x
*
g1 (x)
g1 (x) 0
二次规划
一.二次规划的数学模型 二.二次规划的最优性条件 三.等式约束二次规划的解法 四.不等式约束二次规划的有效集解法 五.其它算法简介
二次规划:最优性条件
二次规划:等式约束问题
二次规划:等式约束问题
二次规划:等式约束问题
单纯形法的小结
(一)线性规划的标准形式: (二)基本概念
m i nz c T x Ax b s.t. x 0 j
T
(1)可行解:满足全部约束条件的决策向量称为可行解。 x ( x1 , x2 ,, xn , ) (2)可行域:全部可行解所构成的空间称为可行域。 (3)最优解:使目标函数达到最小的可行解称为最优解。 (4)无界解:若目标函数无下界称为无界解。
二次规划问题的一个解法及几点注记

二次规划问题的一个解法及几点注记二次规划问题是指在线性规划模型中,目标函数和约束条件均为二次函数的问题。
常见的解法有坐标下降法和半正定性法。
下面是关于二次规划问题的一个解法(坐标下降法)及几点注记。
解法:坐标下降法是一种求解二次规划问题的迭代算法。
基本思路是不断地求解当前点的搜索方向,然后在这个方向上移动,直到找到最优解为止。
具体步骤如下:1.设定初始点 x0,并求出当前点的目标函数值 f(x0)。
2.求解当前点 x0 的搜索方向 d0。
3.设定步长 t,求出下一个点 x1 = x0 + t * d0。
4.求出下一个点 x1 的目标函数值 f(x1),并与当前点 x0的目标函数值 f(x0) 进行比较。
5.若 f(x1) < f(x0),则接下来以 x1 为当前点,重复步骤 2-5;若 f(x1) ≥ f(x0),则退出迭代。
注记:1.坐标下降法的关键在于如何求解当前点的搜索方向d0。
一般来说,当前点的搜索方向 d0应该是当前点的二次梯二次规划问题的一个解法及几点注记:继续上文:注记:1.坐标下降法的关键在于如何求解当前点的搜索方向d0。
一般来说,当前点的搜索方向 d0应该是当前点的二次梯度的负方向,即 d0 = -∇2f(x0)。
2.坐标下降法的收敛速度取决于步长 t的取值。
常用的方法有常数步长法和自适应步长法。
常数步长法是指固定步长t,而自适应步长法是指根据当前点的目标函数值变化情况来调整步长 t。
3.坐标下降法的收敛性是指随着迭代次数的增加,目标函数的值会逐渐降低。
但是,坐标下降法并不能保证收敛到全局最优解,只能保证收敛到局部最优解。
4.坐标下降法的迭代次数一般较多,但是每次迭代的计算量较小,因此坐标下降法适用于线性规划问题规模较大的情况。
希望这些内容能为你的学习提供帮助!。
cvxopt库中的solvers.qp数学原理

cvxopt库中的solvers.qp数学原理全文共四篇示例,供读者参考第一篇示例:cvxopt是一个用于凸优化的Python库,其solvers模块中的qp 函数是用于求解二次规划问题的。
在实际的数学优化问题中,二次规划问题是一类常见且重要的问题,其形式可以表示为:minimize 0.5 * x^T P x + q^T xsubject to Gx <= hAx = b其中,P是一个对称半正定矩阵,q是一个列向量,G和A是矩阵,h和b分别是满足不等式约束和等式约束的列向量。
在cvxopt的qp函数中,采用的是一种称为内点方法的求解算法。
内点方法是一种高效的求解凸优化问题的方法,其基本思想是通过引入松弛变量来将原始问题转化为等价的可行性问题,然后利用迭代的方式逼近最优解。
在每一步迭代中,将原始问题转化为一系列的线性规划子问题,并利用牛顿方法求解这些线性规划子问题。
通过不断迭代,最终达到原始问题的最优解。
具体来说,cvxopt的qp函数首先将原始二次规划问题表示为标准形式:minimize 0.5 * x^T P x + q^T xsubject to Gx <= hAx = b然后,使用内点方法逐步逼近最优解。
在每一步迭代中,首先构造一个Karush-Kuhn-Tucker(KKT)系统,包括原始问题和拉格朗日乘子的一阶和二阶导数关系。
然后,利用牛顿方法来解这个KKT系统,得到更新的解向量和拉格朗日乘子。
通过不断迭代以上步骤,最终收敛到原始问题的最优解。
需要注意的是,在求解过程中,cvxopt的qp函数会处理约束条件的线性等式和不等式,以及对不等式约束使用Slack变量进行松弛处理。
同时,还要注意到内点方法的迭代次数和收敛性与问题的复杂度有关,对于大规模的问题可能需要更多的迭代次数来求解。
总的来说,cvxopt库中的solvers模块提供了一个强大而高效的二次规划求解工具,采用了内点方法来求解问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、对于二次规划模型求解:
问题1:
先求出ij c ,结果如下表:
330.7 320.3 300.2 258.6 198 180.5 163.1 181.2 224.2 252 256 266 281.2 288 302 370.7 360.3 345.2 326.6 266 250.5 241 226.2 269.2 297 301 311 326.2 333 347 385.7 375.3 355.2 336.6 276 260.5 251 241.2 203.2 237 241 251 266.2 273 287 420.7 410.3 395.2 376.6 316 300.5 291 276.2 244.2 222 211 221 236.2 243 257 410.7 400.3 380.2 361.6 301 285.5 276 266.2 234.2 212 188 206 226.2 228 242 415.7 405.3 385.2 366.6 306 290.5 281 271.2 234.2 212 201 195 176.2 161 178 435.7 425.3 405.2 386.6 326 310.5 301 291.2 259.2 237 226 216 198.2 185 162
由于二次规划模型中约束条件151
{0}[500,],1,2,7,ij i j X s i =∈=∑的存
在,必须加以处理。
引进0-1变量15,...2,1,=i n i ,则
151{0}[500,],1,2,7,ij i j X
s i =∈=∑可以等价转换为下面的三个约束条件:
i j ij s X
≤∑=151
i j ij Mn X ≤∑=151
i j ij
n X
*500151≥∑= 其中M 为一个很大数。
这样就可以得到下面的lingo 程序:
sets :
s/1..7/:sx;
a/1..15/:z,y,n,t;
links(s,a):c,x;
endsets
data:
sx=800 800 1000 2000 2000 2000 3000;
t=104 301 750 606 194 205 201 680 480 300 220 210 420 500 0;
c=330.7 320.3 300.2 258.6 198 180.5 163.1 181.2 224.2 252 256 266 281.2 288 302
370.7 360.3 345.2 326.6 266 250.5 241 226.2 269.2 297 301 311 326.2 333 347
385.7 375.3 355.2 336.6 276 260.5 251 241.2 203.2 237 241 251 266.2 273 287
420.7 410.3 395.2 376.6 316 300.5 291 276.2 244.2 222 211 221 236.2 243 257
410.7 400.3 380.2 361.6 301 285.5 276 266.2 234.2 212 188 206 226.2 228 242
415.7 405.3 385.2 366.6 306 290.5 281 271.2 234.2 212 201 195 176.2 161 178
435.7 425.3 405.2 386.6 326 310.5 301 291.2 259.2 237 226 216 198.2 185 162
;
enddata
!目标函数;
min=@sum(links:c*x)+0.05*@sum(a(j):z(j)*(z(j)+1)+
y(j)*(y(j)+1));
!每个工厂产量的限制;
@for(s(i):@sum(a(j):x(i,j))<=sx);
@for(s(i):@sum(a(j):x(i,j))<=90000000*n(i));
@for(s(i):@sum(a(j):x(i,j))>=500*n(i));
!每个结点运量的限制;
@for(a(j):@sum(s(i):x(i,j))=z(j)+y(j));
!区间长度的限制;
@for(a(j)|j#le#14:z(j+1)+y(j)=t(j));
!初始条件;
z(1)=0;
y(15)=0;
!设置0-1变量;
@for(a(j):@bin(n(j)));
Local optimal solution found at iteration: 5800
Objective value: 1278632.
问题3:
sets:
s/1..7/:sx;
a/1..21/:z,y,n,t;
links(s,a):c,x;
endsets
data:
sx=800 800 1000 2000 2000 2000 3000;
t=104 301 750 606 194 205 201 680 480 300 220 210 420 500 0 0 0 0 0 0 0;
c=330.7 320.3 300.2 258.6 198 180.5 163.1 181.2 224.2 252 256 266 281.2 288 302
220 255 260 265 275 285
370.7 360.3 345.2 326.6 266 250.5 241 226.2 269.2 297 301 311 326.2 333 347
265 300 305 310 320 330
385.7 375.3 355.2 336.6 276 260.5 251 241.2 203.2 237 241 251 266.2 273 287
199 240 245 250 260 270
420.7 410.3 395.2 376.6 316 300.5 291 276.2 244.2 222 211 221 236.2 243 257
240 210 215 220 230 240
410.7 400.3 380.2 361.6 301 285.5 276 266.2 234.2 212 188 206 226.2 228 242
230 187 205 205 220 230
415.7 405.3 385.2 366.6 306 290.5 281 271.2 234.2 212 201 195 176.2 161 178
230 200 183 186 160 150
435.7 425.3 405.2 386.6 326 310.5 301 291.2 259.2 237 226 216 198.2 185 162
245 225 210 215 192 189;
enddata
!目标函数;
min=@sum(links:c*x)+0.05*@sum(a(j):z(j)*(z(j)+1)+ y(j)*(y(j)+1))+0.05*yd1*(yd1+1)
+0.05*yd2*(yd2+1)+0.05*yd3*(yd3+1);
!每个工厂产量的限制;
@for(s(i):@sum(a(j):x(i,j))<=sx);
@for(s(i):@sum(a(j):x(i,j))<=9000000*n(i));
@for(s(i):@sum(a(j):x(i,j))>=500*n(i));
!每个结点运量的限制;
@for(a(j)|j#ne#9 #and# j#ne#11 #and#
j#ne#17:@sum(s(i):x(i,j))=z(j)+y(j));
@sum(s(i):x(i,9))=z(9)+y(9)+yd1;
@sum(s(i):x(i,11))=z(11)+y(11)+yd2;
@sum(s(i):x(i,17))=z(17)+y(17)+yd3;
!区间长度的限制;
@for(a(j)|j#le#14:z(j+1)+y(j)=t(j));
y(16)+yd1=42;
y(17)+yd2=10;
z(17)+y(18)=130;
yd3+y(19)=190;
z(19)+y(20)=260;
z(20)+y(21)=100;
!初始条件;
z(1)=0;
y(15)=0;
z(16)=0;
z(18)=0;
z(21)=0;
!设置0-1变量;
@for(a(j):@bin(n(j)));
Local optimal solution found at iteration: 9263 Objective value: 1411287.。