以太网接口

以太网接口
以太网接口

以太网接口

Quidway? R系列路由器产品上的以太网接口分为传统以太网接口和快速以太网接口两种。

传统以太网接口符合10Base-T物理层规范,工作速率为10Mbit/s,有全双工和半双工两种工作方式。

快速以太网接口符合100Base-TX物理层规范,兼容10Base-T物理层规范,可以在10Mbit/s、100Mbit/s两种速率下工作,有半双工和全双工两种工作方式。它具有自动协商模式,可以与其它网络设备协商确定工作方式和速率,自动选择最合适的工作方式和速率,从而可以大大简化系统的配置和管理。

传统以太网接口的配置与快速以太网接口的配置基本相同,但前者配置简单,配置项较少。

具体模块

●低端R1600/2500E/4001E系列路由器的固定以太网口,都是10M以太网口。

●R2600/3600/1700系列支持的以太网口包括:1FE和2FE两种。

1FE/2FE是1/2端口10Base-T/100Base-TX快速以太网接口模块的简称,其中FE(Fast Ethernet)是快速以太网的英文缩写。FE模块主要用于完成路由器与局域网的通信。

●R1760、R2611支持的SIC接口卡(小卡):SIC-1FEA

图4 以太网电缆

因使用情况不同又可将以太网线分为标准网线(即直通网线)和交叉网线两种,分别介绍如下:

● 标准网线:又称直通网线,两端RJ-45接头压接的双绞线的线序完全相同,用于

终端设备(如PC 、路由器等)到HUB 或LAN Switch 的连接。路由器随机提供的网线为标准网线。

● 交叉网线: 两端RJ-45接头压接的双绞线的线序不相同,用于终端设备(如PC 、

路由器等)到终端设备(如PC 、路由器等)的连接。用户需要可以自行制作。

接口参数

表11FE/2FE模块接口属性

表2SIC-1FEA接口属性

经典中的经典 以太网电接口采用UTP设计的EMC设计指导书

?以太网电接口采用UTP设计的EMC设计指导书 一、UTP(非屏蔽网线)的介绍 非屏蔽网线由两根具有绝缘保护层的铜导线组成,两根绝缘铜导线按照一定密度绞在一起,每一根导线在传输中辐射的电波会与另外一根的抵消,这样可降低信号的干扰程度。 用来衡量UTP的主要指标有: 1、衰减:就是沿链路的信号损失度量。 2、近端串扰:测量一条UTP链路对另一条的影响。 3、直流电阻。 4、衰减串扰比(ACR)。 5、电缆特性。 二、10/100/1000BASE-T以太网电接口原理图设计 10/100/1000BASE-T以太网口电路按照连接器的种类网口电路可以分为:网口变压器集成在连接器里的网口电路和网口变压器不集成在连接器里的网口电路。 1、网口变压器未集成在连接器里的网口电路原理图 网口电路主要包括PHY芯片,网口变压器,网口连接器三部分,图中左侧的八个49.9Ω的电阻是差分线上的终端匹配电阻,其阻值的大小由差分线的特性阻抗决定,当变压器内的线圈匝数发生变化时,其阻值也跟随变化,保证两者的阻抗匹配。由电容组成的差模、共模滤波器可以增强EMC性能。在线圈的中心抽头处接的电容可以有效的改善电路的抗EMC性能,合理的选择电容值可以使电路的EMC做到最优。电路的右侧四个75Ω的电阻是电路的共模阻抗。 2、网口变压器集成在连接器里的网口电路原理图

网口电路主要包括PHY芯片,网口连接器两部分,网口变压器部分集成在接口内部,同样左侧的49.9Ω的电阻阻值也是由变压器的匝数及差分线的特性阻抗决定的。中间的电容组成共模、差模滤波器,滤除共模及差模噪声。75Ω的共模电阻也集成在网口连接器的内部。 3、网口指示灯电路原理图 带指示灯的以太网口电路原理图与不带指示灯灯的大致相同,只是多出指示灯的驱动电路。 注意点: 1)、两个匹配电阻是否需要根据PHY层芯片决定,如有的PHY层芯片内部集成匹配电阻就不需要。匹配电阻是接地还是接电源也是由PHY芯片决定,一般接电源。 2)、芯片侧中间抽头需要通过磁珠串接电源,并且注意每一路接一个磁珠,并通过电容0.01-0.1uf接数字地。 3)、点灯部分电路,link和ACT灯走线要加磁珠处理,同时供电电源也要加磁珠处理。但所有显示驱动灯的电源可以共用一个磁珠。 4)、变压器与连接器部分的匹配电阻75欧姆和50欧姆精度可以放低到5%。

以太网EMC接口电路设计与PCB设计说明

以太网EMC接口电路设计及PCB设计 我们现今使用的网络接口均为以太网接口,目前大部分处理器都支持以太网口。目前以太网按照速率主要包括10M、10/100M、1000M三种接口,10M应用已经很少,基本为10/100M所代替。目前我司产品的以太网接口类型主要采用双绞线的RJ45接口,且基本应用于工控领域,因工控领域的特殊性,所以我们对以太网的器件选型以及PCB设计相当考究。从硬件的角度看,以太网接口电路主要由MAC(Media Access Controlleroler)控制和物理层接口(Physical Layer,PHY)两大部分构成。大部分处理器内部包含了以太网MAC控制,但并不提供物理层接口,故需外接一片物理芯片以提供以太网的接入通道。面对如此复杂的接口电路,相信各位硬件工程师们都想知道该硬件电路如何在PCB上实现。 下图1以太网的典型应用。我们的PCB设计基本是按照这个框图来布局布线,下面我们就以这个框图详解以太网有关的布局布线要点。 图1 以太网典型应用 1.图2网口变压器没有集成在网口连接器里的参考电路PCB布局、布线图,下面就以图2介绍以太网电路的布局、布线需注意的要点。 图2 变压器没有集成在网口连接器的电路PCB布局、布线参考 a)RJ45和变压器之间的距离尽可能的短,晶振远离接口、PCB边缘和其他的高频设备、走线或磁性元件周围,PHY层芯片和变压器之间的距离尽可能短,但有时为了

顾全整体布局,这一点可能比较难满足,但他们之间的距离最大约10~12cm,器件布局的原则是通常按照信号流向放置,切不可绕来绕去; b)PHY层芯片的电源滤波按照要芯片要求设计,通常每个电源端都需放置一个退耦电容,他们可以为信号提供一个低阻抗通路,减小电源和地平面间的谐振,为了让电容起到去耦和旁路的作用,故要保证退耦和旁路电容由电容、走线、过孔、焊盘组成的环路面积尽量小,保证引线电感尽量小; c)网口变压器PHY层芯片侧中心抽头对地的滤波电容要尽量靠近变压器管脚,保证引线最短,分布电感最小; d)网口变压器接口侧的共模电阻和高压电容靠近中心抽头放置,走线短而粗(≥15mil); e)变压器的两边需要割地:即RJ45连接座和变压器的次级线圈用单独的隔离地,隔离区域100mil以上,且在这个隔离区域下没有电源和地层存在。这样做分割处理,就是为了达到初、次级的隔离,控制源端的干扰通过参考平面耦合到次级; f)指示灯的电源线和驱动信号线相邻走线,尽量减小环路面积。指示灯和差分线要进行必要的隔离,两者要保证足够的距离,如有空间可用GND隔开; g)用于连接GND和PGND的电阻及电容需放置地分割区域。 2.以太网的信号线是以差分对(Rx±、Tx±)的形式存在,差分线具有很强共模抑制能力,抗干扰能力强,但是如果布线不当,将会带来严重的信号完整性问题。下面我们来一一介绍差分线的处理要点: a)优先绘制Rx±、Tx±差分对,尽量保持差分对平行、等长、短距,避免过孔、交叉。由于管脚分布、过孔、以及走线空间等因素存在使得差分线长易不匹配,时序会发生偏移,还会引入共模干扰,降低信号质量。所以,相应的要对差分对不匹配的情况作出补偿,使其线长匹配,长度差通常控制在5mil以内,补偿原则是哪里出现长度差补偿哪里; b)当速度要求高时需对Rx±、Tx±差分对进行阻抗控制,通常阻抗控制在100Ω±10%; c)差分信号终端电阻(49.9Ω,有的PHY层芯片可能没有)必须靠近PHY层芯片的Rx±、Tx±管脚放置,这样能更好的消除通信电缆中的信号反射,此电阻有些接电源,有些通过电容接地,这是由PHY芯片决定的; d)差分线对上的滤波电容必须对称放置,否则差模可能转成共模,带来共模噪声,且其走线时不能有stub ,这样才能对高频噪声有良好的抑制能力。

以太网接口PCB设计经验分享

以太网口PCB布线经验分享 目前大部分32 位处理器都支持以太网口。从硬件的角度看,以太网接口电路主要由 MAC 控制器和物理层接口(Physical Layer ,PHY )两大部分构成,目前常见的以太网接口 芯片,如LXT971 、RTL8019 、RTL8201、RTL8039、CS8900、DM9008 等,其内部结构也 主要包含这两部分。 一般32 位处理器内部实际上已包含了以太网MAC 控制,但并未提供物理层接口,因此,需外接一片物理层芯片以提供以太网的接入通道。 常用的单口10M/100Mbps 高速以太网物理层接口器件主要有RTL8201、LXT971 等,均提供MII 接口和传统7 线制网络接口,可方便的与CPU 接口。以太网物理层接口器件主 要功能一般包括:物理编码子层、物理媒体附件、双绞线物理媒体子层、10BASE-TX 编码/ 解码器和双绞线媒体访问单元等。 下面以RTL8201 为例,详细描述以太网接口的有关布局布线问题。 一、布局 CPU M A RTL8201 TX ± 变 压 RJ45 网口 器 C RX± 1、RJ45和变压器之间的距离应当尽可能的缩短. 2、RTL8201的复位信号Rtset 信号(RTL8201 pin 28 )应当尽可能靠近RTL8021,并且,如果可能的话应当远离TX+/-,RX+/-, 和时钟信号。 3、RTL8201的晶体不应该放置在靠近I/O 端口、电路板边缘和其他的高频设备、走线或磁性 元件周围. 4、RTL8201和变压器之间的距离也应该尽可能的短。为了实际操作的方便,这一点经常被放弃。但是,保持Tx±, Rx±信号走线的对称性是非常重要的,而且RTL8201和变压器之间的距离需要保持在一个合理的范围内,最大约10~12cm。 5、Tx+ and Tx- (Rx+ and Rx-) 信号走线长度差应当保持在2cm之内。 二、布线 1、走线的长度不应当超过该信号的最高次谐波( 大约10th) 波长的1/20 。例如:25M的时钟走线不应该超过30cm,125M信号走线不应该超过12cm (Tx ±, Rx ±) 。 2、电源信号的走线( 退耦电容走线, 电源线, 地线) 应该保持短而宽。退耦电容上的过孔直径 最好稍大一点。 3、每一个电容都应当有一个独立的过孔到地。 4、退耦电容应当放在靠近IC的正端(电源),走线要短。每一个RTL8201 模拟电源端都需要退耦电容(pin 32, 36, 48). 每一个RTL8201 数字电源最好也配一个退耦电容。 5、Tx±, Rx ±布线应当注意以下几点: (1)Tx+, Tx- 应当尽可能的等长,Rx+, Rx- s 应当尽可能的等长; (2) Tx±和Rx±走线之间的距离满足下图: (3) Rx±最好不要有过孔, Rx ±布线在元件侧等。

工业以太网简介

工业以太网简介: 工业以太网就是基于IEEE 802、3 (Ethernet)得强大得区域与单元网络。利用工业以太网,SIMATIC NET 提供了一个无缝集成到新得多媒体世界得途径。 企业内部互联网(Intranet),外部互联网(Extranet),以及国际互联网(Internet) 提供得广泛应用不但已经进入今天得办公室领域,而且还可以应用于生产与过程自动化。继10M波特率以太网成功运行之后,具有交换功能,全双工与自适应得100M波特率快速以太网(Fast Ethernet,符合IEEE 802、3u 得标准)也已成功运行多年。采用何种性能得以太网取决于用户得需要。通用得兼容性允许用户无缝升级到新技术。 为用户带来得利益 :市场占有率高达80%,以太网毫无疑问就是当今LAN(局域网)领域中首屈一指得网络。以太网优越得性能,为您得应用带来巨大得利益: 通过简单得连接方式快速装配。 通过不断得开发提供了持续得兼容性,因而保证了投资得安全。 通过交换技术提供实际上没有限制得通讯性能。 各种各样联网应用,例如办公室环境与生产应用环境得联网。 通过接入WAN(广域网)可实现公司之间得通讯,例如,ISDN 或Internet 得接入。 SIMATIC NET基于经过现场应用验证得技术,SIMATIC NET已供应多于400,000个节点,遍布世界各地,用于严酷得工业环境,包括有高强度电磁干扰得区域。 工业以太网络得构成 :一个典型得工业以太网络环境,有以下三类网络器件: ◆网络部件 连接部件: ?FC 快速连接插座 ?ELS(工业以太网电气交换机) ?ESM(工业以太网电气交换机) ?SM(工业以太网光纤交换机) ?MC TP11(工业以太网光纤电气转换模块) 通信介质:普通双绞线,工业屏蔽双绞线与光纤 ◆ SIMATIC PLC控制器上得工业以太网通讯外理器。用于将SIMATIC PLC连接到工 业以太网。 ◆ PG/PC 上得工业以太网通讯外理器。用于将PG/PC连接到工业以太网。 工业以太网重要性能:为了应用于严酷得工业环境,确保工业应用得安全可靠,SIMATIC NET 为以太网技术补充了不少重要得性能: ?工业以太网技术上与IEEE802、3/802、3u兼容,使用ISO与TCP/IP 通讯协议?10/100M 自适应传输速率 ?冗余24VDC 供电 ?简单得机柜导轨安装 ?方便得构成星型、线型与环型拓扑结构 ?高速冗余得安全网络,最大网络重构时间为0、3 秒 ?用于严酷环境得网络元件,通过EMC 测试 ?通过带有RJ45 技术、工业级得Sub-D 连接技术与安装专用屏蔽电缆得Fast Connect连接技术,确保现场电缆安装工作得快速进行 ?简单高效得信号装置不断地监视网络元件 ?符合SNMP(简单得网络管理协议) ?可使用基于web 得网络管理 ?使用VB/VC 或组态软件即可监控管理网络。 工业以太网冗余原理

以太网通信接口电路设计规范

目录 1目的 (3) 2范围 (3) 3定义 (3) 3.1以太网名词范围定义 (3) 3.2缩略语和英文名词解释 (3) 4引用标准和参考资料 (4) 5以太网物理层电路设计规范 (4) 5.1:10M物理层芯片特点 (4) 5.1.1:10M物理层芯片的分层模型 (4) 5.1.2:10M物理层芯片的接口 (5) 5.1.3:10M物理层芯片的发展 (6) 5.2:100M物理层芯片特点 (6) 5.2.1:100M物理层芯片和10M物理层芯片的不同 (6) 5.2.2:100M物理层芯片的分层模型 (6) 5.2.3:100M物理层数据的发送和接收过程 (8) 5.2.4:100M物理层芯片的寄存器分析 (8) 5.2.5:100M物理层芯片的自协商技术 (10) 5.2.5.1:自商技术概述 (10) 5.2.5.2:自协商技术的功能规范 (11) 5.2.5.3:自协商技术中的信息编码 (11) 5.2.5.4:自协商功能的寄存器控制 (14) 5.2.6:100M物理层芯片的接口信号管脚 (15) 5.3:典型物理层器件分析 (16) 5.4:多口物理层器件分析 (16) 5.4.1:多口物理层器件的介绍 (16) 5.4.2:典型多口物理层器件分析。 (17) 6以太网MAC层接口电路设计规范 (17) 6.1:单口MAC层芯片简介 (17) 6.2:以太网MAC层的技术标准 (18) 6.3:单口MAC层芯片的模块和接口 (19) 6.4:单口MAC层芯片的使用范例 (20) 71000M以太网(单口)接口电路设计规范 (21) 8以太网交换芯片电路设计规范 (21) 8.1:以太网交换芯片的特点 (21) 8.1.1:以太网交换芯片的发展过程 (21) 8.1.2:以太网交换芯片的特性 (22) 8.2:以太网交换芯片的接口 (22) 8.3:MII接口分析 (23) 8.3.1:MII发送数据信号接口 (24) 8.3.2:MII接收数据信号接口 (25) 8.3.3:PHY侧状态指示信号接口 (25) 8.3.4:MII的管理信号MDIO接口 (25) 8.4:以太网交换芯片电路设计要点 (27) 8.5:以太网交换芯片典型电路 (27) 8.5.1:以太网交换芯片典型电路一 (28)

RJ45以太网接口EMC防雷设计方案

以太网接口EMC设计方案 一、接口概述 RJ45以太网接口是目前应用最广泛的通讯设备接口,以太网口的电磁兼容性能关系到通讯设备的稳定运行。 二、接口电路原理图的EMC设计 百兆以太网接口2KV防雷滤波设计 图1 百兆以太网接口2KV防雷滤波设计 接口电路设计概述: 本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计;从设计层次解决EMC问题;同时此电路兼容了百兆以太网接口防雷设计。 本防雷电路设计可通过IEC61000-4-5或GB17626.5标准,共模2KV,差摸1KV的非屏蔽平衡信号的接口防雷测试。 电路EMC设计说明: (1) 电路滤波设计要点: 为了抑制RJ45接口通过电缆带出的共模干扰,建议设计过程中将常规网络变压器改为接口带有共模抑制作用的网络变压器,此种变压器示意图如下。

图2 带有共模抑制作用的网络变压器 RJ45接口的NC空余针脚一定要采用BOB-smith电路设计,以达到信号阻抗匹配,抑制对外干扰的作用,经过测试,BOB-smith电路能有10个dB左右的抑制干扰的效果。 网络变压器虽然带有隔离作用,但是由于变压器初次级线圈之间存在着几个pF的分布电容;为了提升变压器的隔离作用,建议在变压器的次级电路上增加对地滤波电容,如电路图上C4-C7,此电容取值5Pf~10pF。 在变压器驱动电源电路上,增加LC型滤波,抑制电源系统带来的干扰,如电路图上L1、C1、C2、C3,L1采用磁珠,典型值为600Ω/100MHz,电容取值0.01μF~0.1μF。 百兆以太网的设计中,如果在不影响通讯质量的情况,适当减低网络驱动电压电平,对于EMC干扰抑制会有一定的帮助;也可以在变压器次级的发送端和接收端差分线上串加10Ω的电阻来抑制干扰。 (2) 电路防雷设计要点: 为了达到IEC61000-4-5或GB17626.5标准,共模2KV,差摸1KV的防雷测试要求,成本最低的设计方案就是变压器初级中心抽头通过防雷器件接地,电路图上的D1可以选择成本较低的半导体放电管,但是要注意“防护器件标称电压要求大于等于6V;防护器件峰值电流要求大于等于50A;防护器件峰值功率要求大于等于300 W。注意选择半导体放电管,要注意器件“断态电压、维持电流”均要大于电路工作电压和工作电流。 根据测试标准要求,对于非屏蔽的平衡信号,不要求强制性进行差模测试,所以对于差模1KV以内的防护要求,可以通过变压器自身绕阻来防护能量冲击,不需要增加差模防护器件。 接口电路设计备注: 如果设备为金属外壳,同时单板可以独立的划分出接口地,那么金属外壳与接口地直接电气连接,且单板地与接口地通过1000pF电容相连。

以太网GMII介绍

以太网知识GMII / RGMII接口 本文主要分析MII/RMII/SMII,以及GMII/RGMII/SGMII接口的信号定义,及相关知识,同时本文也对RJ-45接口进行了总结,分析了在10/100模式下和1000M模式下的连接方法。 1. GMII 接口分析 GMII接口提供了8位数据通道,125MHz的时钟速率,从而1000Mbps的数据传输速率。下图定义了RS层的输入输出信号以及STA的信号: 图18 Reconciliation Sublayer (RS) and STA connections to GMII 下面将详细介绍GMII接口的信号定义,时序特性等。由于GMII接口有MAC和PHY模式,因此,将会根据这两种不同的模式进行分析,同时还会对RGMII/TBI/RTBI接口进行介绍。 4.1 GMII接口信号定义 GMII接口可分为MAC模式和PHY模式,一般说来MAC和PHY对接,但是MAC和MAC也是可以对接的。 在GMII接口中,它是用8根数据线来传送数据的,这样在传送1000M数据时,时钟就会125MHz。 GMII接口主要包括四个部分。一是从MAC层到物理层的发送数据接口,二是从物理层到MAC层的接收数据接口,三是从物理层到MAC层的状态指示信号,四是MAC层和物理层之间传送控制和状态信息的MDIO接口。 GMII接口的MAC模式定义:

注意在表7中,信号GTX_CLK对于MAC来说,此时是Output信号,这一点和MII接口中的TX_CLK的Input特性不一致。 GMII接口PHY模式定义: 表8 注意在表8中,信号GTX_CLK对于PHY来说,此时是Input信号,这一点和MII接口中的TX_CLK的Output特性不一致。 4.2 GMII接口时序特性

10GbE以太网介绍

Introduction to 10 Gigabit Ethernet Tim Chung Version 1.0 (FEB, 2010) QSAN Technology, Inc. https://www.360docs.net/doc/481139731.html, White Paper# QWP201003-P500H

lntroduction This document introduces some basic knowledge about 10 Gigabit Ethernet. It includes cable media, MSAs (multi-source agreements, the modularized adapter sets), and the solutions which QSAN provides. Users will learn the knowledge and make the right choice of their needs. Cable media Fiber Basically, optical fiber can be divided into two classifications: single-mode fiber (SMF) and multi-mode fiber (MMF). The comparison table is listed below: Fiber type Core size of cable Distance Light source Benefit Shortcoming Cable color MMF 50 or 62.5 μm Less than 300M Low-cost laser or LED Cheaper, easy to manufacture, lower power consumption Short distances Orange SMF 8~9 μm Over 10Km by diff. fiber standards High power, collimated laser Long distances Expensive, Higher power consumption Yellow The fiber solutions used by 10 Gigabit Ethernet are definded by IEEE 802.3ae. It includes fiber -SR, -LR, -ER, and –LX4. Here we take an example of -SR and –LR. Common name IEEE standard Wavelength (nm) Cable type Distance 10GBASE- SR 802.3ae 850 MMF Up to 300M 10GBASE- LR 802.3ae 1310 SMF 10KM Copper The copper solutions used by 10Gigabit Ethernet are 10BASE-CX4 (IEEE 802.3ak), 10BASE-T (IEEE 802.3an), and the SFP+ Direct Attach. Here is the comparison table. Common name IEEE standard Cable type Distance Benefit Shortcoming 10GBASE-CX4 802.3ak CX4, similar to the one used by InfiniBand? technology 15M Low latency, low cost, low power Short reach, bigger form factor SFP+ DA N/A Passive Twin- Axial (2 pair copper) cables 10M Low latency, low cost, low power small form Short reach

以太网接口和框图详细讲解

实时嵌入式系统 以太网接口及应用

网络层次模型

以太网层次模型

以太网层次功能 物理层:物理层:定义了数据传输与接收所需要的光与电信号光与电信号,,线路状态线路状态,,时钟基准时钟基准,,数据编码电路等编码电路等。。并向数据链路层设备提供标准接口准接口。。 数据链路层数据链路层::提供寻址机制提供寻址机制,,数据帧的构建,数据差错检查数据差错检查,,传输控制传输控制。。向网络层提供标准的数据接口等功能提供标准的数据接口等功能。。

IP 层IP 数据报 以太网的MAC 帧格式在帧的前面插入的8 字节中的第一个字段共7 个字节,是前同步码,用来迅速实现MAC 帧的比特同步。 第二个字段是帧开始定界符,表示后面的信息就是MAC 帧。 MAC 帧物理层 MAC 层以太网V2 MAC 帧 目的地址源地址类型数据FCS 6624字节 46 ~ 150010101010101010 10101010101010101011前同步码帧开始 定界符7 字节 1 字节… 8 字节 插 入 为了达到比特同步,在传输媒体上实际传送的要比MAC 帧还多8 个字节

以太网接口的构成 从硬件的角度看,从硬件的角度看,以太网接口电路主要由MAC MAC控制器和物理层接口控制器和物理层接口控制器和物理层接口((Physical Layer Physical Layer,,PHY PHY))两大部分构成两大部分构成。。 嵌入式网络应用的两种方案 处理器加以太网接口芯片处理器加以太网接口芯片。。芯片如芯片如RTL8019RTL8019RTL8019、、RTL8029RTL8029、、RTL8139RTL8139、、CS8900CS8900、、DM9000DM9000等等,其内部结构也主要包含这两部分部结构也主要包含这两部分。。 自带自带MAC MAC MAC控制器的处理器加物理层接口芯片控制器的处理器加物理层接口芯片控制器的处理器加物理层接口芯片。。如DP83848DP83848、、BCM5221BCM5221、、ICS1893ICS1893等等。

嵌入式系统的以太网接口设计

龙源期刊网 https://www.360docs.net/doc/481139731.html, 嵌入式系统的以太网接口设计 作者:于申申 来源:《硅谷》2011年第17期 摘要:随着网络和嵌入式系统的发展,嵌入式系统与网络的结合已经成为最新的研究方向。使用处理器S3C44B0X和以太网接口芯片RTL8019AS,设计一种通用的嵌入式系统以太网接口设计与实现方案。这种设计结构简单,实现方便,具有很好的实用价值。 关键词: S3C44BOX; RTL8019AS; uCLinux操作系统 中图分类号:TP368 文献标识码:A 文章编号:1671-7597(2011)0910067-01 目前,随着计算机技术、通信技术的飞速发展,以太网以它的普遍性及低廉的接口价格,已经作为一种最通用的网络,广泛应用于生产和生活中。使得我们在计算机进行网络互连的同时,许多领域的嵌入式设备如工业控制、数据采集、数控机床和智能仪表等也有接入网络的需求。伴随着信息家电出现,嵌入式设备的网络化必将拥有更广阔的发展前途。在这个过程里,首先要解决的是嵌入式设备如何实现网络互连。 本文基于常用的嵌人式处理器S3C44B0X和以太网驱动器RTL8019AS以及μClinux系统设计了一款嵌人式以太网接口。该方案和其它设计比较具有高性能、低功耗、软硬件易扩展特点,是当前及今后工业以太网控制器的理想选择方案。本设计的特点是,既可仅用于嵌人式以太网驱动设备,方便简单,又可进行扩展其他模块,必要时可以移植操作系统,应用于其他复杂领域。 1 芯片简介 1.1 S3C44B0X芯片概述 系统的CPU采用S3C44B0X,它是Samsung公司推出的16/32位RISC处理器,采用了ARM7TDMI内核,0.25um工艺的CMOS标准宏单元和存储编译器。S3C44B0X还采用了一种新的总线结构,即SAMBA-II(三星ARM嵌入式微处理器总线结构)。S3C44B0X[1]通过提供全面的、通用的片上外设,大大减少了系统电路中外围元器件配置,从而最小化系统的成本,它为一般应用提供了高性价比和高性能的微处理器解决方案。 由于S3C44B0X微处理器集成了丰富的外设,非常适合控制管理。而μClinux系统又可对多种硬件资源进行控制,加之S3C44B0X对μClinux操作系统的完美支持,故采用了三星公司S3C44B0X芯片作为微处理器。

以太网采用的通信协议

竭诚为您提供优质文档/双击可除以太网采用的通信协议 篇一:以太网基础协议802.3介绍 802.3 802.3通常指以太网。一种网络协议。描述物理层和数据链路层的mac子层的实现方法,在多种物理媒体上以多种速率采用csma/cd访问方式,对于快速以太网该标准说明的实现方法有所扩展。 dixethernetV2标准与ieee的802.3标准只有很小的差别,因此可以将802.3局域网简称为“以太网”。 严格说来,“以太网”应当是指符合dixethernetV2标准的局域网。 早期的ieee802.3描述的物理媒体类型包括:10base2、10base5、10baseF、10baset和10broad36等;快速以太网的物理媒体类型包括:100baset、100baset4和100basex等。 为了使数据链路层能更好地适应多种局域网标准,802委员会就将局域网的数据链路层拆成两个子层: 逻辑链路控制llc(logicallinkcontrol)子层 媒体接入控制mac(mediumaccesscontrol)子层。

与接入到传输媒体有关的内容都放在mac子层,而llc 子层则与传输媒体无关,不管采用何种协议的局域网对llc 子层来说都是透明的。 由于tcp/ip体系经常使用的局域网是dixethernetV2而不是802.3标准中的几种局域网,因此现在802委员会制定的逻辑链路控制子层llc(即802.2标准)的作用已经不大了。 很多厂商生产的网卡上就仅装有mac协议而没有llc协议。 mac子层的数据封装所包括的主要内容有:数据封装分为发送数据封装和接收数据封装两部分,包括成帧、编制和差错检测等功能。 数据封装的过程:当llc子层请求发送数据帧时,发送数据封装部分开始按mac子层的帧格式组帧: (1)将一个前导码p和一个帧起始定界符sFd附加到帧头部分; (2)填上目的地址、源地址、计算出llc数据帧的字节数并填入长度字段len; (3)必要时将填充字符pad附加到llc数据帧后; (4)求出cRc校验码附加到帧校验码序列Fcs中; (5)将完成封装后的mac帧递交miac子层的发送介质访问管理部分以供发送;接收数据解封部分主要用于校验帧

以太网接口防雷电路

以太网接口防雷电路: R701 R /75/1%/0402 R702R /75/1%/0402 RD-R703 R /75/1%/0402 RD+ TD-TD+ U701 SR05-SOT143REF14I/O12I/O2 3 REF21 U702SR05-SOT143REF14I/O12I/O2 3 REF2 1 RD-网络变压器初级浪涌防护 网络变压器初级浪涌防护 C708 C/474M/16V/X7R/0402C709 C/106M/6.3V/X5R/0805D704 TVS/90V/5KA/BF091M/SMD D705 TVS/90V/5KA/BF091M/SMD J700RJ45 10PiN (Plastic) Black P8 A8 P2A7RX-A6P4A4RX+A3TX-A2TX+A1P5A5S2S2 S1S1S3 S3S4S4 D706 TVS/90V/5KA/BF091M/SMD R E F 2 R E F 3 C702 C/102M/2KV D709 TVS/90V/5KA/BF091M/SMD D708 TVS/90V/5KA/BF091M/SMD T D + T C T D - R D - R D + R X -R C R X +R C M T X -T C M T X +T700 T/MT10232ANL/DIP12 1 3 2 1516148 6 7 1011 9RD+ RegOUT1 REF0 TD+ TD-C703 C/102M/2KV R700 R /75/1%/0402 C700 C/102M/2KV C701 C/102M/2KV R714R /49.9/0402/1% C704 C/104K/16V/X7R/0402 网络变压器次级浪涌防护 R715R /49.9/0402/1% C707 C /104K/16V/X7R /0402 R704 R /49.9/0402/1% C705 C/104K/16V/X7R/0402 C706 C /104K/16V/X7R /0402 R705R /49.9/0402/1% REF1 D703 TVS/90V/5KA/BF091M/SMD +3V3 +3V3 说明: 1、 此电路为以太网接口的标准防雷电路,包括了初级和次级防雷保护电路。应用于以太网 口可能接到室外的产品。 2、 此电路要求产品有接大地的接口,如果没有,初级防雷保护电路的共模防护将不起作用。 3、 此电路采用的POE 以太网接口作为例子,C700 – C703使用4个电容为POE 电路考虑, 如果没有POE 电路,可共用为一个电容,请参见普通的以太网接口电路。 4、 防护器件: D703 – D706,D708,D709组成初级防护,接的地为大地,U701、U702构成次级 防护,接的地为数字地。 D703 – D706,D708,D709防护器件典型型号:摈城BF091F 。 防护器件的选择要根据对以太网口的雷击测试要求来定。 电路的简化: 由于在很多认证中,不做以太网接口的差模雷击测试,而在实际使用中,共模雷击 为主要的雷击失效原因,对电路可做简化,去掉D708、D709。 进一步的电路简化:只考虑共模雷击测试和实际使用中的共模雷击防护,最小电路 为:去掉D703、D705、D708、D709、U701、U702,防护器件只保留D704、D706。 在做电路的简化前,需要明确测试和使用的要求,在成本和性能之间取得平衡。

以太网功能介绍

一、前言 为使职业培训和鉴定满足上海城市经济发展的要求,根据目前企业的实际应用需求和技工队伍的现状、以及目前技能鉴定中心的现有基础,编制本方案。 本方案参照国家职业教育电气控制专业培训大纲,以上海市职业培训中心网络控制技术部分的实训要求设置项目的相关内容和要求为依据,结合德国职业技术培训和鉴定的成功经验和手段,强调以检查专业理论知识为基础,以企业的实际应用为题材,以考题的随机性和标准化为特色,考核考生综合处理实际问题的能力,力求以最小的误差,客观评价考生的理论与实践的综合能力,充分体现鉴定中心的考核权威性、课题先进性、手段的科学性和对社会职业培训的指导性。 二、功能定位 2.1 考核鉴定功能: 能反映电气控制技术发展对工厂企业应用的及时性和先进性,以科学的手段对全市相关工种技术工人的考核和等级鉴定,并具备全市相关技能鉴定中心、职业鉴定的标准和指导作用。 2.2 培训功能: 对失业下岗人员和相关专业转岗人员的再就业前和相关人员综合

工种技能的培训功能。 2.3 指导功能: 体现上海工业企业电气控制技术应用的实用性、普遍性,具备全市大、中专院校工科相关专业毕业生的技能测评和就业的适应性和指导性。 2.4 示范功能: 反映中国职业技术培训和鉴定的发展特色,体现国家职业技术培训和鉴定的示范功能,并成为中国职业培训鉴定的国际交流窗口。 三、装置特点 网络技术实训台是为电工工种的高级技师培训而设计,能反映网络控制技术发展对工厂企业应用的及时性和先进性,以科学的手段对全市相关工种技术工人考核鉴定。同时为相关院校电类专业学生实验和课程设计提供培训服务,并为相关专业转岗人员的再就业提供培训服务。 3.1 设计创新式实训: 运用各种模块单元,可灵活组合不同课题、不同要求的实训线路。以模块化的特点强调训练学生在理解基础上灵活解决问题的动手能

以太网电接口EMC设计指导书

以太网电接口采用UTP的EMC设计指导书

目录 前言 (4) 1范围和简介 (5) 1.1范围 (5) 1.2简介 (5) 1.3关键词 (5) 2规范性引用文件 (5) 3术语和定义 (6) 4UTP(非屏蔽网线)的介绍 (6) 510/100BASE-T、1000BASE-T以太网电接口的共模噪声 (7) 610/100/1000BASE-T以太网电接口电路设计 (7) 6.110/100/1000BASE-T以太网电接口原理图设计 (7) 6.1.1网口变压器集成在连接器里的网口电路原理图 (8) 6.1.2网口变压器集成在连接器里的网口电路原理图 (8) 6.1.3网口指示灯电路原理图 (9) 6.1.4带滤波的10/100BaseT以太网口电路原理图 (10) 6.1.5带滤波的1000BaseT以太网口电路原理图 (11) 6.210/100/1000BASE-T以太网电接口PCB布局、布线 (12) 6.2.1网口变压器没有集成在连接器里的网口电路PCB布局、布线规则 12 6.2.2采用一体化连接器的网口电路PCB布局、布线规则 (15) 6.2.3其它的布局、布线建议 (16) 7实际测试案例: (19)

8结论: (22) 9附录: (24) 10参考文献 (26)

前言 本规范的其他系列规范:无 与对应的国际标准或其他文件的一致性程度:无 规范代替或作废的全部或部分其他文件:无 与其他规范或文件的关系:无 与规范前一版本相比的升级更改的内容: 如果是升级规范,则一定要在此处详细描述本版本相对于上一版本更改的内容,如果是第一次制定,则填写“第一版,无升级更改信息”。 本规范由XX部门提出。 本规范主要起草和解释部门: 本规范主要起草专家:格式(部门:姓名(工号)、姓名(工号),部门:姓名(工号)、姓名(工号)......) 本规范主要评审专家:格式(部门:姓名(工号)、姓名(工号),部门:姓名(工号)、姓名(工号)......) 本规范批准部门:XX部门 本规范所替代的历次修订情况和修订专家为: 规范号主要起草专家主要评审专家 姓名(工号)、姓名(工号)姓名(工号)、姓名(工号) 姓名(工号)、姓名(工号)姓名(工号)、姓名(工号)

嵌入式 基于ARM9的以太网接口设计

基于ARM9的以太网接口设计 1课题研究背景 嵌入式系统是以应用为中心和以计算机为基础的,并且软硬件是可裁剪的,能满足应用系统对功能、可靠性、成本、体积、功耗等指标的严格要求的专用计算机系统。随着微电子技术和计算机技术的发展,嵌入式技术得到广阔的发展,已成为现代工业控制、通信类和消费类产品发展的方向。 以太网最典型的应用时以太网和TCP/IP,即灵活的以太网底层加上已经成为通用标准的网路传输协议TCP/IP,使得以太网能够非常容易地集成到以Internet和Web技术为代表的信息中。以太网在实时操作、可靠传输、标准统一等方面的卓越性能及其便于安装、维护简单、不受通信距离限制等优点,已经被国内外很多监控、控制领域的研究人员广泛关注,并在实际应用中展露出显著的优势。 随着嵌入式系统和网路技术的兴起已经飞速发展,使系统的通信有了更好的传输方式——系统通过连接以太网,借助以太网网路通信,成为一个切实可行的办法。 2 网络基础知识 计算机网络概述 计算机网路是由多种计算机和终端设备通过通信线路连接起来的复合系统。并建立了OSI参考模型。如图1所示:

图1 OSI参考模型 OSI模型中的前2层作为软硬件来实现的,后5层则作为软件来实现的。参考模型中低层主要用于处理数据的传输,高层则负责连接的建立和数据的表示。 以太网技术概述 以太网是指数字设备公司、英特尔公司和Xerox公司联合在1982年公布的一个标准,具有传输速率高、网路软件丰富、系统功能强、安装连接简单等很多优点。以太网遵守IEEE802.3网络标准。以太网系统有硬件和软件两部分组成,二者共同实现以太网系统各计算机之间传输信息和共享信息。以太网系统具有介质访问控制协议、接口部件、物理介质、帧传输四个基本要素。 3、嵌入式系统基础知识 嵌入式系统技术的发展、特点及发展趋势 20世纪70年代,以微处理器为核心的微型计算机以其小型、价廉。高可靠性特点,迅速进入市场,基于高速数值计算能力的微型机,表现出的智能化水平引起了各个领域的专业人士的兴趣。为了区别原有的通用计算机系统,把嵌入到对象体系中,实现对象体系智能化控制的计算机,称为嵌入式计算机系统。嵌入性、专用性与计算机系统是嵌入式的三个基本要素。 本文介绍了一个基于三星ARM9芯片S3C2440嵌入式系统的以太网接口电路设计方案,采用了工业级以太网控制器DM9000AE成功实现了嵌入式系统网

DSP的以太网接口设计

TMS320C54x DSP的以太网接口设计 摘要:介绍以太网控制器RTL8019AS的主要性能特点、引脚功能及寄存器,给出了利用RTL8019AS实现TM S320C54x DSP与以太网互连的接口电路,接口方式为跳线模式。通过该接口可实现DSP与DSP或DSP与P C机间的网络互连。 关键词:以太网 DSP 接口 网络变压器 脉冲变压器 YL18-1005D YL18-1001D 以太网产品供应商多、用户组网方便、费用低。以太网是当今最受欢迎的局域网之一,而数字信号处理器(DSP)正加速进入嵌入式应用领域,如何将DSP与以太网连接起来,实现DSP与DSP或DSP与计算机间的网络互连显得非常重要。目前还未见到自带以太网接口的DSP,本文介绍以太网控制器RTL8019AS的主要特点、性能及操作方法,并给出TMS320C54x DSP[1](以下简称C5402)通过RTL8019AS与以太网互连的接 口方法。 1 RTL8019AS介绍 RTL8019AS[2]是台湾readlted公司生产的以太网控制器,支持IEEE802.3;支持8位或16位数据总线;内置16KB的SRAM,用于收发缓冲;全双工,收发同时达到10Mbps;支持10Base5、10Base2、10BaseT,并能自动检测所连接的介质,在ISA总线网卡中占有相当比例。RTL8019AS与主机有3种接口模式,即跳线模式、PnP模式和RT模式。本文主要介绍便于DSP应用的跳线模式,因此下面主要介绍与跳线模式有 关的引脚、寄存器及操作。 1.1 引脚介绍 RTL8019AS可提供100脚的TQFP封装,其引脚可分为电源及时钟引脚、网络介质接口引脚、自举ROM及初始化EEPROM接口引脚、主处理器接口引脚、输出指示及工作方式配置引脚。由于本文主要讨论非PC环境下的以太网接口,该接口不必具有即插即用功能(PnP)和远程自举加载功能,因此不介绍RTL8019AS与自举ROM、初始化EEPROM接口的引脚。其余各部分引脚的功能如表1所示。 表1 RTL8019AS部分引脚 与网络介质接口引脚 AUI 输入 用于外部MAU检测 CD+,CD- 输入 AUI冲突,接收来自MAU的冲突 Rx+,Rx- 输入 AUI接收,接收MAU的输入信号 Rx+,Tx- 输出 AUI发送,往MAU的输出信号 TPRx,TPRx- 输入 从双绞线接收的差分输入信号

以太网通信接口电路设计规范

深圳市XXXX公司技术规范 以太网通信接口电路设计规范 2000-02-28发布 2000-02-28实施 深圳市 XXXX 公司发布 1

本技术规范根据IEEE 802.3标准和XX公司在以太网通信接口电路设计的技术经验编制而成。 本规范于2000年02 月28日首次发布。 本规范起草单位:硬件工程室 本规范主要起草人: 在规范的起草过程中,在此,表示感谢! 本规范批准人: 本规范修改记录: 2

目 录 58 7.2.1:物理编解码子层(PCS ) (57) 7.2:物理层接口(PHY) (51) 7.1.1:1000BASE-X 物理层芯片的寄存器分析 (48) 7.1:适用标准 (48) 7、1000M以太网(单口)接口电路设计规范.....................................426.4.3:10/100M 接口芯片GD 82559ER 的使用范例.. (41) 6.4.2:10M 芯片AM79C961使用范例 (40) 6.4.1:DEC21140使用规范 (40) 6.4:单口MAC 层芯片的使用范例 (39) 6.3:单口 MAC 层芯片的模块和接口 (37) 6.2:以太网 MAC 层的技术标准 (37) 6.1:单口MAC 层芯片简介 (37) 6、以太网MAC层接口电路设计规范 (34) 5.4.2.2:LU3XFTR 芯片分析 (33) 5.4.2.1:BCM5208芯片分析 (33) 5.4.2:典型多口物理层器件分析。 (32) 5.4.1:多口物理层器件的介绍 (32) 5.4:多口物理层器件分析 (25) 5.3.1:100M 物理层接口芯片LXT970A 应用规范 (25) 5.3:典型物理层器件分析 (24) 5.2.6:100M物理层芯片的接口信号管脚 (22) 5.2.5.4: 自协商功能的寄存器控制 (19) 5.2.5.3: 自协商技术中的信息编码 (18) 5.2.5.2: 自协商技术的功能规范 (18) 5.2.5.1: 自商技术概述 (18) 5.2.5:100M 物理层芯片的自协商技术 (16) 5.2.4:100M 物理层芯片的寄存器分析 (15) 5.2.3:100M 物理层数据的发送和接收过程 (14) 5.2.2:100M 物理层芯片的分层模型 (14) 5.2.1:100M 物理层芯片和10M 物理层芯片的不同 (14) 5.2:100M物理层芯片特点 (12) 5.1.4.2:LXT905使用规范 (11) 5.1.4.1:MC68160使用规范 (10) 5.1.4:10M 物理层芯片设计范例 (10) 5.1.3:10M 物理层芯片的发展 (9) 5.1.2:10M 物理层芯片的接口 (9) 5.1.1:10M 物理层芯片的分层模型 (9) 5.1:10M物理层芯片特点 (9) 5、以太网物理层电路设计规范 (7) 4.2:IEEE802协议族 (7) 4.1:以太网的技术标准 (7) 4、引用标准和参考资料 (6) 3.2:缩略语和英文名词解释 (5) 3.1:以太网名词范围定义 (5) 3、定义 (5) 2、范围 (5) 1、目的 (3)

相关文档
最新文档