试验十一电导法测定难溶电解质的溶解度

试验十一电导法测定难溶电解质的溶解度
试验十一电导法测定难溶电解质的溶解度

实验十二 氧化还原反应与电极电势

【目的要求】

1. 掌握根据电极电势判断氧化剂、还原剂的相对强弱,判断氧化还原反应进行的方向。

2.掌握浓度、酸度对电极电势的影响。

3.通过实验加深对氧化还原反应可逆性的理解。

【基本原理】

氧化还原反应的实质是电子转移,物质在溶液中得失电子的能力与氧化还原电对的电极电势有

关。电极电势越大,氧化型物质的氧化能力越强,还原型物质的还原能力越弱,反之亦然。因此,根据电极电势的相对大小,可以判断电对中氧化型物质或还原型物质的氧化能力或还原能力的相对强弱,也可以判断氧化还原反应进行的方向。

电极电势的大小与物质的本性有关。温度、浓度、介质酸度等条件均可导致电极电势的变化。

当温度一定时(T 为298.15K ),浓度与电极电势之间的关系可采用能斯特(Nernst )方程式表

示:

]

[][lg 0592.0还原型氧化型n +=θ?? 介质的酸碱性与某些氧化还原过程有密切关系。

【仪器和药品】

酸度计,锌片,铜片,碳棒,盐桥,0.1mol ·L -1KI , 0.1mol ·L -1FeCl 3, 0.1mol ·L -1KBr , CCl 4,

0.1mol ·L -1FeSO 4, 0.1mol ·L -1KSCN , 0.5mol ·L -1 CuSO 4, 0.5mol ·L -1 ZnSO 4, 3mol ·L -1H 2SO 4,

6mol ·L -1HAc ,0.01mol ·L -1KMnO 4,0.1mol ·L -1Fe(NH 4)2(SO 4)2,0.1mol ·L -1Na 3AsO 3, 0.1mol ·L -1Na 3AsO 4,0.01mol ·L -1I 2,10mol ·L -1NaOH ,3mol ·L -1NH 4F ,溴水,碘液,浓氨水,浓盐酸。

【实验步骤】

1.定性比较电极电势的高低

(1)在试管中加入10滴0.1mol ·L -1

KI 溶液和2滴0.1mol ·L -1 FeCl 3溶液,摇匀后加入

0.5mlCCl 4,充分振荡,观察CCl 4颜色有何变化?用0.1mol ·L -1KBr 代替KI 溶液进行同样的实验,记录现象,判断反应能否发生。

(2)在试管中加入10滴0.1mol ·L -1FeSO 4和数滴溴水,振荡后滴加0.1mol ·L -1KSCN 观察现

象并解释之。用碘液代替溴水进行同样实验,判断反应能否发生。 根据上述实验结果,定性比较-Br Br /2?、-I I /2?和++23/Fe Fe ?三者的相对高低,并指出最强氧化剂、

最强还原剂,说明电极电势与氧化还原反应的关系。

1. 浓度、酸度对电极电势的影响

(1)在两只50ml 烧杯中,分别加入30ml0.5mol ·L -1CuSO 4溶液和30ml0.5mol ·L -1ZnSO 4溶

液,向ZnSO 4溶液中插入锌片,CuSO 4溶液中插入铜片组成两个电极,通过电线把铜片和锌片分别与酸度计的正、负极相联接,插入盐桥沟通两溶液并测量两电极间的电势差。然后,向CuSO 4溶液

中逐滴加入浓氨水至沉淀完全溶解,观察电池两电极的电势差变化。再向ZnSO4溶液中加入浓氨水至沉淀完全溶解,同样,观察电池电极间的电势差变化,并记录。

(2) 在两个各盛有10滴0.1mol·L-1KBr溶液的试管中,分别加入0.5ml 3mol·L-1H2SO4和0.5ml 6mol·L-1HAc,然后向两试管中分别加入2滴0.01mol·L-1KMnO4,观察酸度对其电极电势的影响。

2.浓度、酸度对氧化还原反应方向的影响

(1) 在试管中加入1ml0.1mol·L-1Fe(NH4)2(SO4)2,1ml 0.1mol·L-1KI和0.5ml CCl4溶液,摇匀后观察CCl4层的颜色,然后加入3ml 3mol·L-1NH4F溶液,充分振荡,观察CCl4层颜色变化并解释之。

(2)取两只50ml小烧杯,在一烧杯中加入20ml 0.1mol·L-1Na3AsO4和20ml 0.1mol·L-1Na3AsO3,在另一烧杯中加入0.1mol·L-1KI 20ml和0.01mol·L-1I2液20ml。每一烧杯中各插入一根碳棒,以盐桥联接两溶液,用导线将两电极分别与酸度计的正负极相连。在前一烧杯中逐滴加入浓盐酸,观察指针移动方向,再向该溶液中滴加10mol·L-1NaOH,观察电流方向的改变。

AsO43-+2I-+2H+AsO33-+I2+H2O

【问题讨论】

通过实验总结出影响电极电势的因素。

【附注】

盐桥的制法:称取1g琼脂,放在100ml饱和KCl溶液中浸泡片刻,加热搅拌使成糊状,趁热倒入U型玻璃管中(里面不能有气泡),冷却后即成。

较简便的制作方法是将U型管内装满饱和KCl溶液,以脱脂棉球塞住管口即可使用。

电导法测难溶盐溶解度

电导法测定难溶盐的溶解度 一、实验目的 1.掌握电导法测定难溶盐溶解度的原理和方法 2.掌握电导率仪的使用方法 二、基本原理 惠斯顿电桥 O H pbso pbso 2 4 4 κκκ-=溶液 由电导率仪测出 )]2 1()21 ([2)(24244 - ∞+∞∞+=≈so pb pbso m m m pbso λλλλ 由离子独立移动定律, 查表计算 4 4 )(3pbso pbso m mol C λκ= ?- 或 4 4 1000)(3pbso pbso dm mol C λκ?= ?- 三、装置图 四、操作步骤 1、制备硫酸铅饱和溶液。 2、用0.02mol/L 氯化钾溶液校正电导池常数。 用25℃,0.02mol/lKCL 溶液。查附录二十二,其12765.0-?=m s κ。若实测 12865.0-?=m s κ,则2865.0/2765.0=cell K 。或把电导电极插入KCL 溶液,若显 示12865-?cm us ,只需调“常数”旋钮,使显示为12765-?cm us ,然后把“选择”开关指向“检查”,此时显示值即为cell K 3、测水电导率。 4、测硫酸铅溶液电导率。 )(4pbso m ∞λ=1222421 22110 02.3)]()([2---∞+∞???=+mol m s so pb m m λλ(查附录二十三) 溶解度S=C×M=1.391×10-4×0.303=4.21×10-5 (无单位) 或S=4.21×10-2g/l 六、实验注意事项 1.配制溶液需用电导水(电导率小于1us/cm )。处理方法是,向蒸馏水中加入少量高锰酸钾,用硬质玻璃烧瓶进行蒸馏。 2.饱和溶液必须经三次煮沸制备,以除去可溶性杂质。 3.温度对电导有较大影响,所以测电导率时必须在恒温槽中恒温后方可测定。 4.铂黑电极上的溶液不能擦,用滤纸吸,以免破坏电极表面积。电极不用时,应

电导的测定及其应用实验报告.doc

电导的测定及其应用 一、实验目的 1、测量KCl水溶液的电导率,求算它的无限稀释摩尔电导率。 2、用电导法测量醋酸在水溶液中的解离平衡常数。 3、掌握恒温水槽及电导率仪的使用方法。 二、实验原理 1、电导G可表示为:(1) 式中,k为电导率,电极间距离为l,电极面积为A,l/A为电导池常数Kcell,单位为m-1。 本实验是用一种已知电导率值的溶液先求出Kcell,然后把欲测溶液放入该电导池测出其电导值G,根据(1)式求出电导率k。 摩尔电导率与电导率的关系:(2) 式中C为该溶液的浓度,单位为mol·m-3。 2、总是随着溶液的浓度降低而增大的。 对强电解质稀溶液,(3) 式中是溶液在无限稀释时的极限摩尔电导率。A为常数,故将对c作图得到的直线外推至C=0处,可求得。 3、对弱电解质溶液,(4) 式中、分别表示正、负离子的无限稀释摩尔电导率。 在弱电解质的稀薄溶液中,解离度与摩尔电导率的关系为:(5) 对于HAc,(6) HAc的可通过下式求得: 把(4)代入(1)得:或 以C对作图,其直线的斜率为,如知道值,就可算出K o 三、实验仪器、试剂 仪器:梅特勒326电导率仪1台,电导电极1台,量杯(50ml)2只,移液管(25ml)3只,洗瓶1只,洗耳球1只 试剂:10.00(mol·m-3)KCl溶液,100.0(mol·m-3)HAc溶液,电导水 四、实验步骤

1、打开电导率仪开关,预热5min。 2、KCl溶液电导率测定: ⑴用移液管准确移取10.00(mol·m-3)KCl溶液25.00 ml于洁净、干燥的量杯中,测定其电导率3次,取平均值。 ⑵再用移液管准确移取25.00 ml电导水,置于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。 ⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再准确移入25.00 ml电导水,只于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。 ⑷重复⑶的步骤2次。 ⑸倾去电导池中的KCl溶液,用电导水洗净量杯和电极,量杯放回烘箱,电极用滤纸吸干 3、HAc溶液和电导水的电导率测定: ⑴用移液管准确移入100.0(mol·m-3)HAc溶液25.00 ml,置于洁净、干燥的量杯中,测定其电导率3次,取平均值。 ⑵再用移液管移入25.00 ml已恒温的电导水,置于量杯中,搅拌均匀后,测定其电导率3次,取平均值。 ⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再移入25.00 ml电导水,搅拌均匀,测定其电导率3次,取平均值。 ⑷再用移液管准确移入25.00 ml电导水,置于量杯中,搅拌均匀,测定其电导率3次,取平均值。 ⑸倾去电导池中的HAc溶液,用电导水洗净量杯和电极;然后注入电导水,测定电导水的电导率3次,取平均值。 ⑹倾去电导池中的电导水,量杯放回烘箱,电极用滤纸吸干,关闭电源。 五、数据记录与处理 1、大气压:102.08kPa 室温:17.5℃实验温度:25℃ 已知:25℃时10.00(mol·m-3)KCl溶液k=0.1413S·m-1;25℃时无限稀释的HAc水溶液的摩尔电导率=3.907*10-2(S·m2·m-1) ⑴测定KCl溶液的电导率: ⑵测定HAc溶液的电导率: 电导水的电导率k(H2O)/ (S·m-1):7 *10-4S·m-1

实验九电导法测定弱电解质的解离平衡常数

实验十一 电导率的测定及应用 一 实验目的 1. 测定KCl 水溶液的电导率,求算它的无限稀释摩尔电导率; 2. 用电导法测定醋酸在水溶液中的解离平衡常数; 3. 掌握DDS 一11A 型电导率仪的测量原理和使用方法; 二 实验原理 1. 电解质溶液的导电能力通常用电导G 来表示,它的单位是西门子(Siemens),用符号S (西)表示。若将某.电解质溶液放入两平行电极之间,设电极间距为l ,电极面积为A ,则电导可表示为: G =к l A (11一1) (11一1)式中,к为该电解质溶液的电导率,单位为S ·m -1,它的数值与温度、溶液组成及电解质种类有关;l/A 称为电导池常数;它的单位为m -1。 在讨论电解质溶液的导电能力时,常用摩尔电导率Λm 这个物理量,它与电导率к、溶液浓度c 之间的关系如下: Λm =к/c (11一2) 摩尔电导率的单位为S ·m 2·mol -1. 2. Λm 总是随溶液浓度的降低而增大。对强电解质稀溶液而言,其变化规律用科尔劳施(Kohlrausch)经验公式表示: c A m m -Λ=Λ∞ (11一3) (11一3)式中,Λ m ∞ 为无限稀释摩尔电导率。对特定的电解质和溶剂来说,在一定温度下, A 是一个常数。所以将Λ m 对c 作图得到的直线外推,可求得该强电解质溶液无限稀释摩 尔电导率 Λm ∞ 。 3. 对弱电解质,其Λm ∞ 无法利用(11一3)式通过实验直接测定,而是根据离子独立运动定律,应用强电解质无限稀释摩尔电导率计算出弱电解质无限稀释摩尔电导率,也可以从正、负两种离子的无限稀释摩尔电导率加和求得: ∞ --∞++∞Λ+Λ=Λ,,m m m νν (11一4) (11一4)式中,∞+Λ,m ,∞ -Λ,m 分别表示正、负离子的无限稀释摩尔电导率。不同温度下醋酸溶液Λ m ∞ 见表11一1。 表11一1不同温度下醋酸溶液的Λ m ∞

-实验_电导法测定乙酸电离平衡常数

实验六 电导法测定乙酸电离平衡常数 报告人: 同组人: 实验时间2010年06月12日 一.实验目的: 1.掌握电导、电导率、摩尔电导率的概念以及它们之间的相互关系。 3.掌握电导法测定弱电解质电离平衡常数的原理。 二.实验原理: 1.电离平衡常数K c 的测定原理 在弱电解质溶液中,只有已经电离的部分才能承担传递电量的任务。在无限稀释的溶液中可以认为弱电解质已全部电离,此时溶液的摩尔电导率为∞∧m ,可以用离子的极限摩尔电导率相加而得。而一定浓度下电解质的摩尔电导率∧m 与无限稀释的溶液的摩尔电导率∞∧m 是有区别的,这由两个因素造成,一是电解质的不完全离解,二是离子间存在相互作用力。二者之间有如下近似关系: ∞∧ ∧= m m α (1) 式中为弱电解质的电离度。 对AB 型弱电解质,如乙酸(即醋酸),在溶液中电离达到平衡时,其电离平衡常数K c 与浓度c 和电离度α的关系推导如下: CH 3COOH →CH 3COO - + H + 起始浓度 c 0 0 平衡浓度 c (1-α) c α c α 则 a ca K c -=12 (2) 以式(1)代入上式得:) (Λm m 2ΛΛΛc K m m c -=∞∞ (3) 因此,只要知道∧m ∞ 和∧m 就可以算得该浓度下醋酸的电离常数K c 。 将式(2)整理后还可得: (4) 由上式可知,m m 1/Λm 作图可得一条直线,由 直线斜率可测出在一定浓度范围内c K 的平均值。 2.摩尔电导率∧m 的测定原理 电导是电阻的倒数,用G 表示,单位S (西门子)。电导率则为电阻率的倒数,用k 表 示,单位为G·m -1 。 摩尔电导率的定义为:含有一摩尔电解质的溶液,全部置于相距为1m 的两个电极之间,这时所具有的电导称为摩尔电导率。摩尔电导率与电导率之间有如下的关系。 ∧m = κ/c (5) 式中c 为溶液中物质的量浓度,单位为mol·m -3 。 在电导池中,电导的大小与两极之间的距离l 成反比,与电极的面积A 成正比。 G = κA/ l (6) 由(6)式可得 κ=K cell G (7)

实验六:电导法测弱电解质HAc的电离平衡常数

实验六:电导法测弱电解质得电离平衡常数 一、实验目得: 1、掌握惠斯登电桥法测定电导得原理。 2、学会实验测量得操作技术。 3、学会图解法求算解离度,了解电导测定得应用。 二、实验原理: 电解质溶液得导电能力由电导G来量度,它就是电阻得倒数,即: 电导得单位就是“西门子”,符号为“S”,。 将电解质溶液放入两平行电极之间,若两电极距离为l,电极面积为A,则溶液得电导为: 式中电导率,其物理意义就是l=1m,A=1m2时溶液得电导,其单位为S·m-1。定义电导池系数 则 通常将一个电导率已知得电解质溶液注入电导池中,测其电导,根据上式即可求出K cell。 在研究电解质溶液得导电能力时,经常使用摩尔电导率,其定义为: 式中c为电解质溶液得浓度,得单位就是:S·m2·mol-1。 对于弱电解质(例如醋酸)来说,由于其电导率很小,所以测得得溶液得电导率应包括水得电导率,即 电解质溶液就是由正、负离子得迁移来传递电流得,在弱电解质溶液中,只有解离部分得离子才对电导有贡献,而在无限稀释得溶液中,电解质全部解离,其摩尔电导率就是正、负离子得极限摩尔电导率之与。即 式中ν+,ν-分别为正、负离子得化学计量数,可查表得到。 与得差别来自两个因素,一就是电解质得不完全电离,二就是离子间得相互作用。若溶液中离子浓度很低,彼此相隔较远,相互作用力可以忽略,则与之间得关系可表示为: (推导) 式中α为弱电解质得解离度。 醋酸在水溶液中有下列平衡: 其解离平衡常数为

(推导) 将代入上式整理可得 此式称为奥斯特瓦尔德(Ostwald)稀释定律。改写成线性方程为: 以对作图得一直线,斜率为,截距为,由此可求得与(推导) : 整理可得: 电解质溶液得电导通常利用惠斯登(Wheatston)电桥测量, 但测量时不能用直流电源,因直流电流通过溶液时,导致电化 学反应发生,不但使电极附近溶液得浓度改变引起浓差极化, 还会改变两极得本质。因此必须采用较高频率得交流电,其 频率通常选为1000Hz。另外,构成电导池得两极采用惰性铂 电极,以免电极与溶液间发生化学反应。 惠斯登电桥得线路如图8-1所示,其中S为交流信号发生器, R1、R2与R3就是三个可变交流变阻箱得阻值,R x为待测溶液得阻值,H为耳机(或示波器),C1为在R3上并联得可变电容器,以实现容抗平衡。测定时,调节R1、R2、R3与C1,使H中无电流通过,此时电桥达到了平衡。则有: 即 R x得倒数即为溶液得电导,即 由于温度对溶液得电导有影响,因此实验应在恒温条件下进行。 本实验通过测定0、02mol KCl溶液得电阻,求得电导池系数通过测定水、醋酸溶液得电导G,分别求出其电导率 根据两式计算出各浓度醋酸溶液得,最后以 三、仪器与药品 交流信号发生器1台 恒温槽1台(图) 示波器1台(图) 可变电阻箱1个(图) 电导电极1个(图) 电导池1个(图) 10mL移液管2支 0、02 mol·dm-3氯化钾溶液、0、1 mol·dm-3乙酸溶液、电导水

实验6 电导法测定难溶盐的溶解度

实验10 电导法测定难溶盐的溶解度 一、实验目的 1. 掌握电导法测定难溶盐溶解度的原理和方法。 2. 学会电导率仪的使用方法。 二、基本原理 第二类导体导电能力的大小,常以电阻的倒数表示,即电导: (10.1) 式中G称为电导,单位是西门子S、 导体的电阻与其长度成正比,与其截面积成反比,即: (10.2) 是比例常数,称为电阻率或比电阻。根据电导与电阻的关系,则有: (10.3) k称为电导率或比电导,它相当于两个电极相距1m,截面积为导体的电导,其单位是。 对于电解质溶液,若浓度不同,则其电导亦不同。如取1mol电解质溶液来量度,即可在给定条件下就不同电解质来进行比较。1mol电解质全部置于相距为1m的两个电极之间,溶液的电导称之为摩尔电导,以Λ表示之。如溶液的浓度以C表示,则摩尔电导可以表示为: (10.4) 式中Λm的单位是;C的单位是。Λm的数值常通过溶液的电导率k,经(10.4)式计算得到。而k与电导G有下列关系,由(10.3)式可知: (10.5) 对于确定的电导池来说,是常数,称为电导池常数。电导池常数可通过测定已知电导率的电解质溶液的电导(或电阻)来确定。

溶液的电导常用惠斯顿电桥来测定,线路如图10.1所示。其中S为信号发生器;R1、R2和R3是三个可变电阻,R x为待测溶液的阻值;H为检流计,C1是与R1并联的一个可 变电容,用于平衡电导电极的电容。测定时,调节R1、R2、R3和C1,使检流计H没有电流通过。此时,说明B、D两点的电位相等,有下面的关系式成立: (10.6) Rx的倒数即为该溶液的电导。 本实验测定硫酸铅的溶解度。直接用电导率仪测定硫酸铅饱和溶液的电导率(K溶液)和配制溶液用水的电导率(K水)。因溶液极稀,必须从溶液的电导率(K溶液)中减去水的电导率(K水),即为: K硫酸铅=K溶液-K水(10.7) 根据10.4式,得到: (10.8) 式中:C是难溶盐的饱和溶液的浓度。由于溶液极稀,Λm可视为Λm∞。因此: (10.9) 硫酸铅的极限摩尔电导可以根据数值求得。因温度对溶液的电导有影响,本实验在恒温下测定。 电导测定不仅可以用来测定硫酸铅、硫酸钡、氯化银、碘酸银等难溶盐的溶解度,还可以测定弱电解质的电离度和电离常数,盐的水解度等。 三、仪器和试剂 仪器:恒温槽,电导率仪,电炉一个,锥形瓶两只,试管三支,电导电极。 试剂:二次蒸馏水配制 四、操作步骤

电导测定的基本原理

电导测定的应用 基本原理: 1.弱电解质电离常数的测定 本实验是通过对不同浓度HAc溶液的电导率的测定来确定电离平衡常数 对于HAc,在溶液中电离达到平衡时,电离平衡常数Kc与原始浓度C和电离度α有以下关系: HAc H+ + Ac- t=0 C 0 0 C(1-α) Cα Cα t=t 平衡 K= (Cα)2 =Cα 2 (1) C(1-α) 1-α 当T一定时,K一般为常数,因此,在确定c之后,可通过电解质α的测定求得K。电离度α等于浓度为c时的摩尔电导率Λm与溶液无限稀释时的摩尔电导率之比,即 α=Λm/Λ∞m (2) 将(2)代入(1) K= CΛ2m/ [Λ∞m(Λ∞m-Λm)] (3) 整理得 CΛm = K(Λ∞m)2 (4) Λm- KΛ∞m 以CΛm对1/Λm作图,其直线的斜率为K(Λ∞m)2 ,如知道Λ∞m值(可有文献查得),就可算出K。 文献:25℃时无限稀释的HAc水溶液的摩尔电导率=3.907*10-2(S·m2·m-1) 电解质溶液的导电能力通常用电导G来表示,若将电解质溶液放入两平行电极之间,设电极的面积为A,两电极的间的距离为l,则溶液的电导G为: G = к(A / l) (5) 即к= G * 1 / A = G K cell 来表示,它的式中к为该溶液的电导率,其单位是S.m-1;l/A为电导池常数,以K cell 单位为m-1。 由于电极的l和A不易精确测量,因此在实验中用一种已知电导率的溶液先求出电导池的常数Kcell,然后再把欲测的的溶液放入该电导池中测出其电导值,在根据上式求出其电导率。 在讨论电解质溶液的电导能力时常用摩尔电导率(Λm)这个物理量。摩尔电导率与电导率的关系:

7.电导法测定难溶盐的溶解度(1)资料讲解

7.电导法测定难溶盐 的溶解度(1)

电导法测定难溶盐的溶解度 一、实验目的 1.掌握电导法测定难溶盐溶解度的原理和方法 2.掌握电导率仪的使用方法 二、基本原理 第二类导体导电能力的大小,常以电阻的倒数表示, 即电导: R G 1= (1) 式中G 称为电导,单位是西门子S 、 导体的电阻与其长度成正比,与其截面积 成反比,即: A l R ρ= (2) ρ 是比例常数,称为电阻率或比电阻。 根据电导与电阻的关系,则有:?? ? ??=l A G κ (3) k 称为电导率或比电导κ=1/ρ,它相当于两个电极相距1m ,截面积为 导体的 电导,其单位是。 对于电解质溶液,若浓度不同,则其电导亦不同。如取1mol 电解质溶液来量度,即可在给定条件下就不同电解质来进行比较。1mol 电解质全部置于相距为1m 的两个电极之间,溶液的电导称之为摩尔电导,以Λ表示之。如溶液的浓度以C 表示,则摩尔电导可以表示为: c m κΛ= (4) 式中Λm 的单位是;C 的单位是。Λm 的数值常通过溶液的电导率k ,经(10.4)式计算得到。而k 与电导G 有下列关系,由(10.3)式可知: ?? ? ??=A l G κ 或 A l R ?=1κ (5)

对于确定的电导池来说,l/A 是常数,称为电导池常数。电导池常数可通过测定已知电导率的电解质溶液的电导(或电阻)来确定。 本实验测定硫酸钡的溶解度。直接用电导率仪测定;硫酸钡饱和溶液的电导率(κ溶液)和配制溶液用水的电导率(κ水)。因溶液极稀,必须从溶液的电导率 (κ溶液)中减去水的电导率(κ水),即为: O H Bbso Bbso 244κκκ-=溶液 根据(4)式,得到: C BaSO mBaSO 4 4κ=Λ式中:C 是难溶盐的饱和溶液的浓度。 由于溶液极稀,Λm 可视为Λm∞。 因此: C BaSO mBaSO 4 4κ=Λ∞ 硫酸钡的极限摩尔电导可以查表得。因温度对溶液的电导有影响,本实验在恒温下测定。 三、仪器和试剂 仪器:恒温槽,电导率仪,电炉一个,锥形瓶两只,试管三支,电导电极。 试剂:0.01mol/l 标准氯化钾溶液,BaSO 4(A.R.),电导水。 四、操作步骤 1. 调节恒温槽温度至25±0.1℃。 2.测定电导池常数 用少量0.01mol/L KCl 溶液浸洗电导电极两次,将电极插入盛有适量 0.01mol/L KCl 溶液的锥形瓶中,液面应高于电极铂片2mm 以上.将锥形瓶放入恒温槽内,十分钟后测定电导,然后换溶液再测定两次,求平均值。 3.测定BaSO4溶液的电导率

电导法测定酶活力

电导法测定酶活力 摘要 我们已经测定了脲酶,脂肪酶,葡萄糖苷酶水解过程中的电导率的变化,这些变化严格地与前两个体系中碳酸铵的释放和第三个体系中氨基的数目成正比。电导率的方法运用在酶和各种生理液浓度的测定中。 引言 Sjoquist,Oker-Blom,Henri,des Bancels 和Bayliss 证实了用电导法测定酶活性的可能性。最近,Northrop在他的课程中也用了这种方法研究胃蛋白酶,测定了卵蛋白盐酸盐的的水解,解释了水解底物的依赖性电离,并研究有关机制的胰蛋白酶消化的动力学。Euler 欧拉一直采用这种方法研究甘肽的水解。Bayliss通过研究脲酶,脂肪酶,葡萄糖苷酶的行为证实了电导率的可能性,但没有报道过任何与这些系统相关的研究。 以电导判断为目的,酶反应可以归类为:(1)那些释放强烈电子的,(2)释放那些弱离的电解质,(3)那些传统被认为非电解质的。脲脲酶,sinigrin- myrosin,和丙酮醛-乙二醛是属于第一类,而蛋白质水解系统,会有氨基酸的产生,属于第二类。第三组的代表是碳水化合物和大多数的葡萄糖苷酶,作用于他们各自的底物,释放糖类。该反应属于第一组,显然最适合电导研究。第二组反应有一定的局限性和一定的困难,但是随后能使用一个敏感的设备。第三组反应,就目前来说,超过了其研究的范围,在他们的使用范围内,有一定的优势,在硼酸盐,硫酸盐,和钼酸存在条件下,多元醇像糖一样表现出导电性增强。 最强烈的反对意见,提出了该方法不能研究缓冲系统。反应过程中不仅有因为反应的变化,而且有水解产物的累积,为了确定酶的活性,我们必须关注最初阶段的反应过程,使干扰因素控制在最小值。在这段阶段,电导率的方法也许是唯一一个有任何的优势且可以应用方法。因为它能够给人们提供早期反应阶段的大量数值。由于在这些反应中介质的pH值很少有变化,Northrop在pH值6.2至6.4胰蛋白酶明胶的水解不伴pH值的改变而改变。在低浓度电解质中杂质的存在不影响测量,因为可以选择适当的电导率细胞给出须需要的精度。 与其他物理方法相比,电导率测量有着在反应过程中不受干扰和能适用于极小批量底物中的优势。 实验部分 用目前的方法对脲-脲酶,精氨酸-精氨酸酶-脲酶,蛋白胨-胰蛋白酶-激酶和杨素- 苦杏仁酶进行了研究。 通常采用Kohlrausch电桥法测量电导率。一个校准Kohlrausch滑线,4号电阻箱和一个Arrhenius-Ostwald细胞组成了电路的元件。一个5毫升整数倍的底物溶液对工作是必要的。采用铂电极,提供的细胞是在水中浸泡,恒温维持在30.0 ℃±0.1 ℃。当高频电流源和一个电话的听筒用于零点检测时,提供1000 Hz的音频振荡器被使用。该导电细胞的电容通过一个与电阻箱并联的的空气冷凝器平衡。在反应开始,在很短的时间间隔内读数,后来时间间隔较长。利用相对应的酶底物浓度,大量的实验同时在单一的反应容器进行时。对在一定的时间间隔内从反应容器中倒出的等份反应混合物进行分析。因此该反应过程可由一个完全独立的化学方法而知。 脲-脲酶。利用丙酮使一个百分之一的尿素溶液(Kahlbaum)和大豆脲酶的水溶液沉淀。由Sastri 1935年提出的方法有碳酸铵的释放,包括在丙酮中用标准酒精盐酸溶液(0.1 N)滴定等份反应混合物。 精氨酸-精氨酸酶-脲酶。精氨酸碳酸盐是在5%的d-精氨酸中通入二氧化碳至饱和制备而成的。过量的二氧化碳是通过电解溶液中的氢冒泡而赶出的。因此获得的精氨酸碳酸盐溶液呈稳定电导率值。水溶性萃取液丙酮使公羊肝中的提取物沉淀,因此可作为精氨酸酶的来源。因为脲酶几乎瞬间水解、随着精氨酸分解逐步释放,我们需要使用过多的脲酶以确保反

实验2 电导法测定弱电解质的电离常数

实验二 电导法测定弱电解质的电离常数 一、实验目的 1. 掌握电导测量的原理和方法。 2. 学会使用 DDS-11A 型电导率仪,测定弱电解质电离平衡常数的方法。 二、实验原理 AB 型(如HAc )弱电解质在溶液中的电离达到平衡时, HAc = H + + Ac - c(1-αc ) cαc cαc 其电离平衡常数(K c )与浓度(c )、电离度(αc )之间有如下的关系: c c c c K αα-=12 (1) 在一定温度下K c 是常数,因此可以通过测定AB 型弱电解质在不同浓度时的αc ,代入上式就可以求出K c 。 醋酸溶液的电离度可用电导法测定,溶液的电导用电导率仪测定。测定溶液的电导,要将被测溶液注入电导池中,如图1所示。 图1 浸入式电导池 若两电极间距离为l ,电极的面积为A ,则溶液电导G 为: G=К A/1

式中:К为电导率。电解质溶液的电导率不仅与温度有关,还与溶液的浓度有关。因此常用摩尔电导m λ来衡量电解质溶液的导电能力。m λ与К之间的关系为: m λ=10-3К/c 式中m λ的单位是S·m 2·mol -1,К的单位为S·m -1,c 的单位为mol·dm -3。 对于弱电解质,电离度αc 等于浓度为c 时的摩尔电导(m λ)和溶液在无限稀释时的摩尔电导(∞ m λ )之比,即: ∞ =m m c λλα (2) 将式(2)代入式(1): ) (2 m m m m c c c K λλλλ-=∞∞ c m κλ= ∞∞-?=m c m c K c K λκ λκ2 )( 以κ对 κ c 作图应为一直线,其斜率为2 )(∞m c K λ ,截距为)(∞ m c K λ ,根 据斜率和截距可算出 K c 和 ∞m λ 。 三、仪器及试剂 仪器:恒温装置 1套,DDS-11A 型电导率仪,电导电极,移液管(25 ml 、5 ml 和 1 ml 各 1支),容量瓶(50 ml 5只),250 ml 烧杯1只,洗耳球1只。 药品:0.0100 mol?dm -3 KCl 溶液(KCl 于110℃烘4h ),0.1000 mol?dm -3 HAc 溶液,电导水。

(完整版)实验电导法测难溶盐的溶度积

实验 电导法测难溶盐的溶度积 一、实验目的 1. 掌握电导测定的原理和电导仪的使用方法。 2. 通过实验验证电解质溶液电导与浓度的关系。 3. 掌握电导法测定BaSO 4的溶度积的原理和方法。 二、实验原理 导体导电能力的大小常以电阻的倒数去表示,即有 R G 1= 式中G 称为电导,单位是西门子S 。 导体的电阻与其长度成正比与其截面积成反比即: A l R ρ= ρ是比例常数,称为电阻率或比电阻。根据电导与电阻的关系则有: )(l A G κ= κ称为电导率或比电导 ρκ1 = 对于电解质溶液,浓度不同则其电导亦不同。如取1mol 电解质溶液来量度,即可在给定条件下就不同电解质溶液来进行比较。1mol 电解质溶液全部置于相距为1m 的两个平行电极之间溶液的电导称之为摩尔电导,以λ表示之。如溶液的摩尔浓度以c 表示。则摩尔电导可表示为 c 1000κ λ=

式中λ的单位是S.m 2.mol -1,c 的单位是mol.L -1。λ的数值常通过溶液的电导率k 式计算得到。 G A l =κ 或 R A l 1?=κ 对于确定的电导池来说l/A 是常数,称为电导池常数。电导池常数可通过测定已知电导率的电解质溶液的电导(或电阻)来确定。 在测定电导率时,一般使用电导率仪。使用电导电极置于被测体系中,体系的电导值通过电子线路处理后,通过表头或数字显示。每支电极的电导池常数一般出厂时已经标出,如果时间太长,对于精密的测量,也需进行电导池常数校正。仪器输出的值为电导率,有的电导仪有信号输出,一般为0~10mV 的电压信号。 在测定难溶盐BaSO 4的溶度积时,其电离过程为 BaSO 4 → Ba 2+ + SO 42- 根据摩尔电导率Λm 与电导率κ的关系: )()()(444BaSO c BaSO BaSO m κ=Λ 电离程度极小,认为溶液是无限稀释,则可Λm 用Λm ∞代替。 )()(242-∞+∞∞ +=Λ≈ΛSO Ba m m m m λλ )(),(242-∞ +∞SO Ba m m λλ可通过查表获得。 c ) O H ()() ()(244κκκ-==Λ溶液c BaSO BaSO m 而 )Ba (c )SO (c )BaSO (c 22 44+-== 所以 22 42c )SO (c )Ba (c Ksp =?=-+ 这样,难溶盐的溶度积和溶解度是通过测定难溶盐的饱和溶液的电导率来确定的。很显然,测定的电导率是由难溶盐溶解的离子和水中的H +和OH -所决定的,故还必须要测定电导水的电导率。

电导法测定难溶盐的溶解度

电导法测定难溶盐得溶解度 一、实验目得 1、掌握惠斯顿电桥测定电导得原理及方法 2、掌握电导测定得原理与电导仪得使用方法。 3、学会用电导法测定难溶盐得溶解度 二、基本原理 1、电导法原理 导体导电能力得大小常以电阻得倒数去表示,即有 式中G称为电导,单位就是西门子S。 导体得电阻与其长度成正比与其截面积成反比即: ρ就是比例常数,称为电阻率或比电阻。根据电导与电阻得关系则有: κ称为电导率或比电导,单位:S·m-1 对于电解质溶液,浓度不同则其电导亦不同。如取1mol电解质溶液来量度,即可在给定条件下就不同电解质溶液来进行比较。lmol电解质溶液全部置于相距为1m得两个平行电极之间溶液得电导称之为摩尔电导,以λ表示之。如溶液得摩尔浓度以c表示。则摩尔电导可表示为 式中λ得单位就是S、m2、mol-1,c得单位就是mol、L-1。λ得数值常通过溶液得电导率k式计算得到。 对于确定得电导池来说l/A就是常数,称为电导池常数。电导池常数可通过测定已知电导率得电解质溶液得电导(或电阻)来确定。

本实验测定PbSO4得溶解度,首先测定PbSO4饱与溶液得电导率,因溶液极稀,必须从k溶液中减去水得电导率(kH20): 因为: 则: C就是难溶盐得饱与溶解度,由于溶液极稀,λ可视为λ0 ,因此: PbSO4得极限摩尔电导λ0可以根据离子独立移动定律得: 其中25℃时得可查表得到。 2、惠斯顿电桥测电阻得原理 三、仪器与试剂 DDS—307型电导仪1台; 玻璃恒温水浴1台; 电导电极(铂黑) 1支; 锥形瓶100ml3个 PbSO4饱与溶液重蒸水 四、实验步骤 1、连接好电路 2、测定重蒸水得电导率 取少量重蒸水,浸洗电导电极两次中,将电极插入盛有适量重蒸水得锥形瓶中,液面应高 于电极铂片2mm以上。将锥形瓶放入恒温水槽中,十分钟后测定电导,然后换溶液再测两次,求平均值。 3、测定PbSO4溶液得电导率

实验三 电导法测定难溶盐溶度积

齐齐哈尔大学 化学专业实验 实验题目电导法测定难溶盐的溶度积 院系专业班级化学与化学工程学院化学081班 学生姓名宁连双 同组者姓名陈娜董艳丽龚灿灿刘宝艳刘俊宏鲁亮指导老师陈伟 实验日期2011-10-25

实验三 电导法测定难溶盐的溶度积 一、目的 1、掌握电导法测定难溶盐溶解度的原理和方法。 2、加深对溶液电导概念的理解及电导测定应用的了解。 3、测定在BaSO 4在25℃的溶度积和溶解度。 二、基本原理 1.电导法测定难溶盐溶解度的原理 难溶盐的溶解度很小,其饱和溶液可近似为无限稀,饱和溶液的摩尔电导率m Λ与难溶盐的无限稀释溶液中的摩尔电导率m ∞Λ是近似相等的,即 m Λ≈m ∞ Λ 在一定温度下,电解质溶液的浓度c 、摩尔电导率m Λ与电导率κ的关系为 m c κ Λ= (Ⅰ) 电导率κ与电导G 的关系为 κ= l A G=cell K G (Ⅱ) 确定κ值的方法是:先将已知电导率的标准KCl 溶液装入电导池中,测定其电导G ,由已知电导率κ,从式(Ⅱ)可计算出cell K 值。 难溶盐在水中的溶解度极微,其饱和溶液的电导率κ溶液实际上是盐的正、负离子和溶剂(H 2O )解离的正、负离子(H +和OH -)的电导率之和,在无限稀释条件下有 κ溶液=κ盐+κ水 (Ⅲ) 因此,测定κ溶液后,还必须同时测出配制溶液所用水的电导率κ水 ,才能求得κ盐。 测得κ盐后,由式(Ⅰ)即可求得该温度下难溶盐在水中的饱和浓度c ,经换算即得该难溶盐的溶解度。 2.溶液电导测定原理 电导是电阻的倒数,测定电导实际是测定电阻,采用较高频率的交流电,其频率高于1000Hz 。另外,构成电导池的两极采用惰性铂电极,以免电极与溶液间发生化学反应。 精密的电阻常数用途图1所示的交流平衡电桥测量。其中R x 为电导池两极间的电阻。R 1、R 2、R 3在精密测量中均为交流电阻箱(或高频电阻箱),在简单情况下R 2、R 3可用均匀的滑线电阻代替。这样,R 1、R 2、R 3构成电桥的四个臂,适当调节R 1、R 2、R 3,使C 、E 两点的电位相等,CE 之间无电流通过。电桥达到了平衡,电路中的电阻符合下列关系:

实验6__表面活性剂CMC值的测定——电导法

实验6 表面活性剂CMC值的测定——电导法 一、实验目的: 1、学习并掌握表面活性剂CMC值的电导测定方法; 2、了解表面活性剂的性质与应用; 3、学习电导法测定十二烷基硫酸钠的cmc,了解表面活性剂的特性及胶束形成原理; 4、掌握DDS-11A型电导率仪和恒温槽的使用方法。 二、实验原理: 具有明显“两亲”性质的分子,既含有亲油的足够长的烃基,又含有亲水的极性基团。由这一类分子组成的物质称为表面活性剂,见图1(a)。 表面活性剂为了使自己成为溶液中的稳定分子,有可能采取的两种途径:一是当它们以低浓度存在于某一体系中时,可被吸附在该体系的表面上,采取极性基团向着水,非极性基团脱离水的表面定向,形成定向排列的单分子膜,从而使表面自由能明显降低,见图1(c);二是在表面活性剂溶液中,当溶液浓度增大到一定值时,表面活性剂离子或分子不但在表面聚集而形成单分子层,而且在溶液本体内部也三三两两的以憎水基相互靠拢,聚在一起形成胶束。胶束可以成球状、棒状或层状。形成胶束的最低浓度称为临界胶束浓度(Critical Micelle Concentration, CMC),如图1(b)。 (a) (b) (c) 图1 CMC是表面活性剂的一种重要量度,CMC越小,则表示这种表面活性剂形成胶束所需浓度越低,达到表面(界面)饱和吸附的浓度越低,只有溶液浓度稍高于CMC时,才能充分发挥表面活性剂的作用。比如图2的洗涤去污过程。目前表面活性剂广泛用于石油、纺织、农药、采矿、食品、民用洗涤等各个领域,具有润湿、乳化、洗涤、发泡等重要作用。

图2 表面活性剂的洗涤原理图 由于溶液的结构发生改变,表面活性剂溶液的许多物理化学性质(如表面张力,电导.渗透压,浊度,光学性质等)都会随着胶团的出现而发生突变,原则上,这些物理化学性质随浓度的变化都可以用于测定CMC,常用的方法有表面张力法、电导法、染料法等。本实验采用电导法来测定表面活性剂的CMC值。在溶液中对电导有贡献的主要是带长链烷基的表面活性剂离子和相应的反离子,而胶束的贡献则极为微小。从离子贡献大小来考虑,反离子大于表面活性剂离子。对于浓度低于cmc的表面活性剂稀溶液,电导率的变化规律与强电解质一样,摩尔电导率λm与c、电导率κ与c均成线性关系。当溶液浓度达CMC时,随着溶液中表面活性剂浓度的增加,单体的浓度不再变化,增加的是胶束的个数,由于对电导贡献大的反离子固定于胶束的表面,它们对电导的贡献明显下降,电导率随溶液浓度增加的趋势将会变缓,这就是确定CMC的依据。 因此利用离子型表面活性剂水溶液的电导率随浓度的变化关系,作κ- c曲线,由曲线的转折点求出CMC值。 三、仪器与试剂: L十二烷基硫酸钠溶液; LKCl标准溶液;50ml容量瓶11;50mL烧杯一个;移液管一支);电导率仪一台,恒温槽一台。 四、实验步骤: 1、打开电导率仪开关,预热15min,用KCl标准溶液校正电极常数。 2、调节恒温槽温度为25度。 3、分别移取、、、、、、、、、、的L的十二烷基硫酸钠溶液,定容到50mL 。配制成浓度为×10-3、×10-3、×10-3、×10-3、×10-3、×10-2、×10-2、×10-2、×10-2、×10-2、×10-2mol/L的待测溶液。

电导法测定弱电解质的电离平衡常数及数据处理完整版

电导法测定弱电解质的电离平衡常数及数据处 理 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电导法测定醋酸电离常数 一、实验目的 1.了解溶液电导、电导率和摩尔电导率的概念; 2.测量电解质溶液的摩尔电导率,并计算弱电解质溶液的电离常数。 二、实验原理 电解质溶液是靠正、负离子的迁移来传递电流。而弱电解质溶液中,只有已电离部分才能承担传递电量的任务。在无限稀释的溶液中可以认为电解质已全部电离,此时溶液的摩尔电导率为Λ∞m,而且可用离子极限摩尔电导率相加而得。 一定浓度下的摩尔电导率Λm与无限稀释的溶液中摩尔电导率Λ∞m是有差别的。这由两个因素造成,一是电解质溶液的不完全离解,二是离子间存在着相互作用力。所以,Λm通常称为表观摩尔电导率。 Λ m /Λ∞m=α(U++ U-)/(U+∞+ U-∞) 若U+= U-,,U+∞=U-∞则 Λ m /Λ∞m=α 式中α为电离度。 AB型弱电解质在溶液中电离达到平衡时,电离平衡常数K a,起始浓度C0,电离度α有以下关系:+ + B- 起始浓度mol/L:C0 0 0 平衡浓度mol/L:C0·(1-α) αC0 αC0 K c =[c(A+)/c][c(B-)/c]/[c(AB)/c]=C0α2/(1-α)=C0Λm2/[cΛ∞m(Λ∞m- Λ m )] 根据离子独立定律,Λ∞m可以从离子的无限稀释的摩尔电导率计算出来。 Λ m 可以从电导率的测定求得,然后求出K a。 Λ m C /c =Λ∞m2K c/Λm-Λ∞m K c 通过Λm C0/c ~1/Λm作图,由直线斜率=Λ∞m2K c,可求出K c。 三、仪器与试剂 DDS-11A(T)型电导率仪1台;恒温槽1套;L醋酸溶液。 四、实验步骤

电导法测定弱电解质的电离平衡常数及数据处理

电导法测定醋酸电离常数 一、实验目的 1.了解溶液电导、电导率和摩尔电导率的概念; 2.测量电解质溶液的摩尔电导率,并计算弱电解质溶液的电离常数。 二、实验原理 电解质溶液是靠正、负离子的迁移来传递电流。而弱电解质溶液中,只有已电离部分才能承担传递电量的任务。在无限稀释的溶液中可以认为电解质已全部电离,此时溶液的摩尔电导率为Λ∞m,而且可用离子极限摩尔电导率相加而得。 一定浓度下的摩尔电导率Λm与无限稀释的溶液中摩尔电导率Λ∞m是有差别的。这由两个因素造成,一是电解质溶液的不完全离解,二是离子间存在着相互作用力。所以,Λm通常称为表观摩尔电导率。 Λm/Λ∞m=α(U++ U-)/(U+∞+ U-∞) 若U+= U-,,U+∞=U-∞则 Λm/Λ∞m=α 式中α为电离度。 AB型弱电解质在溶液中电离达到平衡时,电离平衡常数 K a?,起始浓度C0,度α有以下关系:AB A+ + B-

起始浓度mol/L : C 0 0 0 平衡浓度mol/L : C 0·(1-α) αC 0 αC 0 K c ?=[c (A +)/c ?][c (B -)/c ?]/[c (AB)/c ?]=C 0α2/(1-α)=C 0 Λ m 2/[c ?Λ ∞ m (Λ ∞ m -Λm )] 根据离子独立定律,Λ ∞ m 可以从离子的无限稀释的摩尔电导 率计算出来。Λm 可以从电导率的测定求得,然后求出K a ?。 Λm C 0/c ? =Λ ∞ m 2K c ? /Λ m -Λ ∞ m K c ? 通过Λm C 0/c ? ~1/Λm 作图,由直线斜率=Λ∞ m 2K c ?,可求出K c ?。 三、仪器与试剂 DDS-11A(T)型电导率仪1台;恒温槽1套;0.1000mol/L 醋酸溶液。 四、实验步骤 1.调整恒温槽温度为25℃±0.3℃。 2.用洗净、烘干的义形管1支,加入20.00mL 的0.1000mol/L 醋酸溶液,测其电导率。 3.用吸取醋酸的移液管从电导池中吸出10.00mL 醋酸溶液弃去,用另一支移液管取10.00mL 电导水注入电导池,混合均匀,温度恒定后,测其电导率,如此操作,共稀释4次。 4.倒去醋酸溶液,洗净电导池,最后用电导水淋洗。注入20mL 电导水,测其电导率。 五、实验注意事项 1.本实验配制溶液时,均需用电导水。 2.温度对电导有较大影响,所以整个实验必须在同一温度下进行。每次用电导水稀释溶液时,需温度相同。因此可以预先把电导水装入锥形瓶,置于恒温槽中恒温。 六、数据记录及处理 第一次实验:实验温度:25.2℃,电导池常数K (l/A):0.94 m -1,Λ ∞ m =390.72 s.cm 2/mol -1 表1 醋酸电离常数的测定

电导法测定难溶盐的溶解度和Ksp(最新讲义)

电导法测定难溶盐的溶解度和K sp 一、实验目的 1.掌握电导法测定难溶盐溶解度和K sp 的原理和方法 2.掌握电导率仪的使用方法 二、基本原理 Pb 2++ SO 42 - PbSO 4↓ 平衡时,)sp(PbSO SO Pb 424 2K c c =?-+ 故 4424 2PbSO )sp(PbSO SO Pb S K c c == =-+ ∑ ?= += ?+?= =-+--+ + 1000 )(1000 1000 1000 4 424 2424 24 224 PbSO PbSO SO Pb PbSO SO SO Pb Pb i i PbSO λλλλλλκS S c c c 4 4 4 44P b S O P b S O P b S O 6 -P b S O P b S O 1000) (10)(1000λκλκ?= ??= 读数值读数值S (mol·L -1) )s p (P b S O 4K = 2 PbSO 4S 其中:O H PbSO PbSO 244κκκ-=溶液,由电导率仪测出 ][2)SO 2 1 () Pb 2 1 ()(PbSO PbSO 2424 4 ∞∞ ∞- ++=≈λλλλ 可查表。 三、装置图 1.仪器 超级恒温槽 一套 DDS —307型电导率仪 一台 电导电极(镀铂黑) 一支 锥形瓶(200 mL ) 五个 电炉 一台 2.试剂 0.01mol/L 氯化钾溶液 硫酸铅(A.R.) 四、操作步骤 1. 调节恒温槽温度至25±0.1 2. 测定电导池常数 用0.01mol ·L -1的KCl 溶液。查附录,25℃的电导率。用少量标准KCl 溶液洗涤电导电极两次,将电极插入盛适量溶液的锥形瓶中,液面高于电极2毫米以上。将锥形瓶放入恒温槽内,恒温10分钟后,测定其电导率以确定所用电极的电导池常数θ(以24℃为例:查附

电导法测弱电解质的解离平衡常数

新乡医学院物理化学实验课教案首页 授课教师姓名职称: 新乡医学院化学教研室年月日

电导法测弱电解质的解离平衡常数 一、实验目的 1.溶液电导的基本概念,掌握电导测定的实验方法。 2.基本掌握DDS-307型电导率仪的使用。 3.测定醋酸溶液的解离平衡常数。 4.测定难溶盐的溶解度。 二、实验原理 电解质溶液的导电能力的大小,等于它的电阻的倒数R 1,电导以L 表示,则R L 1= 则 A l R ?=ρ,所以:l A l A L ?=?=κρ1 式中κ称为比电导(或电导率),其单位为S·m -1,其值为电阻率的倒数。 则 A l L ?=κ 式中的A l 对于一定的电导电极而言是一个常数,A 为极板面积,l 为极间距J A l =,J 称为电导池常数,电导池常数可通过测定已知比电导的电解质溶液(如氯化钾标准溶液)来确定。电解质溶液的电导,可以通过平衡电桥法进行测定,但目前多采用电导仪。DOS-IIA(或D)型电导率仪可以直接测出溶液的比电导。 电解质溶液的电导是随着溶液浓度的改变而改变的,当溶液中含有1摩尔溶质时的电导称为摩尔电导率以Λm 表示 κ?=Λ-c m 310式中c 为摩尔浓度,Λm 的单位为S·m -1·mol -1根据电离学说,弱电解质的解离α随着溶液的稀释而增大,当溶液无限稀释时,弱电解质全部电离α→1在一定温度下,溶液的摩尔电导与离子的真实浓度呈正比,因而也与α呈正比,所以0ΛΛ= α(Λ0 为无限稀释的摩尔电导)。 如醋酸: HAc + H 2O H 3O + + Ac - 平衡浓度: c(1-α) cα cα 则 a ca K a -=12 因此由实验测得醋酸溶液的摩尔电导,就可以求得它的解离常数。 一般难溶盐类在水中的溶解度很小,其饱和溶液浓度很难用普通滴定法测定,但可用

相关文档
最新文档